Simon's Algorithm

An example where quantum operations are exponentially more efficient than classical operations

Based on notes by John Watrous

Simon's Problem

Examples: Suppose that $s = 0^{n}$.

Examples: Suppose that $s = 0^n$. In this case,

- f(x)=f(y) if and only if $x \bigoplus y = 0^n$
- f is a permutation function or bijection

Examples: The function given by:

Examples: The function given by:

More generally, if $s \neq 0^n$ then

- $f(x) = f(x \oplus s)$, and so $f(0^n) = f(s)$.
- Exactly two strings map to each z in the range of f; call them x_z and x_z⊕s
- If A = range(f), then |A| = 2ⁿ⁻¹

Instance: A "black box circuit" B_f that computes f Problem: How many queries are needed to find s with high probability?

Instance: A "black box circuit" B_f that computes f Problem: How many queries are needed to find s with high probability?

- $\Omega(\sqrt{2^n})$ queries needed classically
- O(n) queries are needed with quantum operations

Simon's Algorithm (Quantum Part)

Simon's Algorithm (Quantum Part)

$$\sum_{y \in \{0,1\}^n} |y\rangle \left(\frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle \right)$$

$$\sum_{y \in \{0,1\}^n} |y\rangle \left(\frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle \right)$$
Probability of measuring a given y in $\{0,1\}^n$?

$$\sum_{y \in \{0,1\}^n} |y\rangle \left(\frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle \right)$$

 \mathcal{M}

Probability of measuring a given y in $\{0,1\}^n$?

$$\left\|\frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} \left|f(x)\right\rangle\right\|^2$$

$$\sum_{y \in \{0,1\}^n} |y\rangle \left(\frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle \right)$$

Probability of measuring a given y in $\{0,1\}^n$?
• If s = 0ⁿ :
$$\left\| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle \right\|^2$$

$$\sum_{y \in \{0,1\}^n} |y\rangle \left(\frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle \right)$$

Probability of measuring a given y in $\{0,1\}^n$?

• If
$$s = 0^n$$
:

 \mathcal{M}

$$\left\|\frac{1}{2^n}\sum_{x\in\{0,1\}^n}(-1)^{x\cdot y}\,|f(x)\rangle\right\|^2$$

Since f is a permutation function when $s = 0^n$, every entry in this superposition is either $1/2^n$ or $-1/2^n$

$$\sum_{y \in \{0,1\}^n} |y\rangle \left(\frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle \right)$$

Probability of measuring a given y in $\{0,1\}^n$?

• If
$$s = 0^n$$
:

 \mathcal{M}

$$\left\|\frac{1}{2^n}\sum_{x\in\{0,1\}^n}(-1)^{x\cdot y}|f(x)\rangle\right\|^2 = \frac{1}{2^n}$$

Since f is a permutation function when $s = 0^n$, every entry in this superposition is either $1/2^n$ or $-1/2^n$

-

$$\sum_{y \in \{0,1\}^n} |y\rangle \left(\frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle \right)$$

Probability of measuring a given y in $\{0,1\}^n$?
• If s $\neq 0^n$:

+

$$\sum_{y \in \{0,1\}^n} |y\rangle \left(\frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle \right)$$

Probability of measuring a given y in $\{0,1\}^n$?
• If $s \neq 0^n$:
 $\left\| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle \right\|^2$

$$\sum_{y \in \{0,1\}^n} |y\rangle \left(\frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle \right)$$
Probability of measuring a given y in $\{0,1\}^n$?
• If $s \neq 0^n$:
$$\left\| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle \right\|^2 = \left\| \frac{1}{2^n} \sum_{z \in A} \left((-1)^{x_z \cdot y} + (-1)^{(x_z \oplus s) \cdot y} \right) |z\rangle \right\|^2$$
• Here, A is range(f), and $|A| = 2^{n-1}$
• Recall that when $s \neq 0^n$, exactly two strings, namely x_z and $x_z \oplus s$, map to each z in the range of f

$$\sum_{y \in \{0,1\}^n} |y\rangle \left(\frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle \right)$$

Probability of measuring a given y in $\{0,1\}^n$?
• If $s \neq 0^n$:
$$\left\| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle \right\|^2 = \left\| \frac{1}{2^n} \sum_{z \in A} \left((-1)^{x_z \cdot y} + (-1)^{(x_z \oplus s) \cdot y} \right) |z\rangle \right\|^2$$

$$\sum_{y \in \{0,1\}^n} |y\rangle \left(\frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle \right)$$

Probability of measuring a given y in $\{0,1\}^n$?
• If $s \neq 0^n$:

$$\left\| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle \right\|^2 = \left\| \frac{1}{2^n} \sum_{z \in A} \left((-1)^{x_z \cdot y} + (-1)^{(x_z \oplus s) \cdot y} \right) |z\rangle \right\|^2$$

$$= \left\| \frac{1}{2^n} \sum_{z \in A} (-1)^{x_z \cdot y} (1 + (-1)^{s \cdot y}) |z\rangle \right\|^2$$

$$\sum_{y \in \{0,1\}^n} |y\rangle \left(\frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle \right)$$
Probability of measuring a given y in $\{0,1\}^n$?
• If $s \neq 0^n$:
$$\left\| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle \right\|^2 = \left\| \frac{1}{2^n} \sum_{z \in A} \left((-1)^{x_z \cdot y} + (-1)^{(x_z \oplus s) \cdot y} \right) |z\rangle \right\|^2$$

$$= \left\| \frac{1}{2^n} \sum_{z \in A} (-1)^{x_z \cdot y} (1 + (-1)^{s \cdot y}) |z\rangle \right\|^2$$

$$= \begin{cases} 2^{-(n-1)} & \text{if } s \cdot y = 0 \\ 0 & \text{if } s \cdot y = 1. \end{cases}$$

$$\sum_{y \in \{0,1\}^n} |y\rangle \left(\frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle \right)$$

Probability of measuring a given y in $\{0,1\}^n$?
• If $s = 0^n$: $p_y = \frac{1}{2^n}$ (and $s \cdot y = 0 \pmod{2}$)
• If $s \neq 0^n$: $p_y = \begin{cases} 2^{-(n-1)} & \text{if } s \cdot y = 0\\ 0 & \text{if } s \cdot y = 1 \end{cases}$

• Use the circuit n times to get $y_1, y_2, \dots y_{n-1}$ such that

 $y_1 \cdot s = 0$ $y_2 \cdot s = 0$ \vdots

 $y_{n-1} \cdot s = 0$

Use the circuit n times to get
 y₁, y₂, ... y_{n-1} such that

$$y_1 \cdot s = 0$$
$$y_2 \cdot s = 0$$
$$\vdots$$
$$y_{n-1} \cdot s = 0$$

 The system has a unique solution s ≠ 0ⁿ iff the y_i are linearly independent.

Use the circuit n times to get
 y₁, y₂, ... y_{n-1} such that

$$y_1 \cdot s = 0$$
$$y_2 \cdot s = 0$$
$$\vdots$$
$$y_{n-1} \cdot s = 0$$

 The system has a unique solution s ≠ 0ⁿ iff the y_i are linearly independent. The probability of lin. ind. is ≥

$$\prod_{k=1}^{\infty} \left(1 - \frac{1}{2^k} \right) = 0.288788 \dots > \frac{1}{4}.$$

Use the circuit n times to get
 y₁, y₂, ... y_{n-1} such that

$$y_1 \cdot s = 0$$
$$y_2 \cdot s = 0$$
$$\vdots$$
$$y_{n-1} \cdot s = 0$$

 The system has a unique solution s ≠ 0ⁿ iff the y_i are linearly independent. The probability of lin. ind. is ≥

$$\prod_{k=1}^{\infty} \left(1 - \frac{1}{2^k} \right) = 0.288788 \dots > \frac{1}{4}.$$

 Repeat, m times, so that probability we don't get linearly independent y with probability at most

$$\left(1 - \frac{1}{4}\right)^{4m} < e^{-m}$$

Classical Post-Processing

• Use the circuit n times to get $y_1, y_2, \dots y_{n-1}$ such that

 $y_1 \cdot s = 0$ $y_2 \cdot s = 0$ \vdots

 $y_{n-1} \cdot s = 0$

Classical Post-Processing

Use the circuit n times to get
 y₁, y₂, ... y_{n-1} such that

$$y_1 \cdot s = 0$$
$$y_2 \cdot s = 0$$
$$\vdots$$
$$u_{n-1} \cdot s = 0$$

- Solve the system of equations to get a unique solution $s' \neq 0^n$
- If $f(0^n) = f(s')$, then return s = s'
- If $f(0^n) \neq f(s')$, then return s = 0

Summary

We've covered:

- Basics of quantum computing: quantum bits, operations, circuits, complexity classes
- Two algorithms: Superdense coding and Simon's algorithm, suggesting the power of quantum algorithms

Other Things

• Reading project: Written reports or virtual presentations?

Last Topic, Starting Next Week:

• Molecular programming and models of computation