Proof of a Weak PCP Theorem

NP < PCP(poly(n),1)



NP < PCP(poly(n),1)

* On an input of length n, the verifier V can use
poly(n) random bits, but still makes only a
constant number of queries to the proof

* The total number of possible computation
paths of V can be exponential in n, so the
number of possible bits queried, over all
computation paths, could be exponential in n

* S0, the proof can have length exponential in n



Handy Notation and Properties

* Letu = (uy, Uy, ..., Uy), and similarly let v, x, and y
be n-dimensional bit vectors

 Inner product: u®x =3 u; X; (mod 2) = u x' (mod 2)

« Tensor (or outer) product:
UXX = (U1Xq, U1Xo, ..., U1Xp, UosXq, ..., UXp)



Handy Notation and Properties

* Letu = (uy, Uy, ..., Uy), and similarly let v, x, and y
be n-dimensional bit vectors

Inner product: u®x = > u; X; (mod 2) = u x' (mod 2)

« Tensor (or outer) product:
UXX = (U1Xq, U1Xo, ..., U1Xp, UosXq, ..., UXp)

Inner-Outer Property:
(UOX) (UOY) = (UQU) O (XXY)



Handy Notation and Properties

* Letu = (uy, Uy, ..., Uy), and similarly let v, x, and y
be n-dimensional bit vectors

 Inner product: u®x =3 u; X; (mod 2) = u x' (mod 2)

« Tensor (or outer) product:
UXX = (U1Xq, U1Xo, ..., U1Xp, UosXq, ..., UXp)



Handy Notation and Properties

* Letu = (uy, Uy, ..., Uy), and similarly let v, x, and y
be n-dimensional bit vectors

Inner product: u®x = > u; X; (mod 2) = u x' (mod 2)

« Tensor (or outer) product:
UXX = (U1Xq, U1Xo, ..., U1Xp, UosXq, ..., UXp)

Random Subsum Property: If u # v then
Pry [uOx #v(Ox] =1/2



Walsh-Hadamard encodings

Let u = (u4,U,,...,u,) be a bit vector.
The Walsh-Hadamard encoding WH(u) of u is the
2"-dim. vector of values u@®x for all x € {0,1}".



Walsh-Hadamard encodings

Let u = (u4,U,,...,u,) be a bit vector.
The Walsh-Hadamard encoding WH(u) of u is the
2"-dim. vector of values u@®x for all x € {0,1}".

WH(u) is the truth table of the function f(x) = u(®x



Walsh-Hadamard encodings

Let u = (u4,U,,...,u,) be a bit vector.
The Walsh-Hadamard encoding WH(u) of u is the
2"-dim. vector of values u@®x for all x € {0,1}".

WH(u) is the truth table of the function f(x) = u(®x

There is a 1-to-1 correspondence between WH
encodings and linear functions f:{0,1}" — {0,1}
(linear means f(x) + f(y) = f(x+y))



QUADEQ: an NP-Complete Problem

Instance:
« An mxn2 matrix A with entries in {-1,0,1}

« An m-dimensional bit vector b

Problem: Is there an n-dimensional bit vector u
such that A (uQu)T=bT ?



A PCP for QUADEQ

An “NP certificate” that (A,b) is in QUADEQ is
simply a bit vector u such that A (uQu)" = b’

A “PCP certificate" that (A,b) is in QUADEQ is the
Walsh-Hadamard encoding of both u and u®u:
WH(u), WH(u®u)

The certificate has length 2" + on?



Tasks of PCP Verifier

Given a QUADEQ instance (A,b), and a PCP proof,
l.e. truth tables of functions f and g

V checks:

* Linearity: f = WH(u) and g = WH(w) for some u, w
« Consistency: w = u@u

« Satisfiability: If g = WH(U®u) then A (u®u)" =b'.



Tasks of PCP Verifier

Given a QUADEQ instance (A,b), and a PCP proof,
l.e. truth tables of functions f and g

V checks:

* Linearity: f = WH(u) and g = WH(w) for some u, w
« Consistency: w = u@u

« Satisfiability: If g = WH(U®u) then A (u®u)" =b'.

It’s not possible for V to do this using a constant
number of queries, so V will do somewhat weaker
tests and have a low probability of error



Linearity Check: f, g are WH Encodings

Naive test:
* Forall x,y € {0,1}", check that f(x+y) = f(x) + f(y)
* Do a similar test for g

Problem: this requires too many queries



Linearity Check: f, g are WH Encodings

We say that f is (1-0)-close to a linear function f,
where & € [0,1], if Pry [f(X) = ’(X)] = (1-0)

Linearity Check: Given f, and 6 € (0,1/4)
Repeat ©(1/0) times:
Choose x and y randomly and uniformly
Reject if f(x+y) = f(x) + f(y)
Accept



Linearity Check: f, g are WH Encodings

We say that f is (1-0)-close to a linear function f,
where & € [0,1], if Pry [f(X) = ’(X)] = (1-0)

Linearity Check: Given f, and 6 € (0,1/4)
Repeat ©(1/0) times:
Choose x and y randomly and uniformly
Reject if f(x+y) = f(x) + f(y)
Accept

Theorem: If f is not (1-0)-close to a linear function,
the linearity test rejects with probability at least 1/2



Tasks of PCP Verifier

Given a QUADEQ instance (A,b), and a PCP proof,
l.e. truth tables of functions f and g

V checks:

* Linearity: f = WH(u) and g = WH(w) for some u, w
« Consistency: w = u@u

« Satisfiability: If g = WH(U®u) then A (u®u)" =b'.



