
NP ⊆ PCP(poly(n),1) Proof Completed
Hardness of Approximating CLIQUE

Instance:
• An m×n2 matrix A with entries in {-1,0,1}
• An m-dimensional bit vector b

Problem: Is there an n-dimensional bit vector u
such that A (u⊗u)T = bT ?

Recall QUADEQ:

Given a QUADEQ instance (A,b), and a PCP proof,
i.e. truth tables of functions f and g, V checks:

• Linearity: f is(1−δ)-close to f′ = WH(u),
i.e., Prx [f(x) = f’(x)] ≥ (1−δ), and
g is (1−δ)-close to g′ = WH(w)

• Consistency: w = u⊗u
• Satisfiability: If g′ = WH(u⊗u) then A (u⊗u)T = bT.

Recall: Tasks of PCP Verifier

Problem: Need to update the Consistency and
Satisfiability checks, to account for the fact that f
and g are close to, but may not equal, f′ and g′.
Solution: Local decoding

Given a QUADEQ instance (A,b), and a PCP proof,
i.e. truth tables of functions f and g, V checks:

• Linearity: f is(1−δ)-close to f′ = WH(u),
i.e., Prx [f(x) = f’(x)] ≥ (1−δ), and
g is (1−δ)-close to g′ = WH(w)

• Consistency: w = u⊗u
• Satisfiability: If g′ = WH(u⊗u) then A (u⊗u)T = bT.

Recall: Tasks of PCP Verifier

Problem: Need to update the Consistency and
Satisfiability checks, to account for the fact that f
and g are close to, but may not equal, f′ and g′.
Solution: Local decoding

Given a QUADEQ instance (A,b), and a PCP proof,
i.e. truth tables of functions f and g, V checks:

• Linearity: f is(1−δ)-close to f′ = WH(u),
i.e., Prx [f(x) = f’(x)] ≥ (1−δ), and
g is (1−δ)-close to g′ = WH(w)

• Consistency: w = u⊗u
• Satisfiability: If g′ = WH(u⊗u) then A (u⊗u)T = bT.

Recall: Tasks of PCP Verifier

Problem: Need to update the Consistency and
Satisfiability checks, to account for the fact that f
and g are close to, but may not equal, f′ and g′.
Solution: Local decoding

Given arbitrary x ∈ {0,1}n and a function f that is (1−δ)-
close to a unique linear function f´, compute f´(x)

Local decoding: Given f and x
Choose random x′∈ {0,1}n

Let x′′ be such that x = x′ + x′′
Let y′ = f(x′) and y′′ = f(x′′)
Output y′ + y′′

Theorem: With probability at least 1 − 2δ, f(x) = y′ + y′′

Proof sketch: follows from two facts:
• With probability at least 1 − 2δ, y = f(x) and y′ = f(x′)
• By linearity of f′, f′(x) = f′(x′ + x′′) = f′(x′) + f′(x′′)

Local Decoding

Given arbitrary x ∈ {0,1}n and a function f that is (1−δ)-
close to a unique linear function f´, compute f´(x)

Local decoding: Given f and x
Choose random x′∈ {0,1}n

Let x′′ be such that x = x′ + x′′
Let y′ = f(x′) and y′′ = f(x′′)
Output y′ + y′′

Theorem: With probability at least 1 − 2δ, f(x) = y′ + y′′

Proof sketch: follows from two facts:
• With probability at least 1 − 2δ, y = f(x) and y′ = f(x′)
• By linearity of f′, f′(x) = f′(x′ + x′′) = f′(x′) + f′(x′′)

Local Decoding

Given arbitrary x ∈ {0,1}n and a function f that is (1−δ)-
close to a unique linear function f´, compute f´(x)

Local decoding: Given f and x
Choose random x′∈ {0,1}n

Let x′′ be such that x = x′ + x′′
Let y′ = f(x′) and y′′ = f(x′′)
Output y′ + y′′

Theorem: With probability at least 1 − 2δ, f′(x) = y′ + y′′

Proof sketch: follows from two facts:
• With probability at least 1 − 2δ, y = f(x) and y′ = f(x′)
• By linearity of f′, f′(x) = f′(x′ + x′′) = f′(x′) + f′(x′′)

Local Decoding

Given arbitrary x ∈ {0,1}n and a function f that is (1−δ)-
close to a unique linear function f´, compute f´(x)

Local decoding: Given f and x
Choose random x′∈ {0,1}n

Let x′′ be such that x = x′ + x′′
Let y′ = f(x′) and y′′ = f(x′′)
Output y′ + y′′

Theorem: With probability at least 1 − 2δ, f′(x) = y′ + y′′
Proof sketch: follows from two facts:
• With probability at least 1 − 2δ, y = f′(x) and y′ = f′(x′)
• By linearity of f′, f′(x) = f′(x′ + x′′) = f′(x′) + f′(x′′)

Local Decoding

Given a QUADEQ instance (A,b), and a PCP proof,
i.e. truth tables of functions f and g

V checks:
• Linearity: f and g are (1−δ)-close to

f′ = WH(u) and g′ = WH(w)
• Consistency: w = u⊗u
• Satisfiability: If g′ = WH(u⊗u) then A (u⊗u)T = bT.

