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Approximation algorithms

Motivating example:
• Max SAT: Given a Boolean formula ϕ in 

conjunctive normal form, find the maximum 
number of clauses that can be simultaneously 
satisfied

• This is an optimization version of the classical 
SAT decision problem 

Suggest simple algorithms that aim to satisfy as 
many clauses as possible



Approximation algorithms for Max SAT

• Greedy algorithm: assign a truth value to the 
variables in turn, choosing a value for variable xi 
that satisfies at least half of the not-yet-satisfied 
clauses in which xi appears



Approximation algorithms for Max SAT

• Even simpler: either the all-true or all-false 
assignment satisfies at least half of the clauses 
(why?)



Approximation algorithms for Min Vertex Cover

• Given an undirected graph G = (V,E), find a 
minimum vertex cover for G. A vertex cover is a 
set of nodes that are incident on all edges of G

Suggest simple algorithms that aim to find the 
smallest possible vertex cover



Approximation algorithms for Min Vertex Cover

Greedy algorithm:

• Start with S = ∅
• Repeat until the graph has no edges:

– Pick the vertex v that is incident on the most 
edges (breaking ties arbitrarily), add v to S and 
remove its incident edges from the graph



Approximation algorithms for Min Vertex Cover

From The Nature of Computation by Chris Moore



Approximation algorithms for Min Vertex Cover

Conservative algorithm: 

• Start with S = ∅
• Repeat until the graph has no edges:

– Pick any edge of E, and add both of its endpoints 
to S. Delete these two vertices from the graph, as 
well as all incident edges

This algorithm finds a vertex cover of size at 
most twice the minimum – why?



Optimization problems

An optimization problem ∏ has the following properties: 
Corresponding to an instance I of the problem is a set 
of solutions. Corresponding to each solution is a value, 
which is a positive rational number.

∏ is either a maximization problem, in which case we 
want to find the solution with maximum value, or a
minimization problem. Let Opt(I) be the value of the 
optimal solution to I.



Optimization problems

An algorithm A is an approximation algorithm for ∏ if 
given an instance I of ∏, A computes a solution of I. Let 
A(I) denote the value of the solution computed by A on 
instance I. Let

RA(I) = max{ A(I)/Opt(I),  Opt(I)/A(I) }.

Note that 1 ≤ RA(I) and the closer RA(I) is to 1, the 
better A performs on input I. Algorithm A has 
approximation ratio RA if

RA ≥ RA(I) for all instances I of ∏.



Optimization problems

Max 3SAT has an approximation algorithm with 
approximation ratio 2.

Vertex Cover has an approximation algorithm with 
approximation ratio log n.

Are there algorithms with better approximation ratios? 
Is there a limit to how good the approximation ratios 
can be for these and other problems?

Next we’ll introduce tools to help us answer the second 
question here.



Gap Lemma: Let L be NP-complete. Suppose that there is a 
poly-time mapping from any instance x of L to instance x′ of 
maximization problem ∏ such that

x ∈ L ⇒ Opt(xʹ)  =  g(x) and 
x ∉ L ⇒ Opt(xʹ)  < (1-c) g(x)

where g(x) ∈ ℕ, g is poly-time computable, and 0<c<1.

If ∏ has a poly-time approximation algorithm with 
approximation ratio 1 + c/(1-c), then NP = P.

Proof in handout.

The Gap Lemma



Consider a poly-time coin-flipping verifier V which receives 
an input x and a proof π, and outputs either 1 (yes) or 0 (no)

Let V(x,π) denote V’s output on x, π
(Note that V(π, x) is a random variable)

V is a probabilistically checkable proof system (PCP) for 
language L if

x ∈ L ⇒ ∃ π ∈ {0,1}* Pr[V(x,π) = 1] = 1 
x  ∉ L ⇒ ∀ π ∈ {0,1}* Pr[V(x,π) = 1] ≤ ½

Probabilistically Checkable Proof Systems (PCPs)



We say that language L is in PCP(r(n), q(n)) if there 
is a PCP V for L such that, on all inputs x
• the verifier uses O(r(|x|)) random bits 
• the verifier queries O(q(|x|)) bits of the proof 
• the bits must be queried non-adaptively, i.e. the 

verifier decides which bits to query before seeing 
any of these bits

PCPs



PCP Theorem: NP = PCP(log n, 1)

We’ll prove a weak version of this in the next class, let’s look 
at its applications first

PCPs



Max 3SAT is hard to approximate

Max 3SAT: Given a Boolean formula ϕ in 3-conjunctive 
normal form (i.e., each clause has at most three literals), find 
the maximum number of clauses that can be simultaneously 
satisfied



Max 3SAT: Given a Boolean formula ϕ in 3-conjunctive 
normal form (i.e., each clause has at most three literals), find 
the maximum number of clauses that can be simultaneously 
satisfied

Theorem: For some constant c > 1, if there is a polynomial 
time approximation algorithm for Max 3SAT with 
approximation ratio c, then P=NP

Max 3SAT is hard to approximate



Proof: Let L ∈ NP, let V be a PCP for L that uses q 
queries, r(n) random bits, and gets a proof of length l(n). 
Fix instance x of L. For each string τ of length r(|x|) let bτ,1,  
bτ,2, ... bτ,q be the positions of the proof that V queries on 
coin flip sequence τ. 

Using V, we’ll describe a mapping x à Φx from instances 
of  L to instances of Max 3SAT, and apply the Gap Lemma 
to conclude that Max 3SAT is hard to approximate.

Max 3SAT is hard to approximate



Useful facts (proofs will be provided in handout):

• For any Boolean function F of q variables there is an 
equivalent q-CNF formula (i.e., each clause has at most q 
literals) with at most 2q clauses.

• For any q-CNF formula ϕʹ, there is a 3CNF formula ϕ such 
that ϕʹ is satisfiable if and only if ϕ is. Moreover, the 
number of clauses in ϕ is at most q times the number of 
clauses in ϕʹ.

Max 3SAT is hard to approximate



• Hastad showed that if there is a (8/7-ε)-approximation 
algorithm for Max 3SAT, then NP=P.

• Karloff and Zwick provided an algorithm for Max 3SAT that 
seems to have approximation ratio 8/7.

Stronger results for Max 3SAT



• More on proving hardness of approximation, 
e.g., for the Clique problem

• Proof of a weak version of the PCP theorem

Next Class


