
Intro to Quantum Computing

Quantum states, measurements, operations
Dirac notation for representing and 
manipulating states and operations

See Quantum Computing (not Quantum 
Information) notes by John Watrous)



Quantum states

Let X be a physical device with discrete states

For simplicity, let the set of possible states be ∑ = {0,1}, in 
which case X is a qubit

A quantum state, or superposition is a vector, e.g.,

ß entry indexed by 0
ß entry indexed by 1



Quantum states

Let        be a superposition

Then !, " are complex numbers called amplitudes, and the 
Euclidian norm of the vector must be 1, i.e., |!|2 + |"|2 = 1



Quantum measurements

Suppose that the superposition of device X is 

You can measure X, in which case you’ll see 0 with 
probability |!|2 and 1 with probability |"|2

After measuring X, its state changes to either 



• Operations map superpositions to superpositions, 
and are represented by matrices that are unitary, i.e., 
preserve the Euclidian norm

• A matrix U is unitary if and only if
U⁺ U= I

where U⁺ is the the complex conjugate of U: 
transpose U, then replace each entry a+i b by a-i b 

• Exercise: Check for 2 x 2 matrices why these two 
definitions are the same

Quantum operations



• Examples: H below is called the Hadamard transform

Quantum operations



• Example

• If you measure X after applying the Hadamard
transformation, as above, what is the probability of 
seeing 0? Of seeing 1?

• What is the result of applying H again?
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• Example

• If you measure X after applying the Hadamard
transformation, as above, what is the probability of 
seeing 0? Of seeing 1?

• What is the result of applying H again?

• What is the result of applying H to        ? 

Quantum operations



• Example: suppose that qubit X is in one of the 
following two initial superpositions:

• Using operations and measurements, how can you 
determine which superposition X is in initially? (It’s 
ok to use operations on the superposition, before 
taking a measurement, in order to determine the 
answer)

Quantum operations



Multiple qubits



• The superposition of two qubits can be represented 
as a vector with four entries and Euclidian norm 1

• If you measure this quantum state, what is the 
probability of seeing 00, 01, 10, 11?

Multiple qubits

ß entry indexed by 00
ß entry indexed by 01
ß entry indexed by 10
ß entry indexed by 11



Tensor product of superpositions



Tensor product of superpositions

Useful for expressing the superpositions of 
uncorrelated states. If X and Y have superpositions

then the superposition of (X,Y) is the tensor product



Superpositions of entangled states X and Y cannot be 
expressed as a tensor product, e.g.

Tensor product of superpositions



• An operation on two bits (X,Y):

• To apply the operation, multiply with the superposition:

Unitary operations on multiple qubits



• An operation on two bits (X,Y):

Unitary operations on multiple qubits



• An operation on two bits (X,Y):

• Suppose that X,Y are uncorrelated and have 
superpositions

,
• What is the result of the operation? What if X =        ?

Unitary operations on multiple qubits



• An operation on two bits (X,Y):

• Suppose that X,Y are uncorrelated and have 
superpositions

,
• What is the result of the operation? What if X =        ?

• This operation is called the controlled not operation

Unitary operations on multiple qubits



• If operation U transforms X and operation V independently 
transforms Y then we can express the combined operation 
on (X,Y) as the tensor product U ⊗ V:

Tensor product of matrices (operations)



Tensor product of matrices (operations)

• Then, to calculate the result of the operation U ⊗ V 
on a superposition v of (X,Y), multiply (U ⊗ V) and 
v:



• Given

their tensor product is

Tensor product of matrices (operations)



Tensor product of matrices (operations)

• Exercise: Suppose that qubits X and Y are in the 
superposition :

Calculate the result of applying the Hadamard
transform to X and doing nothing to Y. 



• Associative law: (A⊗B)⊗C = A⊗(B⊗C)
• Distributive laws:

A⊗(B+C) =  (A⊗B) +  (A⊗C)
(A+B)⊗C =  (A⊗C) +  (B⊗C)
(A⊗B)(C⊗D) = (AC)⊗(BD)

• Scalar multiplication: For scalar α, 
(αA) ⊗ B = A ⊗ (αB) = α(A⊗B)

The commutative law A⊗B = B⊗A does not hold in 
general

Tensor product properties



• For large state spaces, dirac notation is easier to 
work with than vectors, matrices and tensor 
products

Dirac notation



• Column vectors are represented by “kets”:

• If |ϕ⟩ =              then we can write

|ϕ⟩ = 

Dirac notation: single bits



Applying operations to kets:

• Old notation:

• Dirac notation:

Dirac notation: single bits



Applying operations to kets:

• Old notation:

• Dirac notation:

• Similarly:

Dirac notation: single bits



• Juxtaposition of kets denotes tensor product:

• Further shorthand:

Dirac notation: multiple bits



• What do you think that           represents?

• What about                                            ?

Dirac notation: multiple bits
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Dirac notation: multiple bits



Dirac notation: calculations

• Exercise: Suppose that pair (X,Y) 
is in the superposition:

• Calculate the result of applying the Hadamard transform 
to X and doing nothing to Y, this time using Dirac notation

• Recall that
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• Quantum states (e.g, bits) are represented as 
superpositions, just as probabilistic states are 
represented as probability vectors

• We can do two things to quantum states: measure 
them, or perform an operation on them

• Quantum operations are represented by unitary 
matrices

Summary



• Tensor products are handy for combining 
operations on single bits into operations on 
multiple bits

• Dirac notation (e.g., “ket”) is convenient for 
describing, and operating on, quantum states 
with multiple qubits

Summary



• Qubits A and B are entangled in the superposition 

• Alice holds A and Bob holds B
• Alice also has two (classical) bits a and b

• We’ll see how Alice can communicate the two classical 
bits a and b to Bob using just one qubit, given that they 
already share an e-bit (entangled bit)

Dense supercoding premise



1. Alice: If a = 1, apply       to qubit A, where

2. Alice: If b = 1, apply NOT to qubit A

3. Alice: send A to Bob

4. Bob: Apply a controlled-NOT to (A,B) (A is the control)

5. Bob: Apply a Hadamard transform to A

6. Bob: Measure A and B and output the result

Dense supercoding protocol



Dense supercoding protocol analysis
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Dense supercoding protocol analysis

(A,B) (A,B) (A,B) (A,B)

1. Alice: If a = 1, apply       to qubit A, where
2. Alice: If b = 1, apply NOT to qubit A
3. Alice: send A to Bob
4. Bob: Apply a controlled-NOT to (A,B) (A is the control)
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• Quantum circuits (lecture 3 of Watrous’ notes)

Next Class