Summary: PCP Verifier

If the linearity check conditions hold, then with high
probability all of the calculations of f' and g’ in the
Consistency and Satisfiability tests are correct

Max Clique is (2 – ε)-hard to approximate

Max Clique: Given an undirected graph G=(V,E),
find the largest subset of V such that every pair of
nodes in the subset is connected by an edge of E

Theorem: For any ε > 0, if Max Clique has a poly-
time (2-ε)-approximation algorithm, then NP=P.

Max Clique is (2 – ε)-hard to approximate

Proof: Let L ∈ NP, let V be a PCP for L. Fix
instance x of L.

Using V, we’ll describe a mapping x à Gx from
instances of L to instances of Clique, and apply the
Gap Lemma.

Notation: Let the q positions of the proof that V
queries on coin flip sequence τ be bτ,1, bτ,2, ..., bτ,q.

Max Clique is (2 – ε)-hard to approximate

Proof: Let L ∈ NP, let V be a PCP for L. Fix
instance x of L.

Using V, we’ll describe a mapping x à Gx from
instances of L to instances of Clique, and apply the
Gap Lemma.

Notation: Let the q positions of the proof that V
queries on coin flip sequence τ be bτ,1, bτ,2, ..., bτ,q.

Max Clique is (2 – ε)-hard to approximate

Max Clique is (2 – ε)-hard to approximate
Mapping : x à Gx

Example: Suppose that V
• Uses two random bits on instance x
• Makes q = 3 queries (on instances of any length)
• On random string τ = 01, queries bits

bτ,1 = 2, bτ,2 = 7, and bτ,3 = 21

Max Clique is (2 – ε)-hard to approximate
Mapping : x à Gx

Max Clique is (2 – ε)-hard to approximate

Then the nodes (τ = 01, 001), (τ= 01,100), and (τ=
01,111) are in the graph Gx

Then Gx the nodes (τ = 01, 001), (τ= 01,100), and (τ=
01,111) are in the graph Gx

Mapping : x à Gx

Max Clique is (2 – ε)-hard to approximate

Then the nodes (τ = 01, 001), (τ= 01,100), and (τ=
01,111) are in the graph Gx

Then Gx contains nodes (τ = 01, 001), (τ= 01,100), and
(τ= 01,111)

Mapping : x à Gx

• Node (τ, v1v2 ...vq) is in graph Gx if V accepts with
random string τ and query results v1, v2, ..., vq.
Gx has 2r(|x|) 2q nodes, where r(|x|) = O(log |x|) is
the number of random bits of V on input x

• Edges are between compatible pairs of nodes (τ,
v1v2...vq) and (τ′, v1′v2′...vq′) i.e., for any i and j, if
bτ,i = bτ′,j then vi = vj′

• Gx can be computed in poly time

Max Clique is (2 – ε)-hard to approximate
Mapping : x à Gx

• Node (τ, v1v2 ...vq) is in graph Gx if V accepts with
random string τ and query results v1, v2, ..., vq.
Gx has ≤ 2r(|x|) 2q nodes, where r(|x|) = O(log |x|)

is the number of random bits of V on input x

• Edges are between compatible pairs of nodes (τ,
v1v2...vq) and (τ′, v1′v2′...vq′) i.e., for any i and j, if
bτ,i = bτ′,j then vi = vj′

• Gx can be computed in poly time

Max Clique is (2 – ε)-hard to approximate
Mapping : x à Gx

• Node (τ, v1v2 ...vq) is in graph Gx if V accepts with
random string τ and query results v1, v2, ..., vq.
Gx has ≤ 2r(|x|) 2q nodes, where r(|x|) = O(log |x|)

is the number of random bits of V on input x

• Edges are between compatible pairs of nodes (τ,
v1v2...vq) and (τ′, v1′v2′...vq′) i.e., for any i and j, if
bτ,i = bτ′,j then vi = vj′

