NP \subseteq PCP(poly(n),1) Proof Completed Hardness of Approximating CLIQUE

Instance:

- An m×n² matrix A with entries in {-1,0,1}
- An m-dimensional bit vector b

Problem: Is there an n-dimensional bit vector u such that A $(u \otimes u)^T = b^T$?

Given a QUADEQ instance (A,b), and a PCP proof, i.e. truth tables of functions f and g, V checks:

- Linearity: f is(1- δ)-close to f' = WH(u), i.e., Pr_x [f(x) = f'(x)] \geq (1- δ), and g is (1- δ)-close to g' = WH(w)
- *Consistency*: w = u⊗u
- Satisfiability: If $g' = WH(u \otimes u)$ then A $(u \otimes u)^T = b^T$.

Given a QUADEQ instance (A,b), and a PCP proof, i.e. truth tables of functions f and g, V checks:

- Linearity: f is(1- δ)-close to f' = WH(u), i.e., Pr_x [f(x) = f'(x)] \geq (1- δ), and g is (1- δ)-close to g' = WH(w)
- *Consistency*: w = u⊗u
- Satisfiability: If $g' = WH(u \otimes u)$ then A $(u \otimes u)^T = b^T$.

Problem: Need to update the Consistency and Satisfiability checks, to account for the fact that f and g are close to, but may not equal, f' and g'.

Given a QUADEQ instance (A,b), and a PCP proof, i.e. truth tables of functions f and g, V checks:

- Linearity: f is(1- δ)-close to f' = WH(u), i.e., Pr_x [f(x) = f'(x)] \geq (1- δ), and g is (1- δ)-close to g' = WH(w)
- *Consistency*: w = u⊗u
- Satisfiability: If $g' = WH(u \otimes u)$ then A $(u \otimes u)^T = b^T$.

Problem: Need to update the Consistency and Satisfiability checks, to account for the fact that f and g are close to, but may not equal, f' and g'. **Solution**: *Local decoding*

Local decoding: Given f and x Choose random $x' \in \{0,1\}^n$ Let x'' be such that x = x' + x''Let y' = f(x') and y'' = f(x'') Output y' + y''

Local decoding: Given f and x Choose random $x' \in \{0,1\}^n$ Let x'' be such that x = x' + x''Let y' = f(x') and y'' = f(x'') Output y' + y''

Theorem: With probability at least $1 - 2\delta$, f'(x) = y' + y''

Local decoding: Given f and x Choose random $x' \in \{0,1\}^n$ Let x'' be such that x = x' + x''Let y' = f(x') and y'' = f(x'') Output y' + y''

Theorem: With probability at least $1 - 2\delta$, f'(x) = y' + y''Proof sketch: follows from two facts:

- With probability at least $1 2\delta$, y = f'(x) and y' = f'(x')
- By linearity of f', f'(x) = f'(x' + x'') = f'(x') + f'(x'')

Given a QUADEQ instance (A,b), and a PCP proof, i.e. truth tables of functions f and g

- V checks:
- Linearity: f and g are $(1-\delta)$ -close to f' = WH(u) and g' = WH(w)
- *Consistency*: w = u⊗u
- Satisfiability: If $g' = WH(u \otimes u)$ then A $(u \otimes u)^T = b^T$.

If the linearity check conditions hold, then with high probability all of the calculations of f' and g' in the Consistency and Satisfiability tests are correct

Max Clique: Given an undirected graph G=(V,E), find the largest subset of V such that every pair of nodes in the subset is connected by an edge of E

Theorem: For any $\varepsilon > 0$, if Max Clique has a polytime (2- ε)-approximation algorithm, then NP=P.

Proof: Let $L \in NP$, let V be a PCP for L. Fix instance x of L.

Using V, we'll describe a mapping $x \rightarrow G_x$ from instances of L to instances of Clique, and apply the Gap Lemma.

Proof: Let $L \in NP$, let V be a PCP for L. Fix instance x of L.

Using V, we'll describe a mapping $x \rightarrow G_x$ from instances of L to instances of Clique, and apply the Gap Lemma.

Notation: Let the q positions of the proof that V queries on coin flip sequence τ be $b_{\tau,1}$, $b_{\tau,2}$, ..., $b_{\tau,q}$.

Mapping : $x \rightarrow G_x$

Example: Suppose that V

- Uses two random bits on instance x
- Makes q = 3 queries (on instances of any length)
- On random string $\tau = 01$, queries bits

 $b_{\tau,1} = 2$, $b_{\tau,2} = 7$, and $b_{\tau,3} = 21$

-	proof at position 7	proof at position 21	verifier's decision on random string $\tau = 01$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Mapping : $x \rightarrow G_x$

	proof at position 7	proof at position 21	verifier's decision on random string $\tau = 01$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Then G_x contains nodes ($\tau = 01, 001$), ($\tau = 01, 100$), and ($\tau = 01, 111$)

Mapping : $x \rightarrow G_x$

 Node (τ, v₁v₂ ...v_q) is in graph G_x if V accepts with random string τ and query results v₁, v₂, ..., v_q.

