Interactive Proof Systems (IPS's)

Interactive Proof Systems (IPS's)

- NP is the class of languages for which membership can be proved to a deterministic, polynomial-time verifier.
- Can membership in languages outside of NP be proved to a poly-time verifier that can flip coins?

Graph Isomorphism

Given two undirected graphs with an equal number of nodes and edges, can the labels of nodes in one graph be permuted to obtain the second graph?

Graph Isomorphism

Given two undirected graphs with an equal number of nodes and edges, can the labels of nodes in one graph be permuted to obtain the second graph?

Graph Non-Isomorphism

How to prove that two graphs are *not* isomporphic?

Input: two graphs G₁, G₂

Repeat, say 10 times

- Verifier: Choose one graph, say G_i, at random
 Randomly permute G_i to obtain G´
 Send G´ to the prover
- Prover: Send either 1 or 2 to the verifier
- Verifier: Reject if the number sent is not i Verifier: Accept

IPS for Graph Non-Isomorphism

FIGURE 11.3: Arthur generates H by applying a random permutation to either G_1 or G_2 . If Merlin can consistently tell which graph Arthur started with (can you?) then G_1 and G_2 are nonisomorphic.

IPS for Graph Non-Isomorphism

- In the graph non-isomorphism protocol, the verifier uses *private coins*, i.e. the prover does not see the verifier's random bits
- The protocol would not be correct if the coins were *public*
- It turns out, however, that there is a public-coin interactive proof for graph non-isomorphism that uses public coins
- In fact, all languages in PSPACE have public-coin interactive proofs

Interactive Proof System Definition

- An interactive proof system (IPS) is a Turing machine whose non-halting states are partitioned into two types: existential/guessing and coin-flipping
- There are exactly two possible next steps from each non-halting state

Interactive Proof System Definition

- Let M be an IPS that always halts, and let C be a configuration of M. C is either an existential, coin-flipping, accepting, or rejecting configuration depending on its state.
- Let Prob_a[C] denote the probability of reaching an accepting configuration from C

Prob_a[C] can be defined recursively as follows:

- C is rejecting: Prob_a[C] = 0
- C is accepting: Prob_a[C] = 1

Otherwise let C' and C'' be the two configurations reachable from C

- C is existential: Prob_a[C] = max { Prob_a[C'], Prob_a[C''] }
- C is coin-flipping: Prob_a[C] = (Prob_a[C'] + Prob_a[C''])/2

Let Prob[M accepts x] be $Prob_a[C_0]$, where C_0 is the initial configuration of M on x. We say that the IPS M accepts language L with bounded error if:

- for all $x \in L$, Prob[M accepts x] $\ge 2/3$, and
- for all $x \notin L$, Prob[M accepts x] $\leq 1/3$
- IP is the class of languages accepted by polynomial time bounded IPS's

TQBF: given a quantified Boolean formula (QBF) φ , is it valid?

Idea: Arithmetize ϕ to obtain an arithmetic expression A ϕ , and test if A $_{\phi}$ > 0

- Replace each V by +, \land by \cdot (times)
- Replace ¬x by (1-x)
- Replace $\exists x by \sum_{x \in \{0,1\}} and \forall x by \prod_{x \in \{0,1\}} dx by \prod_$
- Replace true or false with 1 or 0

- Replace each V by +, \land by \cdot (times)
- Replace ¬x by (1-x)
- Replace $\exists x by \sum_{x \in \{0,1\}} and \forall x by \prod_{x \in \{0,1\}} dx by \prod_$
- Replace true or false with 1 or 0

 $\phi = \forall x \exists y [(x \lor y) \land \forall z [(x \land z) \lor (y \land \bar{z}) \lor \exists w (z \lor (y \land \bar{w}))]]$

$$A_{\phi} = \prod_{x=0}^{1} \sum_{y=0}^{1} [(x+y) \cdot \prod_{z=0}^{1} [(x \cdot z + y \cdot (1-z)) + \sum_{w=0}^{1} (z + y \cdot (1-w))]]$$

- Replace each V by +, \land by \cdot (times)
- Replace ¬x by (1-x)
- Replace $\exists x by \sum_{x \in \{0,1\}} and \forall x by \prod_{x \in \{0,1\}} dx by \prod_$
- Replace true or false with 1 or 0
- Claim: If A_{ϕ} is the arithmetization of ϕ , then ϕ is valid if and only if $A_{\phi} > 0$.

