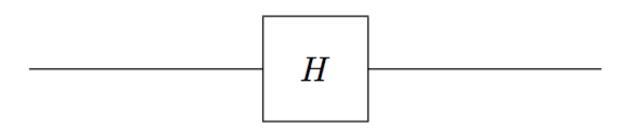
Quantum Circuits

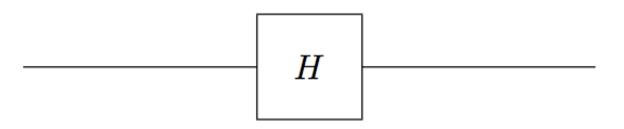
A formal way to represent protocols such as superdense coding, and the basis for defining quantum complexity classes

Slides are based on John Watrous' lectures 3 and 7

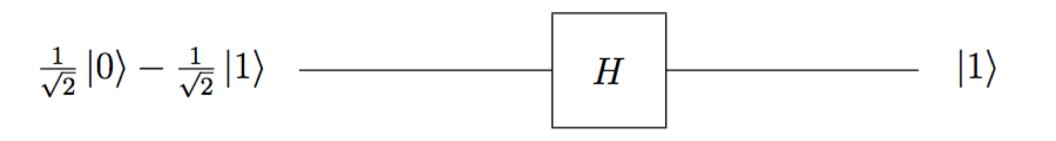
• A Hadamard transform on a single superposition



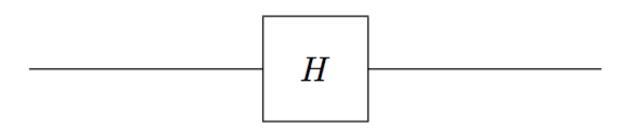
• A Hadamard transform on a single superposition



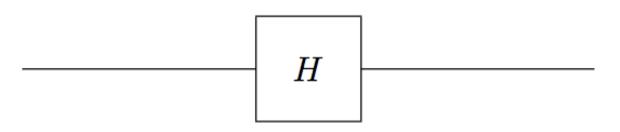
• A Hadamard transform on input $\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle$



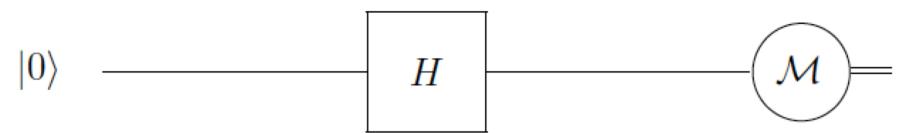
• A Hadamard transform on a single superposition



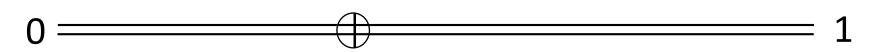
• A Hadamard transform on a single superposition



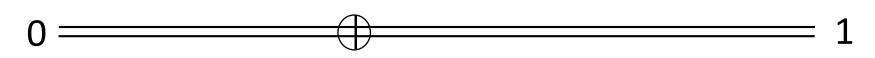
A measurement produces a classical bit (represented by double lines)



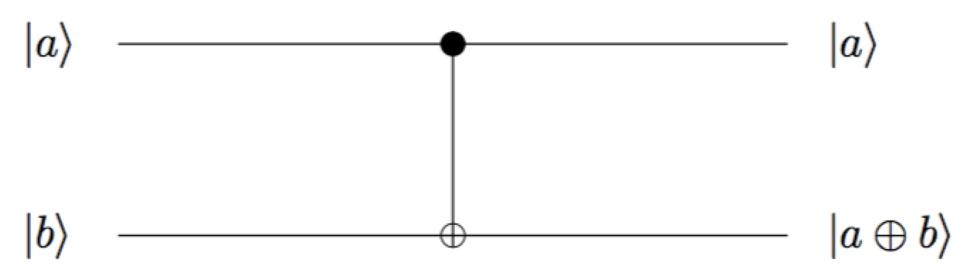
• A NOT operation with classical input 0

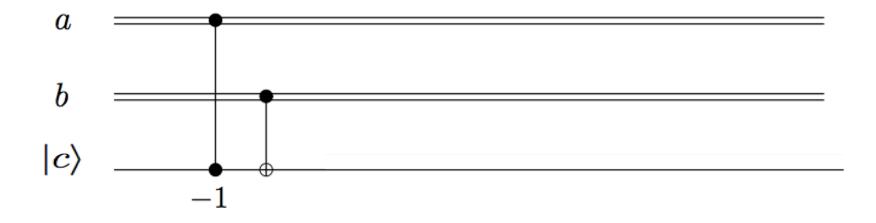


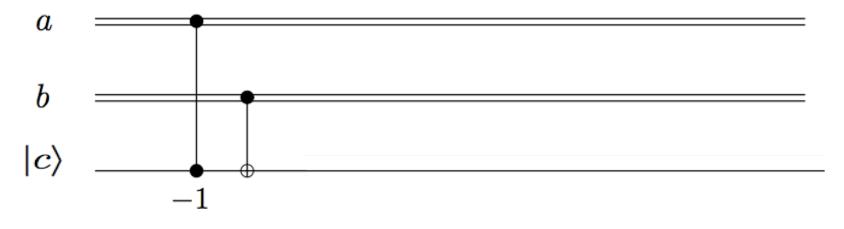
• A NOT operation with classical input 0



