An Interactive Proof System for TQBF

Recall: Interactive Proof System (IPS)

• A Turing machine whose non-halting states are partitioned into two types: existential/guessing and coin-flipping. There are exactly two possible next steps from each coin-flipping state

Recall: Interactive Proof System (IPS)

- Let M be an IPS that always halts, and let C be a configuration of M. C is either an existential, coin-flipping, accepting, or rejecting configuration depending on its state.
- Let Prob_a[C] denote the probability of reaching an accepting configuration from C

Let Prob[M accepts x] be $Prob_a[C_0]$, where C_0 is the initial configuration of M on x. We say that the IPS M accepts language L with bounded error if:

- for all $x \in L$, Prob[M accepts x] $\ge 2/3$, and
- for all $x \notin L$, Prob[M accepts x] $\leq 1/3$
- IP is the class of languages accepted by polynomial time bounded IPS's

$$\phi = \forall x \exists y [(x \lor y) \land \forall z [(x \land z) \lor (y \land \bar{z}) \lor \exists w (z \lor (y \land \bar{w}))]]$$

$$A_{\phi} = \prod_{x=0}^{1} \sum_{y=0}^{1} [(x+y) \cdot \prod_{z=0}^{1} [(x \cdot z + y \cdot (1-z)) + \sum_{w=0}^{1} (z + y \cdot (1-w))]]$$

Claim: φ is valid iff $A_{\varphi} > 0$. Also, $A_{\varphi} \le 2^{2^{n}}$, where $n = |A_{\varphi}|$

Prover: " A_{ϕ} = 96"

Issue: the value of A_{ϕ} could be 2^{2^n} , where n = $|A_{\phi}|$

Prover: " $A_{\phi} = 96$ "

Prover: " $A_{\phi} = 96$ "

Issue: the value of A_ϕ could be 2^{2^n} , where n = $|A_\phi|$ Workaround: do arithmetic mod a prime

Prover: " A_{ϕ} = 96" Verifier: Let A_{ϕ} = $\prod_{x \in \{0,1\}} A_1(x)$. What is $A_1(x)$? Prover: " $A_1(x)$ is $\alpha_1(x) = 2x^2 + 8x + 6$ "

Prover: " $A_{\phi} = 96$ " Verifier: Let $A_{\phi} = \prod_{x \in \{0,1\}} A_1(x)$. What is $A_1(x)$? Prover: " $A_1(x)$ is $\alpha_1(x) = 2x^2 + 8x + 6$ " Issue: can this polynomial be written down in polynomial time?

Recall: An IPS to test if $A_{\phi} > 0$

Prover: " A_{ϕ} = 96" Verifier: Let A_{ϕ} = $\prod_{x \in \{0,1\}} A_1(x)$. What is $A_1(x)$? Prover: " $A_1(x)$ is $\alpha_1(x) = 2x^2 + 8x + 6$ " Issue: can this polynomial be written down in polynomial time?

From last time:

- If ϕ is simple, then $A_1(x)$ has degree at most $2|A_{\phi}|$ (and so the prover *can* write $A_1(x)$ down in polynomial time)
- We can assume wlog that φ is simple (homework)

Prover: " A_{ϕ} = 96" Verifier: Let A_{ϕ} = $\prod_{x \in \{0,1\}} A_1(x)$. What is $A_1(x)$? Prover: " $A_1(x)$ is $\alpha_1(x) = 2x^2 + 8x + 6$ "

Prover: " A_{ϕ} = 96" Verifier: Let A_{ϕ} = $\prod_{x \in \{0,1\}} A_1(x)$. What is $A_1(x)$? Prover: " $A_1(x)$ is $\alpha_1(x) = 2x^2 + 8x + 6$ " Verifier:

• Check that $\alpha_1(0) \cdot \alpha_1(1) = 96$

Recall: An IPS to test if $A_{\phi} > 0$

Prover: "
$$A_{\phi}$$
= 96"
Verifier: Let A_{ϕ} = $\prod_{x \in \{0,1\}} A_1(x)$. What is $A_1(x)$?
Prover: " $A_1(x)$ is $\alpha_1(x) = 2x^2 + 8x + 6$ "
Verifier:

- Check that $\alpha_1(0) \cdot \alpha_1(1) = 96$
- Check that A₁(x) = α₁(x), i.e., that the prover isn't cheating, by plugging in a random number r for x and using recursion

Lemma: for sufficiently large n = |A|, v(A) > 0 iff there is a prime p between 2^n and 2^{2n} such that $v(A) \neq 0 \mod p$

The proof uses two results from number theory:

Chinese Remainder Theorem: Let m be the product of distinct primes p_1, p_2, \ldots, p_k . Then for any integers r_1, r_2, \ldots, r_k , there is a unique v in the range $0 \le v < m$ such that for all i, $v = r_i \mod p_i$.

