An Interactive Proof System for TQBF

Recall: Interactive Proof System (IPS)

* A Turing machine whose non-halting states are
partitioned into two types: existential/guessing and

coin-flipping. There are exactly two possible next
steps from each coin-flipping state

Recall: Interactive Proof System (IPS)

 Let M be an IPS that always halts, and let C be a
configuration of M. Cis either an existential, coin-
flipping, accepting, or rejecting configuration
depending on its state.

* Let Prob,[C] denote the probability of reaching an
accepting configuration from C

Recall: Interactive Proof System (IPS)

Let Prob[M accepts x] be Prob,[Cy], where C, is the
initial configuration of M on x. We say that the IPS M
accepts language L with bounded error if:

e forallx €L, Prob[M accepts x] >2/3, and
 forallx &L, Prob[M accepts x] <1/3

* |Pis the class of languages accepted by polynomial
time bounded IPS’s

Recall: Arithmetization

¢ =VzIyl[(cVy) AVz[(xA2)V(yAZ)VIw(zV (y Aw))]]

1 1

A¢—HZ[$+:¢/ [[l-z+y-1-2)+) (z+y-(1—w))]
z=0

x=0 y=0 w=0

Claim: @ is valid iff A,> 0. Also, A, < 22" ‘where n = | Ayl

Recall: An IPS to test if Ay,> 0

(rough sketch)
1 1

A¢—HZ z+y)- [Jlz-z2+y-1-2)+) (z+y-(1—w))]
z=0

x=0 y=0 w=0

Prover: A(p= 96

Recall: An IPS to test if Ay,> 0

(rough sketch)
1
A¢—H2[x+y H(a:-z+y-(1—z))+2(z+y-(1—w))]]
=0 y=0 w=0

n
Issue: the value of A, could be 22 , Where n = |A(p|

Prover: A(p= 96

Recall: An IPS to test if Ay,> 0

(rough sketch)
1
A¢—HZ[$+:¢/ H(:v-z+y-(1—2))+Z(Z+y-(1—w))]]
=0 y=0 w=0

Issue: the value of A, could be 22" , Where n = |A,|
7 _ ” ¢ ¢
Prover: A(p_ 96 Workaround: do arithmetic mod a prime

Recall: An IPS to test if Ay,> 0

(rough sketch)
1 1

Aqb—HZ[ery [[l@-z+y - 1=2)+) (z+y-(1—w)]]
z=0

=0 y=0 w=0

Prover: ”A(p= 96"
Verifier: Let Ap= Tlxeto1) A1(x). What is A{(x)?
Prover: “Aq(x) is aq(x) = 2x% + 8X + 6“

Recall: An IPS to test if Ay,> 0

(rough sketch)
1 1

Ap = HZ[z+y)-[[lz-z+y-1-2)+ > (z+y-(1—w))]
=0 y=0 z=0 w=0
Prover: ”A(p= 96”
Verifier: Let Ap= Tlxeto1) A1(x). What is A{(x)?

7 . _ 2 “
Prover: A]_(X) IS al(x) =2X“+8x+6 Issue: can this polynomial

be written down in
polynomial time?

Recall: An IPS to test if Ay,> 0

(rough sketch)
1 1

o—HZ[Hy [[l@-z+y-1-2)+ > (z+y- (1 —w))]
z=0

=0 y=0 w=0

Prover: ”A(p= 96”
Verifier: Let Ap= Tlxeto1) A1(x). What is A{(x)?

7 . — 2 “
Prover: A]_(X) IS (Xl(X) =2X“+38x+6 Issue: can this polynomial

be written down in
polynomial time?

From last time:

* If @ is simple, then A{(x) has degree at most 2|A(p| (and
so the prover can write A4(x) down in polynomial time)

 We can assume wlog that ¢ is simple (homework)

Recall: An IPS to test if Ay,> 0

(rough sketch)
1 1

Aqb—HZ[ery [[l@-z+y - 1=2)+) (z+y-(1—w)]]
z=0

=0 y=0 w=0

Prover: ”A(p= 96"
Verifier: Let Ap= Tlxeto1) A1(x). What is A{(x)?
Prover: “Aq(x) is aq(x) = 2x% + 8X + 6“

Recall: An IPS to test if Ay,> 0

(rough sketch)
1 1

Ay = HZ[:Hy [[l@-z+y-(1-2)+) (z+y- (1 —w))]
=0 y=0 z=0 w=0
Prover: ”A(p= 96”
Verifier: Let Ap= Tlxeto1) A1(x). What is A{(x)?
Prover: “Aq(x) is aq(x) = 2x% + 8X + 6“
Verifier:
* Check that a¢(0) . a1(1) =