A controlled NOT operation on inputs (superpositions)
a, *b* with control *a*





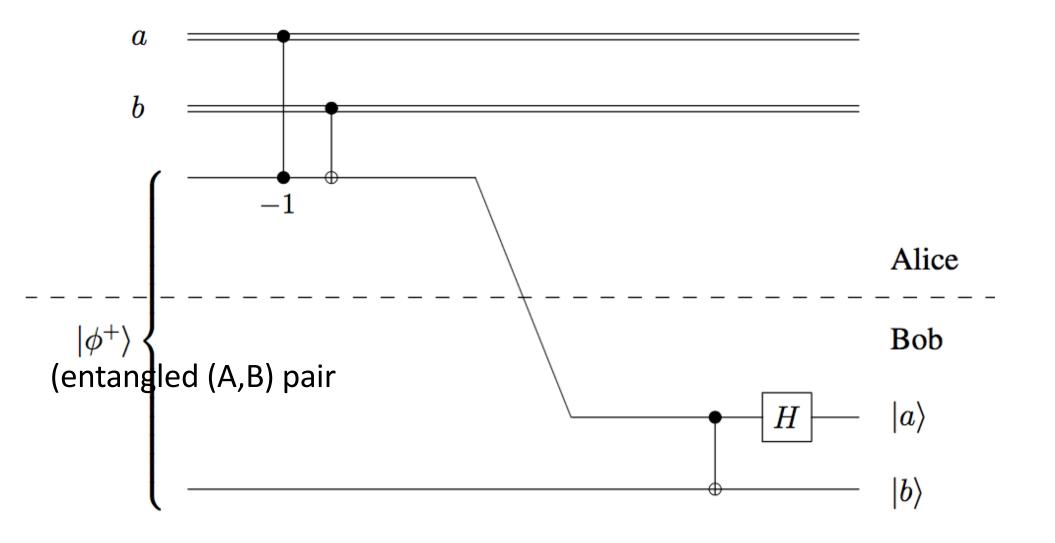


- A controlled $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ operation with control a and target $|c\rangle$
- Then a controlled NOT operation with control b and target which is the output of the first operation
- Here a and b are classical bits

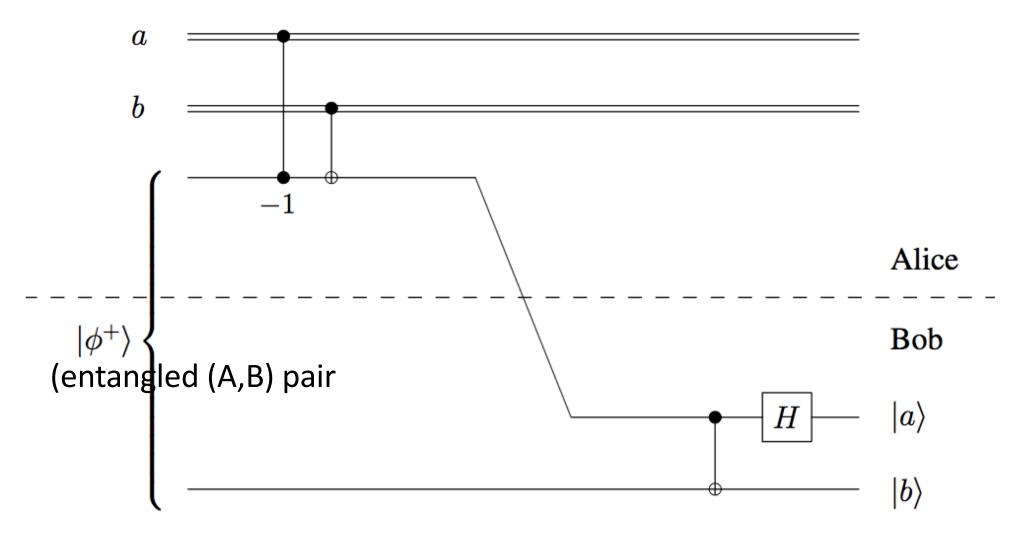
A circuit for superdense coding

- 1. Alice: If a = 1, apply σ_z to qubit A, where
- 2. Alice: If b = 1, apply NOT to qubit A
- 3. Alice: send A to Bob
- 4. Bob: Apply a controlled-NOT to (A,B) (A is the control)
- 5. Bob: Apply a Hadamard transform to A
- 6. Bob: Measure A and B and output the result

A circuit for superdense coding

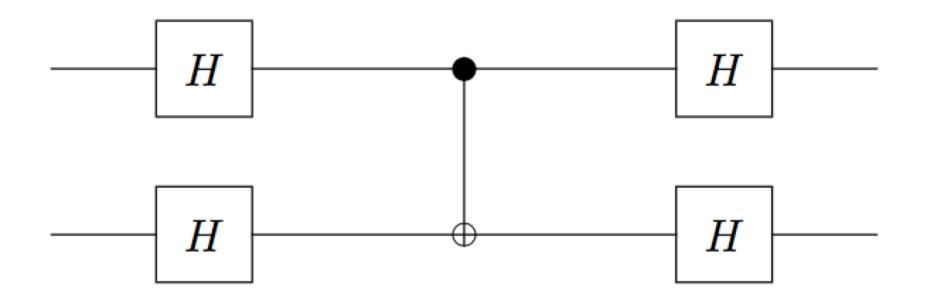


A circuit for superdense coding



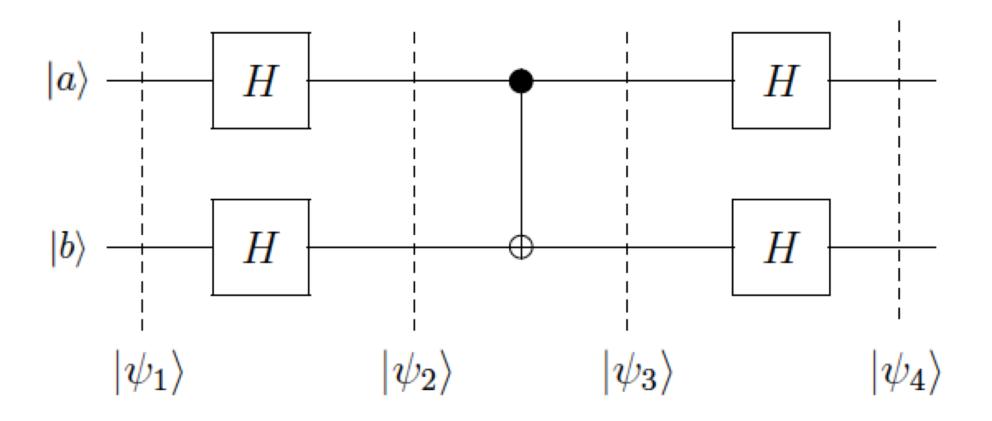
 What do we get if we apply the gates in reverse order to the output?

A circuit with multiple gates



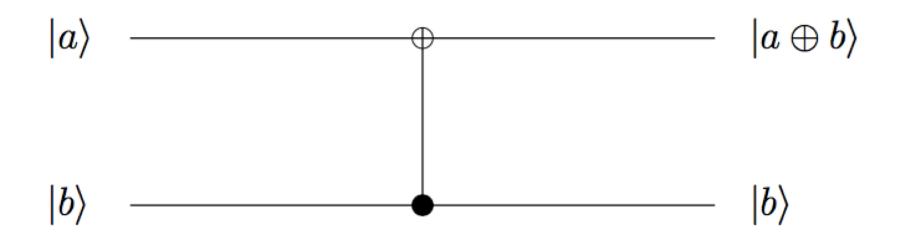
- This circuit has five gates
- Gates are evaluated from left to right
- What do you think that this circuit does?

A circuit with multiple gates

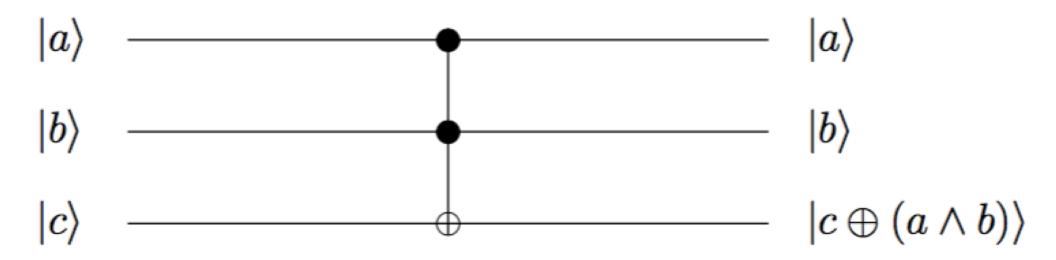


- This circuit has five gates
- Gates are evaluated from left to right
- What do you think that this circuit does?

