NP € PCP(poly(n),1) Proof Completed
Hardness of Approximating CLIQUE




Recall QUADEQ:

Instance:
« An mxn2 matrix A with entries in {-1,0,1}

« An m-dimensional bit vector b

Problem: Is there an n-dimensional bit vector u
such that A (uQu)T=bT ?



Recall: Tasks of PCP Verifier

Given a QUADEQ instance (A,b), and a PCP proof,
l.e. truth tables of functions f and g, V checks:

* Linearity: f is(1-0)-close to t' = WH(u),
.e., Pr, [f(X) =f(x)] = (1-0), and
gis (1-0)-close to g’ = WH(w)
« Consistency.: w = u@u
« Satisfiability: If g’ = WH(u®u) then A (u®u)T =Db".



Recall: Tasks of PCP Verifier

Given a QUADEQ instance (A,b), and a PCP proof,
l.e. truth tables of functions f and g, V checks:

* Linearity: f is(1-0)-close to t' = WH(u),
.e., Pr, [f(X) =f(x)] = (1-0), and
gis (1-0)-close to g’ = WH(w)
« Consistency.: w = u@u
« Satisfiability: If g’ = WH(u®u) then A (u®u)T =Db".

Problem: Need to update the Consistency and
Satisfiability checks, to account for the fact that f
and g are close to, but may not equal, ' and g’.



Recall: Tasks of PCP Verifier

Given a QUADEQ instance (A,b), and a PCP proof,
l.e. truth tables of functions f and g, V checks:

* Linearity: f is(1-0)-close to t' = WH(u),
.e., Pr, [f(X) =f(x)] = (1-0), and
gis (1-0)-close to g’ = WH(w)
« Consistency.: w = u@u
« Satisfiability: If g’ = WH(u®u) then A (u®u)T =Db".

Problem: Need to update the Consistency and
Satisfiability checks, to account for the fact that f
and g are close to, but may not equal, ' and g’.
Solution: Local decoding



Local Decoding

Given arbitrary x € {0,1}" and a function f that is (1-0)-
close to a unique linear function f°, compute f'(x)



Local Decoding

Given arbitrary x € {0,1}" and a function f that is (1-0)-
close to a unique linear function f°, compute f'(x)

Local decoding: Given f and x
Choose random x’e {0,1}"

Let X"’ be such that x = x" + x"’
Lety’ =1f(x") and y’’ =f(x"’)
Output y’ +y"’



Local Decoding

Given arbitrary x € {0,1}" and a function f that is (1-0)-
close to a unique linear function f°, compute f'(x)

Local decoding: Given f and x
Choose random x’e {0,1}"

Let X"’ be such that x = x" + x"’
Lety’ =1f(x") and y’’ =f(x"’)
Output y’ +y"’

Theorem: With probability at least 1 — 25, f'(x) =y +y"’



Local Decoding

Given arbitrary x € {0,1}" and a function f that is (1-0)-
close to a unique linear function f°, compute f'(x)

Local decoding: Given f and x
Choose random x’e {0,1}"

Let X"’ be such that x = x" + x"’
Lety’ =1f(x") and y’’ =f(x"’)
Output y’ +y"’

Theorem: With probability at least 1 — 23, f'(x) =y’ +y"’
Proof sketch: follows from two facts:

« With probability at least 1 — 28, y =f'(x ) and y’ = f'(x')
* By linearity of ', f'(x) = f'(x" + x"") = '(x’) + {'(x"’)



Summary: PCP Verifier

Given a QUADEQ instance (A,b), and a PCP proof,
l.e. truth tables of functions f and g

V checks:
* Linearity: f and g are (1-0)-close to
f" = WH(u) and g’ = WH(w)
« Consistency: w = u@u
« Satisfiability: If g’ = WH(u®u) then A (u®u)T =Db".

If the linearity check conditions hold, then with high
probability all of the calculations of f' and g’ in the
Consistency and Satisfiability tests are correct



Max Cligue is (2 — €)-hard to approximate




Max Cligue is (2 — €)-hard to approximate

Max Clique: Given an undirected graph G=(V,E),
find the largest subset of V such that every pair of
nodes in the subset is connected by an edge of E

Theorem: For any € > 0, if Max Clique has a poly-
time (2-g)-approximation algorithm, then NP=P.



Max Cligue is (2 — €)-hard to approximate

Proof: Let L € NP, let V be a PCP for L. Fix
iInstance x of L.

Using V, we’ll describe a mapping x = Gy from
instances of L to instances of Clique, and apply the
Gap Lemma.



Max Cligue is (2 — €)-hard to approximate

Proof: Let L € NP, let V be a PCP for L. Fix
iInstance x of L.

Using V, we’ll describe a mapping x = Gy from
instances of L to instances of Clique, and apply the

Gap Lemma.