- Replace each V by +, \land by \cdot (times)
- Replace ¬x by (1-x)
- Replace $\exists x by \sum_{x \in \{0,1\}} and \forall x by \prod_{x \in \{0,1\}} dx by \prod_$
- Replace true or false with 1 or 0
- Claim: If A_φ is the arithmetization of φ, then φ is valid if and only if A_φ > 0.
 Proof: By induction over the number of ∑, ∏, V, and ∧ in the formula A_φ

TQBF: given a quantified Boolean formula (QBF) φ , is it valid?

Idea:

- Arithmetize ϕ to obtain an arithmetic expression A ϕ , and test if A $_{\phi}$ > 0
- Testing if A_{ϕ} > 0 sounds no easier than evaluating ϕ
- The IPS will leverage nice properties of polynomials

An IPS to test if $A_{\phi} > 0$

Prover: " A_{ϕ} = 96" Verifier: Let A_{ϕ} = $\prod_{x \in \{0,1\}} A_1(x)$. What is $A_1(x)$? Prover: " $A_1(x)$ is $\alpha_1(x) = 2x^2 + 8x + 6$ " Verifier:

An IPS to test if $A_{\phi} > 0$

Prover: "
$$A_{\phi}$$
= 96"
Verifier: Let A_{ϕ} = $\prod_{x \in \{0,1\}} A_1(x)$. What is $A_1(x)$?
Prover: " $A_1(x)$ is $\alpha_1(x) = 2x^2 + 8x + 6$ "
Verifier:

- Check that $\alpha_1(0) \cdot \alpha_1(1) = 96$
- Check that indeed A₁(x) = α₁(x), i.e., that the prover isn't cheating, by plugging in a random number r for x and using recursion

• The degree of polynomial $\alpha_1(x)$ (or equivalently, $A_1(x)$) could be exponential in $|A_{\phi}|$

- The value of A_ϕ could be double exponential in $|\mathsf{A}_\phi|$

- The degree of polynomial $\alpha_1(x)$ (or equivalently, $A_1(x)$) could be exponential in $|A_{\phi}|$

$$\forall x_1 \forall x_2 \dots \forall x_n \exists y (y \lor x_1)$$

- The value of A_ϕ could be double exponential in $|\mathsf{A}_\phi|$

$$\forall x_1 \forall x_2 \dots \forall x_n \exists y (y \lor \bar{y})$$

• The degree of polynomial $\alpha_1(x)$ (or equivalently, $A_1(x)$) could be exponential in $|A_{\phi}|$

- The value of A_ϕ could be double exponential in $|\mathsf{A}_\phi|$

- The degree of polynomial $\alpha_1(x)$ (or equivalently, $A_1(x)$) could be exponential in $|A_{\phi}|$
 - Solution: convert φ to an equivalent simple qbf
 before arithmetizing
- The value of A_ϕ could be double exponential in $|\mathsf{A}_\phi|$

- The degree of polynomial $\alpha_1(x)$ (or equivalently, $A_1(x)$) could be exponential in $|A_{\phi}|$
 - Solution: convert φ to an equivalent simple qbf
 before arithmetizing
- The value of A_ϕ could be double exponential in $|\mathsf{A}_\phi|$
 - *Solution*: perform polynomial evaluations modulo a small prime

- Call a variable x of φ simple if x is in the scope of at most one ∀ quantifier that is within the scope of the quantifier of φ to which x is bound
- A qbf ϕ is simple if all variables of ϕ are simple
- *Exercise*: which of these is simple?

 $\forall x [\forall y ((x \lor y) \land (\forall z (x \land z)))]$

 $\forall x [(\forall y (x \lor y)) \land (\forall z (x \land z))]$

- Call a variable x of φ simple if x is in the scope of at most one ∀ quantifier that is within the scope of the quantifier of φ to which x is bound
- A qbf φ is simple if all variables of φ are simple
- Simplification Lemma: Given an instance φ' of TQBF, we can convert φ' into a simple instance φ in polynomial time, such that φ' is valid if and only if φ is valid

- Call a variable x of φ simple if x is in the scope of at most one ∀ quantifier that is within the scope of the quantifier of φ to which x is bound
- A qbf ϕ is simple if all variables of ϕ are simple
- Low-Degree Lemma: Let φ be simple, and let
 A_φ = Qx α(x). Then the degree of α(x) is at
 most 2|α|.

Summary

- Our goal is to show that TQBF is in IP
- Ideas so far:
 - Prover will help verifier evaluate an arithmetization of the TQBF instance
 - WLOG, work with *simple* qbf instances
 - Arithmetizations of simple qbf's can be expressed as low-degree polynomials
 - Polynomial evaluation can be done modulo primes to avoid working with large values
- To be continued...