
Simon’s Algorithm

An example where quantum operations are exponentially more 
efficient than classical operations

Based on notes by John Watrous



Simon’s Problem



Let f: {0,1}n à {0,1}n be s.t. ∃ s in {0,1}n , ∀ x, y in {0,1}n

f(x)=f(y) if and only if x ⊕ y  ∈	{0n, s}
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Examples: Suppose that s = 0n. In this case, 
• f(x)=f(y) if and only if x ⊕ y = 0n 

• f is a permutation function or bijection
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Simon’s Problem

More generally, if s ≠ 0n then
• f(x) = f(x⊕s), and so f(0n) = f(s).
• Exactly two strings map to each z in 

the range of f; call them xz and xz⊕s
• If A = range(f), then|A| = 2n-1
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Let f: {0,1}n à {0,1}n be s.t. ∃ s in {0,1}n , ∀ x, y in {0,1}n

f(x)=f(y) if and only if x ⊕ y  ∈	{0n, s}

Instance: A "black box circuit” Bf that computes f

Problem: How many queries are needed to find s with 
high probability?

• Ω (√(2n) queries needed classically

• O(n) queries are needed with quantum operations

Simon’s Problem



Simon’s Algorithm (Quantum Part)

(plus some classical    
post-processing)
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Since f is a permutation function when s = 0n , 
every entry in this superposition is either 1/2n

or -1/2n
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Simon’s Algorithm Analysis

Probability of measuring a given y in {0,1}n?
• If s  ≠  0n :

• Here, A is range(f), and |A| = 2n-1

• Recall that when s  ≠  0n, exactly two 
strings, namely  xz and xz⊕s , map to each 
z in the range of f
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Simon’s Algorithm Analysis

Probability of measuring a given y in {0,1}n?

• If s = 0n :                      (and s . y = 0 (mod 2))

• If s ≠ 0n :



Back to Simon’s Algorithm

• Use the circuit n times to get 
y1, y2, … yn-1 such that



• The system has a unique solution s  ≠ 0n iff the yi are 
linearly independent.
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• The system has a unique solution s  ≠ 0n iff the yi are 
linearly independent. The probability of lin. ind. is ≥

Back to Simon’s Algorithm

• Use the circuit n times to get 
y1, y2, … yn-1 such that

• Repeat, m times, so that probability we don’t get 
linearly independent y with probability at most



Classical Post-Processing

• Use the circuit n times to get 
y1, y2, … yn-1 such that



Classical Post-Processing

• Solve the system of equations to get a unique solution 
s′  ≠ 0n

• If f(0n) = f(s′), then return s = s′
• If f(0n) ≠ f(s′), then return s = 0

• Use the circuit n times to get 
y1, y2, … yn-1 such that



Summary
We’ve covered:

• Basics of quantum computing: quantum bits, 
operations, circuits, complexity classes

• Two algorithms: Superdense coding and Simon’s 
algorithm, suggesting the power of  quantum 
algorithms



Other Things

• Reading project: Written reports or virtual 
presentations?



• Molecular programming and models of computation

Last Topic, Starting Next Week:


