Intro to Quantum Computing

Quantum states, measurements, operations

Dirac notation for representing and
manipulating states and operations

See Quantum Computing (not Quantum
Information) notes by John Watrous)



Quantum states

Let X be a physical device with discrete states

For simplicity, let the set of possible states be > ={0,1}, in
which case X is a qubit

A quantum state, or superposition is a vector, e.g.,

( % ) (1) (g) & entry indexed by 0
L 9 _ b 42 .
—- 7 0 = < entry indexed by 1



Quantum states

Let (2) be a superposition

f

Then a, B are complex numbers called amplitudes, and the
Euclidian norm of the vector must be 1, i.e., lal? + [BI? = 1



Quantum measurements

o
Suppose that the superposition of device X is (3)

You can measure X, in which case you’ll see 0 with
probability lal® and 1 with probability |81

After measuring X, its state changes to either

(o) = ()



Quantum operations

« QOperations map superpositions to superpositions,
and are represented by matrices that are unitary, i.e.,
preserve the Euclidian norm

« A matrix U is unitary if and only if
U" U=
where U" is the the complex conjugate of U:

transpose U, then replace each entry a+/b by a-ib

« Exercise: Check for 2 x 2 matrices why these two
definitions are the same



Quantum operations

« Examples: H below is called the Hadamard transform

1 1
1 L 10
Vi V3 01

(U 1) (C‘US () — sin(@))
NOT = |, Rg= | .
L 0 sin(¢/) cos(0)



Quantum operations

1 1 1 1
» ) \Y 72

 |If you measure X after applying the Hadamard
transformation, as above, what is the probability of
seeing 07 Of seeing 17?

* What is the result of applying H again?

« Example



Quantum operations

1 1 1 1
» ) \Y 72

 |If you measure X after applying the Hadamard
transformation, as above, what is the probability of
seeing 07 Of seeing 17?

* What is the result of applying H again?

« Example

11 1 1
V2 V2 V2 |
| 1 I B W



Quantum operations

1 1 1 1
» ) \Y 72

 |If you measure X after applying the Hadamard
transformation, as above, what is the probability of
seeing 07 Of seeing 17?

* What is the result of applying H again?

« Example



Quantum operations

1 1 1 1
» ) \Y 72

 |If you measure X after applying the Hadamard
transformation, as above, what is the probability of
seeing 07 Of seeing 17?

* What is the result of applying H again?

« Example

0
 What is the result of applying H to (1) ?



Quantum operations

« Example: suppose that qubit X is in one of the
following two initial superpositions:

1 1
V2 V2

« Using operations and measurements, how can you
determine which superposition X is in initially? (It’s
ok to use operations on the superposition, before
taking a measurement, in order to determine the

answer)



Multiple qubits




Multiple qubits

« The superposition of two qubits can be represented
as a vector with four entries and Euclidian norm 1

(\%\ < entry indexed by 00

0 < entry indexed by 01
: & entry indexed by 10
\_5) < entry indexed by 11

 If you measure this quantum state, what is the
probability of seeing 00, 01, 10, 11?



Tensor product of superpositions




Tensor product of superpositions

Useful for expressing the superpositions of
uncorrelated states. If X and Y have superpositions

v=| and w = | _

then the superposition of (X,Y) is the fensor product
0y

0



Tensor product of superpositions

Superpositions of entangled states X and Y cannot be
expressed as a tensor product, e.g.

- = ok



Unitary operations on multiple qubits

1 0 0 0O
* An operation on two bits (X,Y):

O 1 0 O

O 0 0 1

O 0 1 O

» To apply the operation, multiply with the superposition:
1 0 0 0O (

O 1 0 O
O 0 0 1
O 0 1 O

- o o8k



Unitary operations on multiple qubits

* An operation on two bits (X,Y):

o O O =
o O = O
=0 O O
o = O O



Unitary operations on multiple qubits

0O 0 O
* An operation on two bits (X,Y):
1 0 O
0O 0 1
O 1 O

o O O =

« Suppose that X,Y are uncorrelated and have

superpositions 0 o

1
 What is the result of the operation? What if X = ( )?

0



Unitary operations on multiple qubits

* An operation on two bits (X,Y):

o O O =
o O = O
=0 O O
o = O O

« Suppose that X,Y are uncorrelated and have

superpositions 0 o

1
 What is the result of the operation? What if X = ( )?

0
* This operation is called the controlled not operation



Tensor product of matrices (operations)

