
Simon’s Algorithm

An example where quantum operations are exponentially more
efficient than classical operations

Based on notes by John Watrous

Simon’s Problem

Let f: {0,1}n à {0,1}n be s.t. ∃ s in {0,1}n , ∀ x, y in {0,1}n

f(x)=f(y) if and only if x ⊕ y ∈	{0n, s}

Simon’s Problem

Let f: {0,1}n à {0,1}n be s.t. ∃ s in {0,1}n , ∀ x, y in {0,1}n

f(x)=f(y) if and only if x ⊕ y ∈	{0n, s}

Examples: Suppose that s = 0n.

Simon’s Problem

Let f: {0,1}n à {0,1}n be s.t. ∃ s in {0,1}n , ∀ x, y in {0,1}n

f(x)=f(y) if and only if x ⊕ y ∈	{0n, s}

Examples: Suppose that s = 0n. In this case,
• f(x)=f(y) if and only if x ⊕ y = 0n

• f is a permutation function or bijection

Simon’s Problem

Let f: {0,1}n à {0,1}n be s.t. ∃ s in {0,1}n , ∀ x, y in {0,1}n

f(x)=f(y) if and only if x ⊕ y ∈	{0n, s}

Examples: The function given by:

Simon’s Problem

Let f: {0,1}n à {0,1}n be s.t. ∃ s in {0,1}n , ∀ x, y in {0,1}n

f(x)=f(y) if and only if x ⊕ y ∈	{0n, s}

Examples: The function given by:

Simon’s Problem

More generally, if s ≠ 0n then
• f(x) = f(x⊕s), and so f(0n) = f(s).
• Exactly two strings map to each z in

the range of f; call them xz and xz⊕s
• If A = range(f), then|A| = 2n-1

Let f: {0,1}n à {0,1}n be s.t. ∃ s in {0,1}n , ∀ x, y in {0,1}n

f(x)=f(y) if and only if x ⊕ y ∈	{0n, s}

Simon’s Problem

Let f: {0,1}n à {0,1}n be s.t. ∃ s in {0,1}n , ∀ x, y in {0,1}n

f(x)=f(y) if and only if x ⊕ y ∈	{0n, s}

Instance: A "black box circuit” Bf that computes f

Problem: How many queries are needed to find s with
high probability?

Simon’s Problem

Let f: {0,1}n à {0,1}n be s.t. ∃ s in {0,1}n , ∀ x, y in {0,1}n

f(x)=f(y) if and only if x ⊕ y ∈	{0n, s}

Instance: A "black box circuit” Bf that computes f

Problem: How many queries are needed to find s with
high probability?

• Ω (√(2n) queries needed classically

• O(n) queries are needed with quantum operations

Simon’s Problem

Simon’s Algorithm (Quantum Part)

(plus some classical
post-processing)

Simon’s Algorithm (Quantum Part)

(plus some classical
post-processing)

0 0

Simon’s Algorithm: Superpositions

(plus some classical
post-processing)

Simon’s Algorithm: Superpositions

(plus some classical
post-processing)

Simon’s Algorithm: Superpositions

(plus some classical
post-processing)

Simon’s Algorithm: Superpositions

(plus some classical
post-processing)

Simon’s Algorithm: Superpositions

Simon’s Algorithm: Superpositions

Simon’s Algorithm: Superpositions

Simon’s Algorithm Analysis

Simon’s Algorithm Analysis

Probability of measuring a given y in {0,1}n?

Simon’s Algorithm Analysis

Probability of measuring a given y in {0,1}n?

Simon’s Algorithm Analysis

Probability of measuring a given y in {0,1}n?
• If s = 0n :

Simon’s Algorithm Analysis

Probability of measuring a given y in {0,1}n?
• If s = 0n :

Since f is a permutation function when s = 0n ,
every entry in this superposition is either 1/2n

or -1/2n

Simon’s Algorithm Analysis

Probability of measuring a given y in {0,1}n?
• If s = 0n :

Since f is a permutation function when s = 0n ,
every entry in this superposition is either 1/2n

or -1/2n

Simon’s Algorithm Analysis

Probability of measuring a given y in {0,1}n?
• If s ≠ 0n :

Simon’s Algorithm Analysis

Probability of measuring a given y in {0,1}n?
• If s ≠ 0n :

Simon’s Algorithm Analysis

Probability of measuring a given y in {0,1}n?
• If s ≠ 0n :

• Here, A is range(f), and |A| = 2n-1

• Recall that when s ≠ 0n, exactly two
strings, namely xz and xz⊕s , map to each
z in the range of f

Simon’s Algorithm Analysis

Probability of measuring a given y in {0,1}n?
• If s ≠ 0n :

Simon’s Algorithm Analysis

Probability of measuring a given y in {0,1}n?
• If s ≠ 0n :

Simon’s Algorithm Analysis

Probability of measuring a given y in {0,1}n?
• If s ≠ 0n :

Simon’s Algorithm Analysis

Probability of measuring a given y in {0,1}n?

• If s = 0n : (and s . y = 0 (mod 2))

• If s ≠ 0n :

Back to Simon’s Algorithm

• Use the circuit n times to get
y1, y2, … yn-1 such that

• The system has a unique solution s ≠ 0n iff the yi are
linearly independent.

Back to Simon’s Algorithm

• Use the circuit n times to get
y1, y2, … yn-1 such that

• The system has a unique solution s ≠ 0n iff the yi are
linearly independent. The probability of lin. ind. is ≥

Back to Simon’s Algorithm

• Use the circuit n times to get
y1, y2, … yn-1 such that

• The system has a unique solution s ≠ 0n iff the yi are
linearly independent. The probability of lin. ind. is ≥

Back to Simon’s Algorithm

• Use the circuit n times to get
y1, y2, … yn-1 such that

• Repeat, m times, so that probability we don’t get
linearly independent y with probability at most

Classical Post-Processing

• Use the circuit n times to get
y1, y2, … yn-1 such that

Classical Post-Processing

• Solve the system of equations to get a unique solution
s′ ≠ 0n

• If f(0n) = f(s′), then return s = s′
• If f(0n) ≠ f(s′), then return s = 0

• Use the circuit n times to get
y1, y2, … yn-1 such that

Summary
We’ve covered:

• Basics of quantum computing: quantum bits,
operations, circuits, complexity classes

• Two algorithms: Superdense coding and Simon’s
algorithm, suggesting the power of quantum
algorithms

Other Things

• Reading project: Written reports or virtual
presentations?

• Molecular programming and models of computation

Last Topic, Starting Next Week:

