
An Interactive Proof System for TQBF

Recall: Interactive Proof System (IPS)

• A Turing machine whose non-halting states are
partitioned into two types: existential/guessing and
coin-flipping. There are exactly two possible next
steps from each coin-flipping state

Recall: Interactive Proof System (IPS)

• Let M be an IPS that always halts, and let C be a
configuration of M. C is either an existential, coin-
flipping, accepting, or rejecting configuration
depending on its state.

• Let Proba[C] denote the probability of reaching an
accepting configuration from C

Recall: Interactive Proof System (IPS)

Let Prob[M accepts x] be Proba[C0], where C0 is the
initial configuration of M on x. We say that the IPS M
accepts language L with bounded error if:

• for all x ∈ L, Prob[M accepts x] ≥ 2/3, and
• for all x ∉ L, Prob[M accepts x] ≤ 1/3

• IP is the class of languages accepted by polynomial
time bounded IPS’s

Recall: Arithmetization

Claim: ϕ is valid iff Aϕ> 0. Also, Aϕ ≤ 22n, where n = |Aϕ|

Prover: “Aϕ= 96”

Verifier: Let Aϕ= ∏x∈{0,1} A1(x). What is A1(x)?

Prover: “A1(x) is α1(x) = 2x2 + 8x + 6“

....

Verifier:

• Check that α1(0) . α1(1) = 96

• Check that A1(x) = α1(x), i.e., that the prover isn’t c

Recall: An IPS to test if Aϕ> 0
(rough sketch)

Prover: “Aϕ= 96”

Verifier: Let Aϕ= ∏x∈{0,1} A1(x). What is A1(x)?

Prover: “A1(x) is α1(x) = 2x2 + 8x + 6“

....

Verifier:

• Check that α1(0) . α1(1) = 96

• Check that A1(x) = α1(x), i.e., that the prover isn’t c

Recall: An IPS to test if Aϕ> 0
(rough sketch)

Issue: the value of Aϕ could be 22n
, where n = |Aϕ|

Prover: “Aϕ= 96”

Verifier: Let Aϕ= ∏x∈{0,1} A1(x). What is A1(x)?

Prover: “A1(x) is α1(x) = 2x2 + 8x + 6“

....

Verifier:

• Check that α1(0) . α1(1) = 96

• Check that A1(x) = α1(x), i.e., that the prover isn’t c

Recall: An IPS to test if Aϕ> 0
(rough sketch)

Issue: the value of Aϕ could be 22n
, where n = |Aϕ|

Workaround: do arithmetic mod a prime

Prover: “Aϕ= 96”

Verifier: Let Aϕ= ∏x∈{0,1} A1(x). What is A1(x)?

Prover: “A1(x) is α1(x) = 2x2 + 8x + 6“

....

Verifier:

• Check that α1(0) . α1(1) = 96

• Check that A1(x) = α1(x), i.e., that the prover isn’t c

Recall: An IPS to test if Aϕ> 0
(rough sketch)

Prover: “Aϕ= 96”

Verifier: Let Aϕ= ∏x∈{0,1} A1(x). What is A1(x)?

Prover: “A1(x) is α1(x) = 2x2 + 8x + 6“

....

Verifier:

• Check that α1(0) . α1(1) = 96

• Check that A1(x) = α1(x), i.e., that the prover isn’t c

Recall: An IPS to test if Aϕ> 0
(rough sketch)

Issue: can this polynomial
be written down in
polynomial time?

Prover: “Aϕ= 96”

Verifier: Let Aϕ= ∏x∈{0,1} A1(x). What is A1(x)?

Prover: “A1(x) is α1(x) = 2x2 + 8x + 6“

....

Verifier:

• Check that α1(0) . α1(1) = 96

• Check that A1(x) = α1(x), i.e., that the prover isn’t c

Recall: An IPS to test if Aϕ> 0
(rough sketch)

From last time:

• If ϕ is simple, then A1(x) has degree at most 2|Aϕ| (and
so the prover can write A1(x) down in polynomial time)

• We can assume wlog that ϕ is simple (homework)

Issue: can this polynomial
be written down in
polynomial time?

Prover: “Aϕ= 96”

Verifier: Let Aϕ= ∏x∈{0,1} A1(x). What is A1(x)?

Prover: “A1(x) is α1(x) = 2x2 + 8x + 6“

Verifier:

• Check that α1(0) . α1(1) = 96

• Check that A1(x) = α1(x), i.e., that the prover isn’t c

Recall: An IPS to test if Aϕ> 0
(rough sketch)

Recall: An IPS to test if Aϕ> 0

Prover: “Aϕ= 96”
Verifier: Let Aϕ= ∏x∈{0,1} A1(x). What is A1(x)?
Prover: “A1(x) is α1(x) = 2x2 + 8x + 6“
Verifier:
• Check that α1(0) . α1(1) = 96
• Check that A1(x) = α1(x), i.e., that the prover isn’t

cheating, by plugging in a random number r for x and
using recursion

(rough sketch)