 If operation U transforms X and operation V independently
transforms Y then we can express the combined operation

on (X,Y) as the tensor product U & V-

0 1 1 (1
U = = NOT and V =
1 0 v2 \1

1 1
00 5 &5
1 1
UV = L v e
SR N S B 0
22
1 1
s —» O 0

1)
—H
—1



Tensor product of matrices (operations)

* Then, to calculate the result of the operation U & V
on a superposition v of (X,Y), multiply (U ® V) and

1 1 1 1
0 0 % &%\ (& 5

1 1 1
0 0 NG NG 0 | T2
11 5 o | 1
V2 V2 2
1 1 1 1
% —»m U 0 7 5



Tensor product of matrices (operations)

» Given
/(1,131 a2 -+ al,m\ /bl,l bl,‘z e bl,l\
Azl G2 - Agm bai boo -+ by
A=1 . B =
\an,l An2 - Unm / \bhl bk’Q Tt bk’[ )

their tensor product is

/al,lB Clv1,QB al,'m.B

ClelB CI.Q’QB (lQ’-]nB
A® B =

\a-n,l B a'n.-,QB e a‘~n._,'nz,B



Tensor product of matrices (operations)

« Exercise: Suppose that qubits X and Y are in the

superposition : 1
(V2

0

0
\L
V2

Calculate the result of applying the Hadamard
transform to X and doing nothing to .




Tensor product properties

« Associative law: (AQB)QRC = AR (BRC)
» Distributive laws:
AQ(B+C) = (A®B) + (AKRC)
(A+B)®C = (ARC) + (BKC)
(A®B)(CK®D) = (AC)X(BD)
« Scalar multiplication: For scalar q,
(aA) ® B=A ® (aB) = a(A®B)

The commutative law AQB = B&RA does not hold in
general



Dirac notation

* For large state spaces, dirac notation is easier to
work with than vectors, matrices and tensor
products



Dirac notation: single bits

« Column vectors are represented by “kets”:

1
2
o Iflp) = ({) then we can write
V2
1

by = —— [0) + —— |1)
0= 510+




Dirac notation: single bits

Applying operations to kets:

* Old notation:

(2 8)0)-()

 Dirac notation:

Sl Sl

H!o>=\%\0>+ﬁu>



Dirac notation: single bits

Applying operations to kets:

* Old notation:

1 L 1
vi —vi) \0

 Dirac notation:

H |0) = \ﬁ\0>+ﬁ
« Similarly: H\1>:%\0>—\%



Dirac notation: multiple bits

» Juxtaposition of kets denotes tensor product:

def

V) [0) = ) @)

 Further shorthand:

o 1 0
01) £ (0) [1) = (0) g (1) _

o O = O



Dirac notation: multiple bits

« What do you think that |1010) represents?



Dirac notation: multiple bits

« What do you think that |1010) represents?

1 1
« What about —=|000000) + — |111111) ?
75 1000000) + = [111111)



Dirac notation: calculations

1
(V2
« Exercise: Suppose that pair (X,Y) 0
IS In the superposition:
0
\L
V2

« Calculate the result of applying the Hadamard transform
to X and doing nothing to Y, this time using Dirac notation



Dirac notation: calculations

1
(V2
« Exercise: Suppose that pair (X,Y) 0
IS In the superposition:
0
1
V2

« Calculate the result of applying the Hadamard transform
to X and doing nothing to Y, this time using Dirac notation

 Recall that

| |

H\o>:ﬁyu> fm Hm:\ﬁ\m_ >

|
o



Summary

 Quantum states (e.g, bits) are represented as
superpositions, just as probabilistic states are
represented as probability vectors

 We can do two things to quantum states: measure
them, or perform an operation on them

e Quantum operations are represented by unitary
matrices



Summary

* Tensor products are handy for combining
operations on single bits into operations on

multiple bits
* Dirac notation (e.g., “ket”) is convenient for

describing, and operating on, quantum states
with multiple qubits



Dense supercoding premise

 Qubits A and B are entangled in the superposition

e Alice holds A and Bob holds B \ ‘ /
* Alice also has two (classical) bits a and b