An equivalent circuit

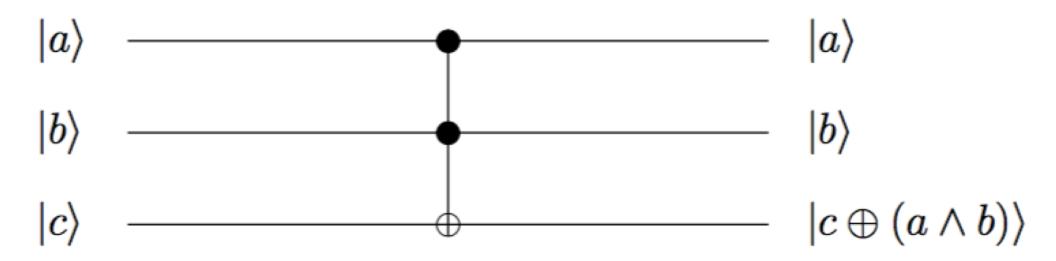


 A Toffoli gate is a controlled-controlled NOT operation on inputs a, b, c in {0,1}; here a and b are the controls



• If c = 0, this gate computes a AND b

 A Toffoli gate is a controlled-controlled NOT operation on inputs a, b, c in {0,1}; here a and b are the controls



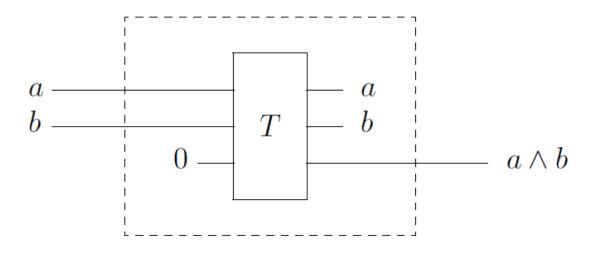
• What is the matrix representing this operation?

Quantum circuit summary

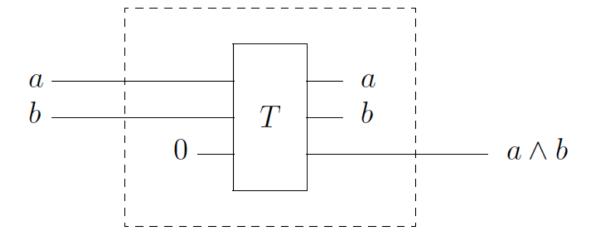
- Qubits are represented as horizontal lines, and the number of input and output bits are equal
- Operations and measurement are represented using various symbols, and are applied from left to right

Can any classical circuit be simulated by a quantum circuit?