Recall: An IPS to test if Ay,> 0

(rough sketch)
1 1

@—HZ[wﬂ/ [[l@-z+y-1-2)+ > (z+y- (1 —w))]
z=0

=0 y=0 w=0
Prover: ”A(p= 96”
Verifier: Let Ap= Tlxeto1) A1(x). What is A{(x)?
Prover: “Aq(x) is aq(x) = 2x% + 8X + 6“
Verifier:

* Check that a4(0) . a4(1) =

* Check that A{(x) = a4(x), i.e., that the prover isn’t
cheating, by plugging in a random number r for x and
using recursion

Why Arithmetic Mod a Prime Works

Lemma: for sufficiently large n = |A]|, v(A) > 0 iff there is a
prime p between 2" and 22" such that v(A) # 0 mod p

The proof uses two results from number theory:

Chinese Remainder Theorem: Let m be the product of
distinct primes p1, p2, . .., pk. Then for any integers
riy,ra,...,rk, there is a unique v in the range 0 < v < m such
that for all i, v =ri mod p..

Prime Number Theorem: For any sufficiently large x, the
number of primes that are < x is at least x/In x.

Summary So Far

e QOur goal is to show that TQBF is in IP

* |deas:

— Prover will help verifier evaluate an arithmetization
of the TQBF instance

— WLOG, work with simple gbf instances

— Arithmetizations of simple gbf’s can be expressed as
low-degree polynomials

— Polynomial evaluation can be done modulo primes
to avoid working with large values

An IPS for TQBF

Input: a QBF ; let ¢ be simple and have m quantifiers

Arithmetize ¢ to obtain Ag ; let Ao = Ag; let n = |Aog]|

Prover:
Guess a prime p in the range in [2", 22"]
Guess ap in the range [1,...,p-1]
Verifier:
Check that p is prime, and p, ag are in the proper range

// check that v(Ao) = a; mod p

An IPS for TQBF, continued

// check that v(Ao) = a; mod p
For i from 1to m do // m is # quantifiers of ¢

Let Ai.1= ci+ ci (OuAi(u)), where Ouis leftmost 5 or T
Prover:
Guess a polynomial ai(u) of degree at most 2| A¢|
Verifier:
Check that ci+ ¢i” (Ouai(u)) = ai-1 mod p; if not, reject
Choose ri randomly and uniformly in the range [O ... p-1]
Let ai = ai(ri) mod p
Let Aibe the expression Ai(ri)

Verifier: Check that v(Am) = am mod p; if not, reject and
otherwise accept

Proof of correctness (outline)

* A strategy S(o) is the Prover’s choices of a;(u)

* Claim 1: If v(Ae) = ag mod p then for some strategy S(o),
the IPS accepts with probability 1

* Claim 2: If v(Ao) # ag mod p then for all strategies S(¢),
the IPS rejects with probability at least (1-2n/2n)"

(where n = |A¢|)

Proof of correctness (outline)

* Claim 1: If v(Ay) = ag mod p then for some strategy S(o),
the IPS accepts with probability 1

Proof of correctness (outline)

* Claim 1: If v(Ay) = ag mod p then for some strategy S(o),
the IPS accepts with probability 1

* Proof : The strategy S(o) simply returns the polynomial
ai(u) that is equal to Ai(u) (mod p)

Proof of correctness (outline)

* Claim 2: If v(Ag) # ap mod p then for all strategies S(o),
the IPS rejects with probability at least (1-2n/2n)"

Proof of correctness (outline)

* Claim 2: If v(Ag) # ap mod p then for all strategies S(o),
the IPS rejects with probability at least (1-2n/2n)"

* Proof ideas: Fix any strategy S = S(¢).

— For each i between 0 and m, let Ei =Ei(¢p,S) be the
event that v(Ai) # ai mod p, or that the protocol rejects
before the end of round i.

— Show by induction that Prob|[Ei] = (1-2n/2n)i, where
the probability is taken over the choice of r;

Summary

* We’ve shown an interactive proof system that
accepts TQBF

* Thus, IP = PSPACE: for any language L in PSPACE
a prover can convince a coin-flipping verifier in
polynomial time that a yes-instance x is indeed
in L, and can fool the verifier with low

probability when x is a no-instance of L

Summary

 The IP = PSPACE result raises other questions:

 If all of PSPACE can be proved (with low error
probability) to a computationally limited coin-
flipping verifier, can we limit the verifier further
when proving membership in an NP language
with low error probability?

 We’ll come back to this question after a detour
to approximation algorithms for NP-hard
problems