Prime Number Theorem: For any sufficiently large x, the number of primes that are $\leq x$ is at least x/ln x.

Summary So Far

- Our goal is to show that TQBF is in IP
- Ideas:
 - Prover will help verifier evaluate an arithmetization of the TQBF instance
 - WLOG, work with *simple* qbf instances
 - Arithmetizations of simple qbf's can be expressed as low-degree polynomials
 - Polynomial evaluation can be done modulo primes to avoid working with large values

Input: a QBF ϕ ; let ϕ be simple and have m quantifiers

Arithmetize φ to obtain A_{φ} ; let $A_0 = A_{\varphi}$; let $n = |A_{\varphi}|$

Prover:

Guess a prime p in the range in $[2^n, 2^{2n}]$

Guess a₀ in the range [1,...,p-1]

Verifier:

Check that p is prime, and p, a₀ are in the proper range

```
// check that v(A_0) = a_0 \mod p
```

// check that $v(A_0) = a_0 \mod p$ For i from 1 to m do // m is # quantifiers of ϕ

Let $A_{i-1} = c_i + c_i'$ ($O_u A_i(u)$), where O_u is leftmost $\sum or \prod$ Prover:

Guess a polynomial $\alpha_i(u)$ of degree at most $2|A_{\phi}|$ Verifier:

Check that $c_i + c_i' (O_u \alpha_i(u)) = a_{i-1} \mod p$; if not, reject Choose r_i randomly and uniformly in the range $[0 \dots p-1]$ Let $a_i = \alpha_i(r_i) \mod p$ Let A_i be the expression $A_i(r_i)$

Verifier: Check that v(A_m) = a_m mod p; if not, reject and otherwise accept

- A *strategy* $S(\phi)$ is the Prover's choices of $\alpha_i(u)$
- Claim 1: If $v(A_{\phi}) = a_0 \mod p$ then for some strategy $S(\phi)$, the IPS accepts with probability 1
- Claim 2: If v(A_φ) ≠ a₀ mod p then for all strategies S(φ), the IPS rejects with probability at least (1-2n/2ⁿ)ⁿ (where n = |A_φ|)

 Claim 1: If v(A_φ) = a₀ mod p then for some strategy S(φ), the IPS accepts with probability 1

- Claim 1: If v(A_φ) = a₀ mod p then for some strategy S(φ), the IPS accepts with probability 1
- Proof : The strategy S(φ) simply returns the polynomial α_i(u) that is equal to A_i(u) (mod p)

 Claim 2: If v(A_φ) ≠ a₀ mod p then for all strategies S(φ), the IPS rejects with probability at least (1-2n/2ⁿ)ⁿ

- Claim 2: If v(A_φ) ≠ a₀ mod p then for all strategies S(φ), the IPS rejects with probability at least (1-2n/2ⁿ)ⁿ
- Proof ideas: Fix any strategy $S = S(\phi)$.
 - For each i between 0 and m, let $E_i = E_i(\varphi, S)$ be the event that $v(A_i) \neq a_i \mod p$, or that the protocol rejects before the end of round i.
 - Show by induction that $Prob[E_i] \ge (1-2n/2^n)^i$, where the probability is taken over the choice of r_i

Summary

- We've shown an interactive proof system that accepts TQBF
- Thus, IP = PSPACE: for any language L in PSPACE a prover can convince a coin-flipping verifier in polynomial time that a yes-instance x is indeed in L, and can fool the verifier with low probability when x is a no-instance of L

Summary

- The IP = PSPACE result raises other questions:
- If all of PSPACE can be proved (with low error probability) to a computationally limited coinflipping verifier, can we limit the verifier further when proving membership in an NP language with low error probability?
- We'll come back to this question after a detour to approximation algorithms for NP-hard problems