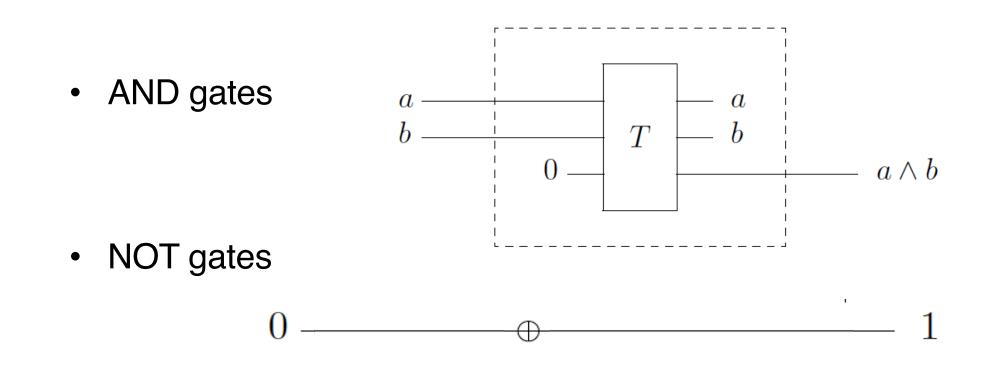
• AND gates

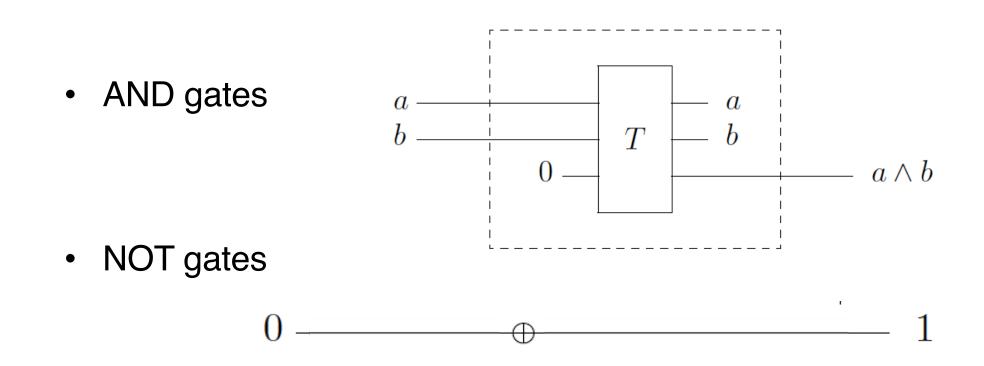


AND gates

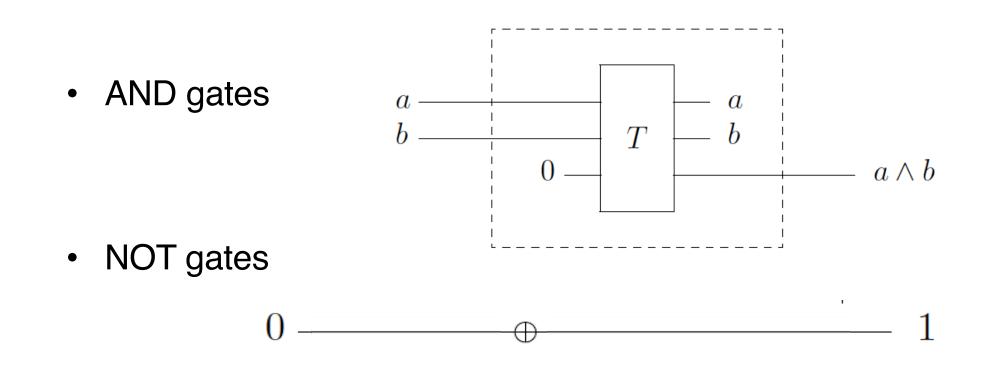


• NOT gates