« We’ll see how Alice can communicate the two classical
bits a and b to Bob using just one qubit, given that they
already share an e-bit (entangled bit)



Dense supercoding protocol

Alice: If a=1, apply 0, to qubit A, where o, = ((1) _01)
Alice: If b =1, apply NOT to qubit A

Alice: send A to Bob

Bob: Apply a controlled-NOT to (A,B) (A is the control)
Bob: Apply a Hadamard transform to A

A A T o

Bob: Measure A and B and output the result



Dense supercoding protocol analysis

ab

00

0]

10

11

A A T o

Alice: If a=1, apply 0, to qubit A, where o, = (1 ! )
Alice: If b =1, apply NOT to qubit A 0 —1
Alice: send A to Bob

Bob: Apply a controlled-NOT to (A,B) (A is the control)
Bob: Apply a Hadamard transform to A

Bob: Measure A and B and output the result

(A,B) after step 1 (A,B) after step 2 (A,B) after step 4 (A,B) after step 5



Dense supercoding protocol analysis

ab

00

01

10

11

1 O
1. Alice:Ifa=1, apply o, to qubit A, whereo, = (0 1)
2. Alice:If b=1, apply NOT to qubit A
3. Alice: send A to Bob
4. Bob: Apply a controlled-NOT to (A,B) (A is the control)
5. Bob: Apply a Hadamard transform to A
6. Bob: Measure A and B and output the result
(A,B) after step 1 (A,B) after step 2 (A,B) after step 4 (A,B) after step 5
75 100) + 5 |11)
75 100) + 5 [11)
75 100) — 5 [11)
75 100) = 5 [11)




Dense supercoding protocol analysis

1 O
1. Alice:Ifa=1, apply o, to qubit A, whereo, = (O 1)
2. Alice:If b=1, apply NOT to qubit A
3. Alice: send A to Bob
4. Bob: Apply a controlled-NOT to (A,B) (A is the control)
5. Bob: Apply a Hadamard transform to A
6. Bob: Measure A and B and output the result
ab | (A,B) after step 1 (A,B) after step 2 (A,B) after step 4 (A,B) after step 5
00 | J5/00) + 5 [11) | 5 00) + 5 [11)
01 | J5(00) + J5[11) | J5[10) + J5 [01)
10 | 75(00) = 75 [11) | 5 |00) — 75 |11)
11 | 55100) = 75 |11) | 5[10) — 55 |01)




Dense supercoding protocol analysis

1 O
1. Alice:Ifa=1, apply o, to qubit A, whereo, = (0 1)
2. Alice: If b=1, apply NOT to qubit A
3. Alice: send A to Bob
4. Bob: Apply a controlled-NOT to (A,B) (A is the control)
5. Bob: Apply a Hadamard transform to A
6. Bob: Measure A and B and output the result
ab | (A,B) after step 1 (A,B) after step 2 (A,B) after step 4 (A,B) after step 5
00 | 1-100) + L [11) | J-]00) + 2 [11) (ﬁ 0) + % 1)) 0)
01 | J500) + J5[11) | J5[10) + I [01) (7‘3 1) + % 0)) 1)
10 | 2:(00) — 2 [11) | L [00) — L [11) (\}2 0) — 1)) 0)
11| 22100) — 2o (11) | L [10) — L [o1) (;2 1) - 0)) 1)




Dense supercoding protocol analysis

1 O

1. Alice:Ifa=1, apply o, to qubit A, whereo, = (0 1)

2. Alice: If b=1, apply NOT to qubit A

3. Alice: send A to Bob

4. Bob: Apply a controlled-NOT to (A,B) (A is the control)

5. Bob: Apply a Hadamard transform to A

6. Bob: Measure A and B and output the result
ab | (AB) after step | (A,B) after step 2 (A,B) after step 4 (A,B) after step 5
00 | 1-100) + L [11) | J-]00) + 2 [11) (ﬁ 0) + % 1)) 0) 00)
01 | J5(00) + J5[11) | J5[10) + J5 [01) (7‘} 1) + % 0)) 1) 01)
10 \}2 00) — \}2 11) \}2 00) — 75 |11) (\}2 0) — 1)) 0) 10)
11| 5100y = J5 1) | Z5[10) = F101) | (11— %10)) 1) —|11)




Next Class

* Quantum circuits (lecture 3 of Watrous’ notes)