- Node $(\tau, v_1v_2 ... v_q)$ is in graph G_x if V accepts with random string τ and query results $v_1, v_2, ..., v_q$. G_x has $\leq 2^{r(|x|)} 2^q$ nodes, where $r(|x|) = O(\log |x|)$
- is the number of random bits of V on input x

- Node $(\tau, v_1v_2 ... v_q)$ is in graph G_x if V accepts with random string τ and query results $v_1, v_2, ..., v_q$. G_x has $\leq 2^{r(|x|)} 2^q$ nodes, where $r(|x|) = O(\log |x|)$
- is the number of random bits of V on input x
- Edges are between *compatible* pairs of nodes (τ , $v_1v_2...v_q$) and (τ' , $v_1'v_2'...v_q'$) i.e., for any i and j, if $b_{\tau,i} = b_{\tau',j}$ then $v_i = v_j'$

- Node $(\tau, v_1v_2 ... v_q)$ is in graph G_x if V accepts with random string τ and query results $v_1, v_2, ..., v_q$. G_x has $\leq 2^{r(|x|)} 2^q$ nodes, where $r(|x|) = O(\log |x|)$
- is the number of random bits of V on input x
- Edges are between *compatible* pairs of nodes (τ , $v_1v_2...v_q$) and (τ' , $v_1'v_2'...v_q'$) i.e., for any i and j, if $b_{\tau,i} = b_{\tau',j}$ then $v_i = v_j'$
- G_x can be computed in poly time

Claim:
$$x \in L \Rightarrow Opt(G_x) = 2^{r(|x|)}$$
 and
 $x \notin L \Rightarrow Opt(G_x) \le (1/2) 2^{r(|x|)}$

Claim:
$$x \in L \Rightarrow Opt(G_x) = 2^{r(|x|)}$$
 and
 $x \notin L \Rightarrow Opt(G_x) \le (1/2) 2^{r(|x|)}$

Proof sketch when $x \in L$:

Claim:
$$x \in L \Rightarrow Opt(G_x) = 2^{r(|x|)}$$
 and
 $x \notin L \Rightarrow Opt(G_x) \le (1/2) 2^{r(|x|)}$

Proof sketch when $x \in L$: Then on some proof π , V accepts with probability 1.

The $2^{r(IxI)}$ nodes "compatible" with this proof (one node per random string τ) form a clique.

Claim:
$$x \in L \Rightarrow Opt(G_x) = 2^{r(|x|)}$$
 and
 $x \notin L \Rightarrow Opt(G_x) \le (1/2) 2^{r(|x|)}$

Proof sketch when $x \notin L$:

Claim:
$$x \in L \Rightarrow Opt(G_x) = 2^{r(|x|)}$$
 and
 $x \notin L \Rightarrow Opt(G_x) \le (1/2) 2^{r(|x|)}$

Proof sketch when $x \notin L$: Then on all proofs π , V accepts with probability at most 1/2.

The existence of a clique of size greater than (1/2) $2^{r(IxI)}$ would imply a proof on which V accepts with probability > $\frac{1}{2}$.

Claim:
$$x \in L \Rightarrow Opt(G_x) = 2^{r(|x|)}$$
 and
 $x \notin L \Rightarrow Opt(G_x) \le (1/2) 2^{r(|x|)}$

Claim:
$$x \in L \Rightarrow Opt(G_x) = 2^{r(|x|)}$$
 and
 $x \notin L \Rightarrow Opt(G_x) \le (1/2) 2^{r(|x|)}$
 $< (1-c) 2^{r(|x|)}$ for any $c < 1/2$

Gap Lemma: Let L be NP-complete. Suppose that there is a poly-time mapping from any instance x of L to instance x' of maximization problem Π such that

 $x \in L \Rightarrow Opt(x') = g(x)$ and

 $x \notin L \Rightarrow Opt(x') < (1-c) g(x)$

where $g(x) \in \mathbb{N}$, g is poly-time computable, and 0<c<1.

If \prod has a poly-time approximation algorithm with approximation ratio 1 + c/(1-c), then NP = P.

Claim:
$$x \in L \Rightarrow Opt(G_x) = 2^{r(|x|)}$$
 and
 $x \notin L \Rightarrow Opt(G_x) \le (1/2) 2^{r(|x|)}$
 $< (1-c) 2^{r(|x|)}$ for any $c < 1/2$

Claim:
$$x \in L \Rightarrow Opt(G_x) = 2^{r(|x|)}$$
 and
 $x \notin L \Rightarrow Opt(G_x) \le (1/2) 2^{r(|x|)}$
 $< (1-c) 2^{r(|x|)}$ for any $c < 1/2$

We can now apply the Gap Lemma to conclude that if Clique has a poly-time approximation algorithm with approximation ratio 1 + c/(1-c) then NP = P.

Finally, for any $\varepsilon > 0$, there is c < 1/2 such that $2 - \varepsilon \le 1 + c/(1-c)$.