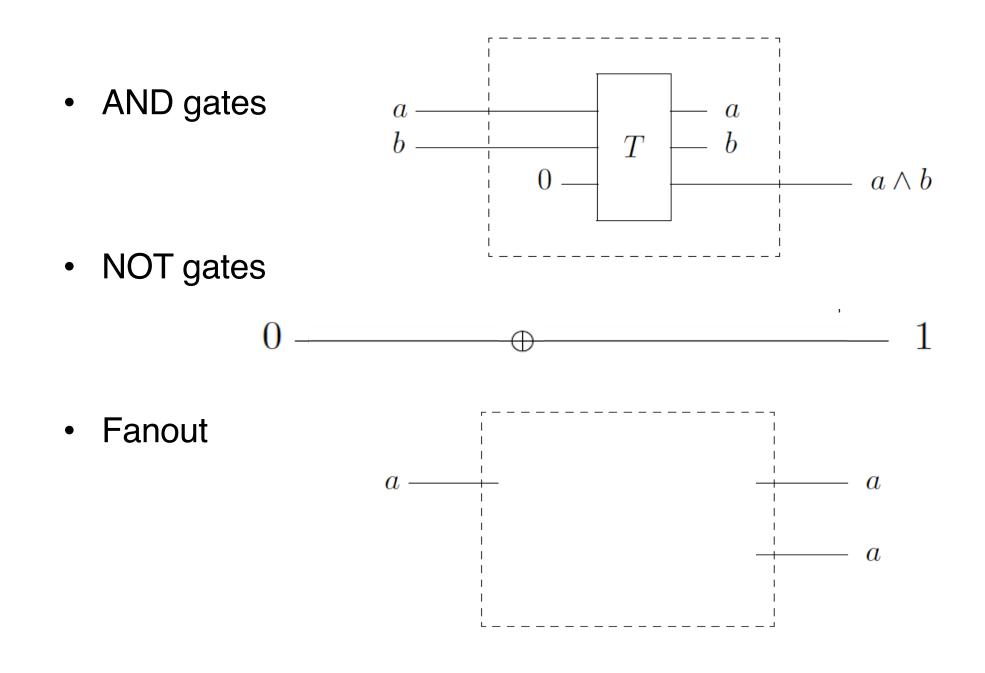


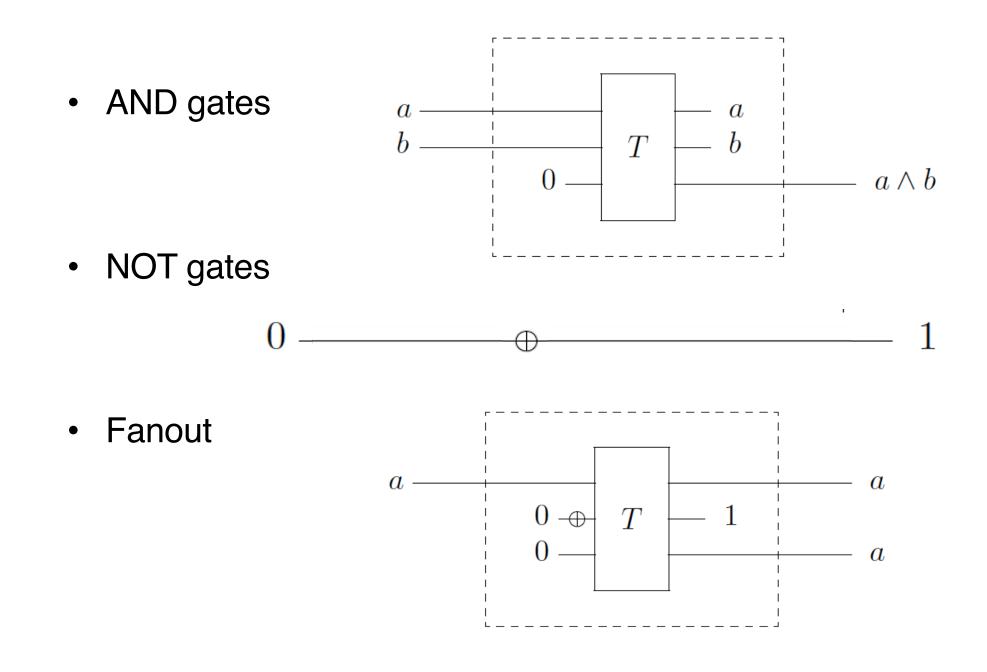


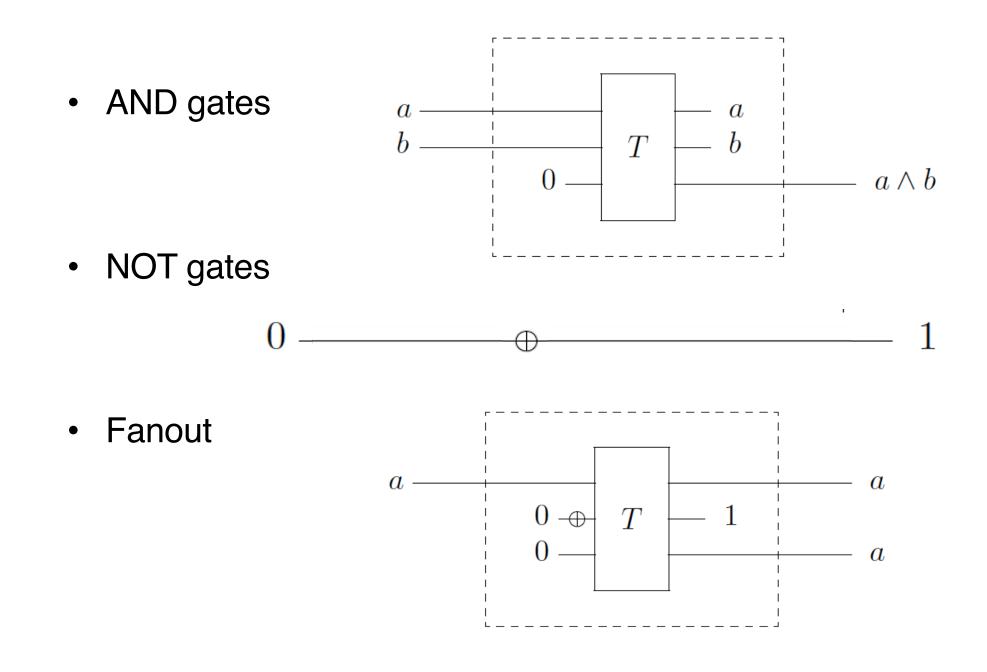
• NOT can also be simulated by Toffoli – how?