• Gx can be computed in poly time

Max Clique is (2 – ε)-hard to approximate
Mapping : x à Gx

• Node (τ, v1v2 ...vq) is in graph Gx if V accepts with
random string τ and query results v1, v2, ..., vq.
Gx has ≤ 2r(|x|) 2q nodes, where r(|x|) = O(log |x|)

is the number of random bits of V on input x

• Edges are between compatible pairs of nodes (τ,
v1v2...vq) and (τ′, v1′v2′...vq′) i.e., for any i and j, if
bτ,i = bτ′,j then vi = vj′

• Gx can be computed in poly time

Max Clique is (2 – ε)-hard to approximate
Mapping : x à Gx

Claim: x ∈ L ⇒ Opt(Gx) = 2r(|x|) and
x ∉ L ⇒ Opt(Gx) ≤ (1/2) 2r(|x|)

Proof sketch when x ∈ L: Then on some proof π,
V accepts with probability 1.

The 2r(|x|) nodes “compatible” with this proof (one
node per random string τ) form a clique.

Max Clique is (2 – ε)-hard to approximate

Claim: x ∈ L ⇒ Opt(Gx) = 2r(|x|) and
x ∉ L ⇒ Opt(Gx) ≤ (1/2) 2r(|x|)

Proof sketch when x ∈ L: Then on some proof π,
V accepts with probability 1.

The 2r(|x|) nodes “compatible” with this proof (one
node per random string τ) form a clique.

Max Clique is (2 – ε)-hard to approximate

Claim: x ∈ L ⇒ Opt(Gx) = 2r(|x|) and
x ∉ L ⇒ Opt(Gx) ≤ (1/2) 2r(|x|)

Proof sketch when x ∈ L: Then on some proof π,
V accepts with probability 1.

The 2r(|x|) nodes “compatible” with this proof (one
node per random string τ) form a clique.

Max Clique is (2 – ε)-hard to approximate

Claim: x ∈ L ⇒ Opt(Gx) = 2r(|x|) and
x ∉ L ⇒ Opt(Gx) ≤ (1/2) 2r(|x|)

Proof sketch when x ∉ L: Then on all proofs π, V
accepts with probability at most 1/2.

The existence of a clique of size greater than
(1/2) 2r(|x|) would imply a proof on which V accepts
with probability > ½.

Max Clique is (2 – ε)-hard to approximate

Claim: x ∈ L ⇒ Opt(Gx) = 2r(|x|) and
x ∉ L ⇒ Opt(Gx) ≤ (1/2) 2r(|x|)

Proof sketch when x ∉ L: Then on all proofs π, V
accepts with probability at most 1/2.

The existence of a clique of size greater than
(1/2) 2r(|x|) would imply a proof on which V accepts
with probability > ½.

Max Clique is (2 – ε)-hard to approximate

Claim: x ∈ L ⇒ Opt(Gx) = 2r(|x|) and
x ∉ L ⇒ Opt(Gx) ≤ (1/2) 2r(|x|)

Max Clique is (2 – ε)-hard to approximate

Claim: x ∈ L ⇒ Opt(Gx) = 2r(|x|) and
x ∉ L ⇒ Opt(Gx) ≤ (1/2) 2r(|x|)

< (1-c) 2r(|x|) for any c < 1/2

Max Clique is (2 – ε)-hard to approximate

Gap Lemma: Let L be NP-complete. Suppose that there is a
poly-time mapping from any instance x of L to instance x′ of
maximization problem ∏ such that

x ∈ L ⇒ Opt(xʹ) = g(x) and
x ∉ L ⇒ Opt(xʹ) < (1-c) g(x)

where g(x) ∈ ℕ, g is poly-time computable, and 0<c<1.

If ∏ has a poly-time approximation algorithm with
approximation ratio 1 + c/(1-c), then NP = P.

Recall Gap Lemma

Claim: x ∈ L ⇒ Opt(Gx) = 2r(|x|) and
x ∉ L ⇒ Opt(Gx) ≤ (1/2) 2r(|x|)

< (1-c) 2r(|x|) for any c < 1/2

Max Clique is (2 – ε)-hard to approximate

Claim: x ∈ L ⇒ Opt(Gx) = 2r(|x|) and
x ∉ L ⇒ Opt(Gx) ≤ (1/2) 2r(|x|)

< (1-c) 2r(|x|) for any c < 1/2

Max Clique is (2 – ε)-hard to approximate

We can now apply the Gap Lemma to conclude
that if Clique has a poly-time approximation
algorithm with approximation ratio 1 + c/(1-c) then
NP = P.

Finally, for any ε > 0, there is c < 1/2 such that
2 – ε ≤ 1 + c/(1-c).

