
Approximating Solutions to Hard
Problems

Approximation algorithms,
Probabilistically Checkable Proof Systems,

and Hardness of Approximation

Approximation algorithms

Motivating example:
• Max SAT: Given a Boolean formula ϕ in

conjunctive normal form, find the maximum
number of clauses that can be simultaneously
satisfied

• This is an optimization version of the classical
SAT decision problem

Suggest simple algorithms that aim to satisfy as
many clauses as possible

Approximation algorithms for Max SAT

• Greedy algorithm: assign a truth value to the
variables in turn, choosing a value for variable xi
that satisfies at least half of the not-yet-satisfied
clauses in which xi appears

Approximation algorithms for Max SAT

• Even simpler: either the all-true or all-false
assignment satisfies at least half of the clauses
(why?)

Approximation algorithms for Min Vertex Cover

• Given an undirected graph G = (V,E), find a
minimum vertex cover for G. A vertex cover is a
set of nodes that are incident on all edges of G

Suggest simple algorithms that aim to find the
smallest possible vertex cover

Approximation algorithms for Min Vertex Cover

Greedy algorithm:

• Start with S = ∅
• Repeat until the graph has no edges:

– Pick the vertex v that is incident on the most
edges (breaking ties arbitrarily), add v to S and
remove its incident edges from the graph

Approximation algorithms for Min Vertex Cover

From The Nature of Computation by Chris Moore

Approximation algorithms for Min Vertex Cover

Conservative algorithm:

• Start with S = ∅
• Repeat until the graph has no edges:

– Pick any edge of E, and add both of its endpoints
to S. Delete these two vertices from the graph, as
well as all incident edges

This algorithm finds a vertex cover of size at
most twice the minimum – why?

Optimization problems

An optimization problem ∏ has the following properties:
Corresponding to an instance I of the problem is a set
of solutions. Corresponding to each solution is a value,
which is a positive rational number.

∏ is either a maximization problem, in which case we
want to find the solution with maximum value, or a
minimization problem. Let Opt(I) be the value of the
optimal solution to I.

Optimization problems

An algorithm A is an approximation algorithm for ∏ if
given an instance I of ∏, A computes a solution of I. Let
A(I) denote the value of the solution computed by A on
instance I. Let

RA(I) = max{ A(I)/Opt(I), Opt(I)/A(I) }.

Note that 1 ≤ RA(I) and the closer RA(I) is to 1, the
better A performs on input I. Algorithm A has
approximation ratio RA if

RA ≥ RA(I) for all instances I of ∏.

Optimization problems

Max 3SAT has an approximation algorithm with
approximation ratio 2.

Vertex Cover has an approximation algorithm with
approximation ratio log n.

Are there algorithms with better approximation ratios?
Is there a limit to how good the approximation ratios
can be for these and other problems?

Next we’ll introduce tools to help us answer the second
question here.

Gap Lemma: Let L be NP-complete. Suppose that there is a
poly-time mapping from any instance x of L to instance x′ of
maximization problem ∏ such that

x ∈ L ⇒ Opt(xʹ) = g(x) and
x ∉ L ⇒ Opt(xʹ) < (1-c) g(x)

where g(x) ∈ ℕ, g is poly-time computable, and 0<c<1.

If ∏ has a poly-time approximation algorithm with
approximation ratio 1 + c/(1-c), then NP = P.

Proof in handout.

The Gap Lemma

Consider a poly-time coin-flipping verifier V which receives
an input x and a proof π, and outputs either 1 (yes) or 0 (no)

Let V(x,π) denote V’s output on x, π
(Note that V(π, x) is a random variable)

V is a probabilistically checkable proof system (PCP) for
language L if

x ∈ L ⇒ ∃ π ∈ {0,1}* Pr[V(x,π) = 1] = 1
x ∉ L ⇒ ∀ π ∈ {0,1}* Pr[V(x,π) = 1] ≤ ½

Probabilistically Checkable Proof Systems (PCPs)

We say that language L is in PCP(r(n), q(n)) if there
is a PCP V for L such that, on all inputs x
• the verifier uses O(r(|x|)) random bits
• the verifier queries O(q(|x|)) bits of the proof
• the bits must be queried non-adaptively, i.e. the

verifier decides which bits to query before seeing
any of these bits

PCPs

PCP Theorem: NP = PCP(log n, 1)

We’ll prove a weak version of this in the next class, let’s look
at its applications first

PCPs

Max 3SAT is hard to approximate

Max 3SAT: Given a Boolean formula ϕ in 3-conjunctive
normal form (i.e., each clause has at most three literals), find
the maximum number of clauses that can be simultaneously
satisfied

Max 3SAT: Given a Boolean formula ϕ in 3-conjunctive
normal form (i.e., each clause has at most three literals), find
the maximum number of clauses that can be simultaneously
satisfied

Theorem: For some constant c > 1, if there is a polynomial
time approximation algorithm for Max 3SAT with
approximation ratio c, then P=NP

Max 3SAT is hard to approximate

Proof: Let L ∈ NP, let V be a PCP for L that uses q
queries, r(n) random bits, and gets a proof of length l(n).
Fix instance x of L. For each string τ of length r(|x|) let bτ,1,
bτ,2, ... bτ,q be the positions of the proof that V queries on
coin flip sequence τ.

Using V, we’ll describe a mapping x à Φx from instances
of L to instances of Max 3SAT, and apply the Gap Lemma
to conclude that Max 3SAT is hard to approximate.

Max 3SAT is hard to approximate

Useful facts (proofs will be provided in handout):

• For any Boolean function F of q variables there is an
equivalent q-CNF formula (i.e., each clause has at most q
literals) with at most 2q clauses.

• For any q-CNF formula ϕʹ, there is a 3CNF formula ϕ such
that ϕʹ is satisfiable if and only if ϕ is. Moreover, the
number of clauses in ϕ is at most q times the number of
clauses in ϕʹ.

Max 3SAT is hard to approximate

• Hastad showed that if there is a (8/7-ε)-approximation
algorithm for Max 3SAT, then NP=P.

• Karloff and Zwick provided an algorithm for Max 3SAT that
seems to have approximation ratio 8/7.

Stronger results for Max 3SAT

• More on proving hardness of approximation,
e.g., for the Clique problem

• Proof of a weak version of the PCP theorem

Next Class