Notation: Let the g positions of the proof that V
queries on coin flip sequence T be b1, bro, ..., by



Max Cligue is (2 — €)-hard to approximate

Mapping : x 2 Gy



Max Cligue is (2 — €)-hard to approximate

Mapping : x 2 Gy

Example: Suppose that V
« Uses two random bits on instance x
 Makes g = 3 queries (on instances of any length)
* On random string t = 01, queries bits
bi1=2, bio=7,and b 3= 21



Max Cligue is (2 — €)-hard to approximate

Mapping : x 2> Gy

proof at proof at proof at verifier’s decision
position 2 position 7 position 21 | on random string 7 = 01
0 0 0 0

— 0 O = O O e

0 1
1 0
1 1
0 0
0 1
1 0
1 1

— e e = OO O




Max Cligue is (2 — €)-hard to approximate

Mapping : x 2 Gy

proof at proof at proof at verifier’s decision
position 2 position 7 position 21 | on random string 7 = 01
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Then Gy contains nodes (t =01, 001), (t= 01,100), and
(t=01,111)



Max Cligue is (2 — €)-hard to approximate

Mapping : x 2 Gy

* Node (T, v4Vv2 ...Vq) is in graph Gy if V accepts with
random string T and query results vy, vo, ..., Vq.



Max Cligue is (2 — €)-hard to approximate

Mapping : x 2 Gy

* Node (T, v4Vv2 ...Vq) is in graph Gy if V accepts with
random string T and query results v, va, ..., Vq.
Gx has < 2"X) 2a nodes, where r(Ixl) = O(log IxI)

IS the number of random bits of V on input X



Max Cligue is (2 — €)-hard to approximate

Mapping : x 2 Gy

* Node (T, v4Vv2 ...Vq) is in graph Gy if V accepts with
random string T and query results v, va, ..., Vq.
Gx has < 2"X) 2a nodes, where r(Ixl) = O(log IxI)

IS the number of random bits of V on input X

« Edges are between compatible pairs of nodes (T,
ViVa...Vq) and (T’, vi'va'...vq) i.e., for any i and j, if
bT,i e bT',j then Vi = Vj,



Max Cligue is (2 — €)-hard to approximate

Mapping : x 2 Gy

* Node (T, v4Vv2 ...Vq) is in graph Gy if V accepts with
random string T and query results v, va, ..., Vq.
Gx has < 2"X) 2a nodes, where r(Ixl) = O(log IxI)

IS the number of random bits of V on input X

« Edges are between compatible pairs of nodes (T,
ViVa...Vq) and (T’, vi'va'...vq) i.e., for any i and j, if

bT,i — b'[',j then Vi = Vj,

» Gycan be computed in poly time



Max Cligue is (2 — €)-hard to approximate

Claim: x € L = Opt(Gx)

= 2'(x) and
X &L= Opt(Gx) =(1

/2) or(Ixl)



Max Cligue is (2 — €)-hard to approximate

Claim: x € L = Opt(Gx)

= 2'Ix) and
X & L= Opt(Gx) = (1

/2) or(Ixl)

Proof sketch when x € L:



Max Cligue is (2 — €)-hard to approximate

Claim: x € L = Opt(Gx)

= 2'Ix) and
X & L= Opt(Gx) = (1

/2) or(Ixl)

Proof sketch when x € L: Then on some proof m,
V accepts with probability 1.

The 2"X) nodes “compatible” with this proof (one
node per random string T) form a clique.



Max Cligue is (2 — €)-hard to approximate

Claim: x € L = Opt(Gx)

= 2'Ix) and
X & L= Opt(Gx) = (1

/2) or(Ixl)

Proof sketch when x & L:



Max Cligue is (2 — €)-hard to approximate

Claim: x € L = Opt(Gx)

= 2'(x) and
X &L= Opt(Gx) =(1

/2) or(Ixl)

Proof sketch when x € L: Then on all proofs 11, V
accepts with probability at most 1/2.

The existence of a clique of size greater than
(1/2) 2"X) would imply a proof on which V accepts
with probability > 5.



Max Cligue is (2 — €)-hard to approximate

Claim: x € L = Opt(Gx)

= 2'(x) and
X &L= Opt(Gx) =(1

/2) or(Ixl)



Max Cligue is (2 — €)-hard to approximate

Claim: x €L = Opt(Gx) = 2'™) and
X ¢ L= Opt(Gx) < (1/2) 21x)
< (1-c) 2" for any c < 1/2



Recall Gap Lemma

Gap Lemma: Let L be NP-complete. Suppose that there is a
poly-time mapping from any instance x of L to instance x’ of
maximization problem [T such that

X € L = Opt(x’) = g(x) and

X € L= Opt(x’) <(1-c)g(x)
where g(x) € N, g is poly-time computable, and O<c<1.

If TT has a poly-time approximation algorithm with
approximation ratio 1 + c¢/(1-c), then NP = P.



Max Cligue is (2 — €)-hard to approximate

Claim: x €L = Opt(Gx) = 2'™) and
X ¢ L= Opt(Gx) < (1/2) 21x)
< (1-c) 2" for any c < 1/2



Max Cligue is (2 — €)-hard to approximate

Claim: x €L = Opt(Gx) = 2'™) and
X ¢ L= Opt(Gx) < (1/2) 21x)
< (1-c) 2" for any c < 1/2

We can now apply the Gap Lemma to conclude
that if Clique has a poly-time approximation

algorithm with approximation ratio 1 + ¢/(1-c) then
NP = P.

Finally, for any € > 0, there is ¢ < 1/2 such that
2—ec=<1+c/(1-c).