Recall: An IPS to test if Aϕ> 0

Prover: “Aϕ= 96”
Verifier: Let Aϕ= ∏x∈{0,1} A1(x). What is A1(x)?
Prover: “A1(x) is α1(x) = 2x2 + 8x + 6“
Verifier:
• Check that α1(0) . α1(1) = 96
• Check that A1(x) = α1(x), i.e., that the prover isn’t

cheating, by plugging in a random number r for x and
using recursion

(rough sketch)

Lemma: for sufficiently large n = |A|, v(A) > 0 iff there is a
prime p between 2n and 22n such that v(A) ≠ 0 mod p

The proof uses two results from number theory:

Chinese Remainder Theorem: Let m be the product of
distinct primes p1, p2, . . . , pk. Then for any integers
r1,r2,...,rk, there is a unique v in the range 0 ≤ v < m such
that for all i, v = ri mod pi.

Prime Number Theorem: For any sufficiently large x, the
number of primes that are ≤ x is at least x/ln x.

Why Arithmetic Mod a Prime Works

• Our goal is to show that TQBF is in IP

• Ideas:

– Prover will help verifier evaluate an arithmetization
of the TQBF instance

– WLOG, work with simple qbf instances

– Arithmetizations of simple qbf’s can be expressed as
low-degree polynomials

– Polynomial evaluation can be done modulo primes
to avoid working with large values

Summary So Far

An IPS for TQBF

Input: a QBF ϕ; let ϕ be simple and have m quantifiers

Arithmetize ϕ to obtain Aϕ ; let A0 = Aϕ; let n = |Aϕ|

Prover:
Guess a prime p in the range in [2n , 22n]
Guess a0 in the range [1,…,p-1]

Verifier:
Check that p is prime, and p, a0 are in the proper range

// check that v(A0) = a0 mod p

// check that v(A0) = a0 mod p
For i from 1 to m do // m is # quantifiers of ϕ

Let Ai-1 = ci + ci´ (Ou Ai(u)), where Ou is leftmost ∑ or ∏
Prover:

Guess a polynomial αi(u) of degree at most 2|Aϕ|
Verifier:

Check that ci + ci´ (Ou αi(u)) = ai-1 mod p; if not, reject
Choose ri randomly and uniformly in the range [0 ... p-1]
Let ai = αi(ri) mod p
Let Ai be the expression Ai(ri)

Verifier: Check that v(Am) = am mod p; if not, reject and
otherwise accept

An IPS for TQBF, continued

Proof of correctness (outline)

• A strategy S(ϕ) is the Prover’s choices of αi(u)

• Claim 1: If v(Aϕ) = a0 mod p then for some strategy S(ϕ),

the IPS accepts with probability 1

• Claim 2: If v(Aϕ) ≠ a0 mod p then for all strategies S(ϕ),

the IPS rejects with probability at least (1-2n/2n)n

(where n = |Aϕ|)

Proof of correctness (outline)

• Claim 1: If v(Aϕ) = a0 mod p then for some strategy S(ϕ),
the IPS accepts with probability 1

Proof of correctness (outline)

• Claim 1: If v(Aϕ) = a0 mod p then for some strategy S(ϕ),
the IPS accepts with probability 1

• Proof : The strategy S(ϕ) simply returns the polynomial
αi(u) that is equal to Ai(u) (mod p)

Proof of correctness (outline)

• Claim 2: If v(Aϕ) ≠ a0 mod p then for all strategies S(ϕ),
the IPS rejects with probability at least (1-2n/2n)n

• Proof ideas: Fix any strategy S = S(ϕ).
– For each i between 0 and m, let Ei(ϕ,S) be the event

that v(Ai) ≠ ai mod p, or that the protocol rejects
before round i+1 is reached (or, if i=m, that the loop
terminates)

– Show by induction that Prob[Ei(ϕ,S)] ≥ (1-2n/2n)i,
where the probability is taken over the choice of ri

Proof of correctness (outline)

• Claim 2: If v(Aϕ) ≠ a0 mod p then for all strategies S(ϕ),
the IPS rejects with probability at least (1-2n/2n)n

• Proof ideas: Fix any strategy S = S(ϕ).
– For each i between 0 and m, let Ei = Ei(ϕ,S) be the

event that v(Ai) ≠ ai mod p, or that the protocol rejects
before the end of round i.

– Show by induction that Prob[Ei] ≥ (1-2n/2n)i, where
the probability is taken over the choice of ri

Summary

• We’ve shown an interactive proof system that
accepts TQBF

• Thus, IP = PSPACE: for any language L in PSPACE
a prover can convince a coin-flipping verifier in
polynomial time that a yes-instance x is indeed
in L, and can fool the verifier with low
probability when x is a no-instance of L

Summary

• The IP = PSPACE result raises other questions:
• If all of PSPACE can be proved (with low error

probability) to a computationally limited coin-
flipping verifier, can we limit the verifier further
when proving membership in an NP language
with low error probability?

• We’ll come back to this question after a detour
to approximation algorithms for NP-hard
problems