Consistency:
If f = WH(u) and g = WH(w) then w = u®u

Naive test: Check that
f(x)f(y) = 9(x®y) for all x and y

If w =u®u then

f(x) f(y) = (UOX) (UOY)
(UQQU) O (XQY) (by inner-outer property)
g(XXy) (since w = u@u)

If w2 u®u then for some x and y, f(x)f(y) # g(Xx&Qy)

Problem: this requires too many queries



Consistency:
If f = WH(u) and g = WH(w) then w = u®u

Naive test: Check that
f(x)f(y) = 9(x®y) for all x and y

If w =u®u then
f(x) 1(y) = (UOX) (UOY)
= (UQ®U) O (X®Y) (by inner-outer property)
= g(XXy) (since w = u@u)



Consistency:
If f = WH(u) and g = WH(w) then w = u®u

Naive test: Check that
f(x)f(y) = 9(x®y) for all x and y

If w =u®u then

f(x) f(y) = (UOX) (UOY)
= (UQ®U) O (X®Y) (by inner-outer property)

= g(XXy) (since w = u@u)

Theorem: If w # u®@u then
Pryy [[(X)(y) 2 g(xX®y) ] = 14



Consistency:
If f = WH(u) and g = WH(w) then w = u®u

Naive test: Check that
f(x)f(y) = 9(x®y) for all x and y

If w =u®u then
f(x) 1(y) = (UOX) (UOY)
= (UQ®U) O (X®Y) (by inner-outer property)
= g(XXy) (since w = u@u)

Theorem: If w # u®@u then
Pryy [[(X)(y) 2 g(xX®y) ] = 14

For proof, see Arora-Barak, Section 18.4



Consistency:
If f = WH(u) and g = WH(w) then w = u®u

Consistency Test: Given f = WH(u), g = WH(w)
Repeat a constant number of times:
Choose x and y randomly and uniformly

Reject if f(x)f(y) # g(XQy)
Accept



Consistency:
If f = WH(u) and g = WH(w) then w = u®u

Consistency Test: Given f = WH(u), g = WH(w)
Repeat a constant number of times:
Choose x and y randomly and uniformly

Reject if f(x)f(y) # g(XQy)
Accept

Theorem: If w 2 u®u, the consistency test rejects
with constant probabillity (close to 1)



Tasks of PCP Verifier

Given a QUADEQ instance (A,b), and a PCP proof,
l.e. truth tables of functions f and g

V checks:

* Linearity: f = WH(u) and g = WH(w) for some u, w
« Consistency: w = u@u

« Satisfiability: If g = WH(U®u) then A (u®u)" =b'.



Satisfiability: If g = WH(u®u) then A (u@Qu)" = b'

Recall: Ais a (m x n?) matrix and b is a m-
dimensional vector representing m quadratic
equations, each of the form

Ak (UQU)T = bk,
where Ak is the kth row of A

Also, Ak u®u)' is exactly g(Ax)

Naive test: given A, b, and g = WH(uQu)
check that for all k, 1 =k =m, g(Ak) = bk

Problem: the number of queries is linear in m



Satisfiability: If g = WH(u®u) then A (u@Qu)" = b'

Satisfiability test: Given A, b, and g = WH(u@®u)
Repeat a constant number of times

Take a random subset of the equations
Compute their sum mod 2; let the result be

z(u®u)' =c,
where z is a n>-dim. vector, c is a constant
Rejectif g(z) # c
Accept

Theorem: If A (u®u)" = bT then each iteration of
the test fails with probability at least 1/2
Proof: Apply the random subsum property



Tasks of PCP Verifier

Given a QUADEQ instance (A,b), and a PCP proof,
l.e. truth tables of functions f and g

V checks:
* Linearity: f=WH(u) and g = WH(w)
for some u, w
« Consistency.: w = u@u
« Satisfiability: If g = WH(UQu) then A (u®u)" =b'.



Tasks of PCP Verifier

Given a QUADEQ instance (A,b), and a PCP proof,
l.e. truth tables of functions f and g

V checks:
* Linearity: f and g are (1-9)-close to
f = WH(u) and g’ = WH(w)
« Consistency.: w = u@u
« Satisfiability: If g’ = WH(u®u) then A (u®u)T =Db".



Tasks of PCP Verifier

Given a QUADEQ instance (A,b), and a PCP proof,
l.e. truth tables of functions f and g

V checks:
* Linearity: f and g are (1-9)-close to
f = WH(u) and g’ = WH(w)
« Consistency.: w = u@u
« Satisfiability: If g’ = WH(u®u) then A (u®u)T =Db".

Problem: Need to update the Consistency and
Satisfiability checks, to account for the fact that f
and g are close to, but may not equal, f' and g’.



Next Time

« We’'ll finish the proof that NP € PCP(poly(n), 1)

 We'll see one more application, to hardness of
approximating the Clique problem