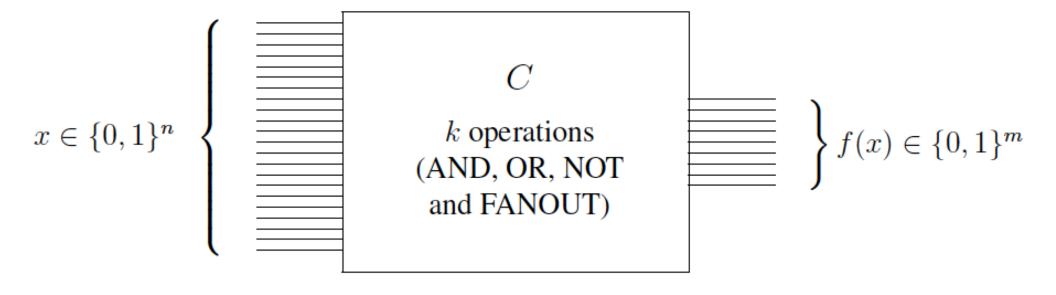
• Fanout

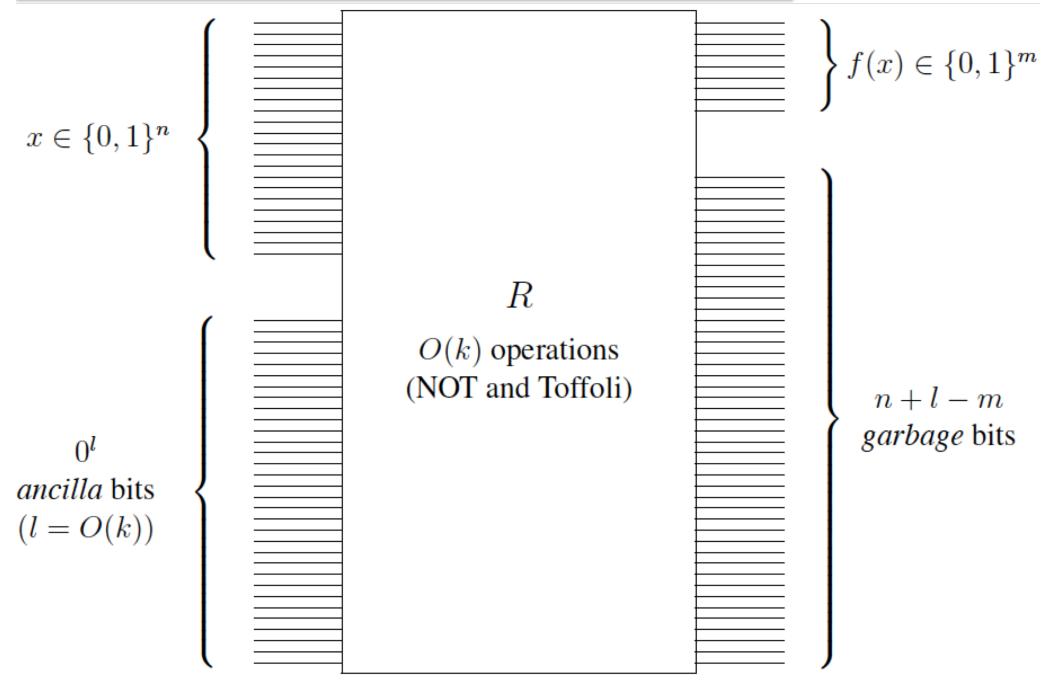


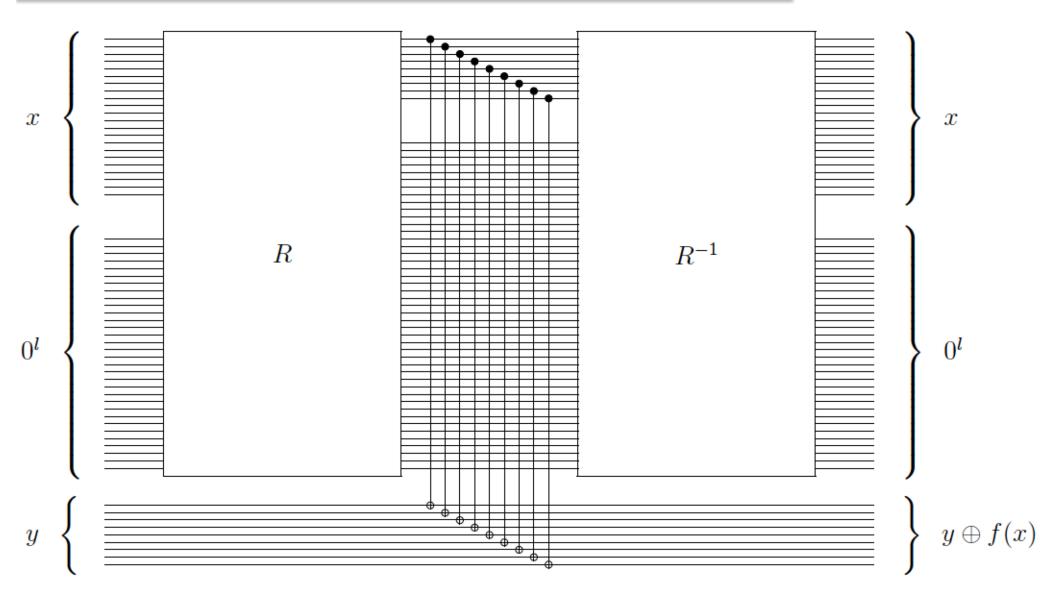


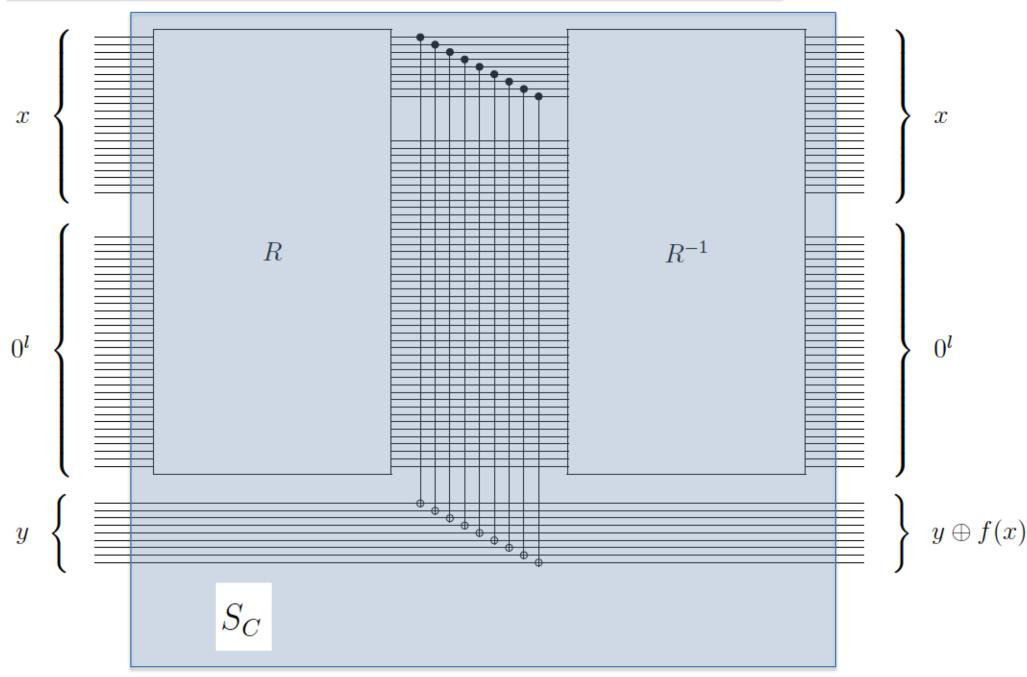


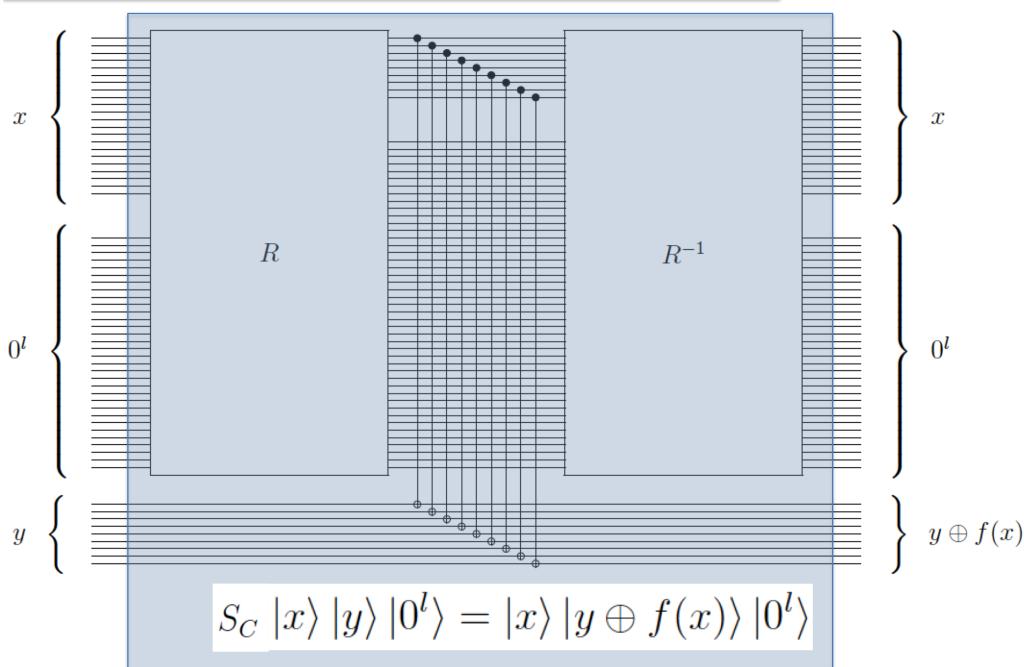
- All of the operations needed for simulating classical circuits map classical states to classical states
- Such operations can be represented by permutation matrices
- Circuits or operations that always map classical states to classical states are called *reversible* operations or circuits











Summary

- We can describe interesting protocols on quantum bits using quantum circuits, e.g. superdense coding
- Quantum circuits can efficiently simulate classical deterministic circuits if *f*: {0,1}ⁿ → {0,1}^m can be computed by classical circuit C, then our simulation procedure generates a *reversible* circuit S_C that satisfies

$$S_C |x\rangle |y\rangle |0^l\rangle = |x\rangle |y \oplus f(x)\rangle |0^l\rangle$$

Next class

- Universal quantum circuits
- Quantum complexity classes