
Interactive Proof Systems (IPS’s)

Interactive Proof Systems (IPS’s)

• NP is the class of languages for which membership
can be proved to a deterministic, polynomial-time
verifier.

• Can membership in languages outside of NP be
proved to a poly-time verifier that can flip coins?

Graph Isomorphism

Given two undirected graphs with an equal number of
nodes and edges, can the labels of nodes in one graph
be permuted to obtain the second graph?

1

2

3

5

4

Graph Isomorphism

Given two undirected graphs with an equal number of
nodes and edges, can the labels of nodes in one graph
be permuted to obtain the second graph?

1

2

34

5

1

2

3
4

5

Graph Non-Isomorphism

How to prove that two graphs are not isomporphic?

IPS for Graph Non-Isomorphism

Input: two graphs G1, G2

Repeat, say 10 times
• Verifier: Choose one graph, say Gi, at random

Randomly permute Gi to obtain G´
Send G´ to the prover

• Prover: Send either 1 or 2 to the verifier
• Verifier: Reject if the number sent is not i
Verifier: Accept

IPS for Graph Non-Isomorphism

How to prove that two graphs are not isomporphic?

IPS for Graph Non-Isomorphism

• In the graph non-isomorphism protocol, the verifier
uses private coins, i.e. the prover does not see the
verifier’s random bits

• The protocol would not be correct if the coins were
public

• It turns out, however, that there is a public-coin
interactive proof for graph non-isomorphism that
uses public coins

• In fact, all languages in PSPACE have public-coin
interactive proofs

Interactive Proof System Definition

• An interactive proof system (IPS) is a Turing machine
whose non-halting states are partitioned into two
types: existential/guessing and coin-flipping

• There are exactly two possible next steps from each
non-halting state

Interactive Proof System Definition

• Let M be an IPS that always halts, and let C be a
configuration of M. C is either an existential, coin-
flipping, accepting, or rejecting configuration
depending on its state.

• Let Proba[C] denote the probability of reaching an
accepting configuration from C

Interactive Proof System Definition

Proba[C] can be defined recursively as follows:

• C is rejecting: Proba[C] = 0
• C is accepting: Proba[C] = 1

Otherwise let Cʹ and Cʹʹ be the two configurations
reachable from C

• C is existential: Proba[C] = max { Proba[Cʹ], Proba[Cʹ’] }
• C is coin-flipping: Proba[C] = (Proba[Cʹ] + Proba[Cʹʹ])/2

Interactive Proof System Definition

Let Prob[M accepts x] be Proba[C0], where C0 is the
initial configuration of M on x. We say that the IPS M
accepts language L with bounded error if:

• for all x ∈ L, Prob[M accepts x] ≥ 2/3, and
• for all x ∉ L, Prob[M accepts x] ≤ 1/3

• IP is the class of languages accepted by polynomial
time bounded IPS’s

An IPS for TQBF

TQBF: given a quantified Boolean formula (QBF) ϕ, is it
valid?
Idea: Arithmetize ϕ to obtain an arithmetic expression
Aϕ, and test if Aϕ> 0

Arithmetizing QBFs

• Replace each ∨ by +, ∧ by · (times)

• Replace ¬x by (1−x)

• Replace ∃x by ∑
x∈{0,1}

and ∀x by ∏
x∈{0,1}

• Replace true or false with 1 or 0

• Claim: If Aϕ is the arithmetization of ϕ, then ϕ

is valid if and only if A
ϕ

> 0.

Proof: By induction over the number of ∑, ∏,

∨, and ∧ in the formula Aϕ

Arithmetizing QBFs

• Replace each ∨ by +, ∧ by · (times)

• Replace ¬x by (1−x)

• Replace ∃x by ∑
x∈{0,1}

and ∀x by ∏
x∈{0,1}

• Replace true or false with 1 or 0

• Claim: If Aϕ is the arithmetization of ϕ, then ϕ

is valid if and only if A
ϕ

> 0.

Proof: By induction over the number of ∑, ∏,

∨, and ∧ in the formula Aϕ

Arithmetizing QBFs

• Replace each ∨ by +, ∧ by · (times)

• Replace ¬x by (1−x)

• Replace ∃x by ∑
x∈{0,1}

and ∀x by ∏
x∈{0,1}

• Replace true or false with 1 or 0

• Claim: If Aϕ is the arithmetization of ϕ, then ϕ

is valid if and only if A
ϕ

> 0.

Proof: By induction over the number of ∑, ∏,

∨, and ∧ in the formula Aϕ

Arithmetizing QBFs

• Replace each ∨ by +, ∧ by · (times)

• Replace ¬x by (1−x)

• Replace ∃x by ∑
x∈{0,1}

and ∀x by ∏
x∈{0,1}

• Replace true or false with 1 or 0

• Claim: If Aϕ is the arithmetization of ϕ, then ϕ

is valid if and only if A
ϕ

> 0.

Proof: By induction over the number of ∑, ∏,

∨, and ∧ in the formula Aϕ

An IPS for TQBF

TQBF: given a quantified Boolean formula (QBF) ϕ, is it
valid?

Idea:

– Arithmetize ϕ to obtain an arithmetic expression Aϕ,
and test if Aϕ> 0

– Testing if Aϕ> 0 sounds no easier than evaluating ϕ

– The IPS will leverage nice properties of polynomials

An IPS to test if Aϕ> 0

Prover: “Aϕ= 96”

Verifier: Let Aϕ= ∏x∈{0,1} A1(x). What is A1(x)?

Prover: “A1(x) is α1(x) = 2x2 + 8x + 6”

Verifier:

(very rough sketch)

An IPS to test if Aϕ> 0

Prover: “Aϕ= 96”

Verifier: Let Aϕ= ∏x∈{0,1} A1(x). What is A1(x)?

Prover: “A1(x) is α1(x) = 2x2 + 8x + 6”

Verifier:

• Check that α1(0) . α1(1) = 96

• Check that indeed A1(x) = α1(x), i.e., that the prover
isn’t cheating, by plugging in a random number r for x
and using recursion

(very rough sketch)

An IPS to test if Aϕ> 0

Problems with this IPS idea:
• The degree of polynomial α1(x) (or equivalently,

A1(x)) could be exponential in |Aϕ|

• The value of Aϕ could be double exponential in
|Aϕ|

An IPS to test if Aϕ> 0

Problems with this IPS idea:
• The degree of polynomial α1(x) (or equivalently,

A1(x)) could be exponential in |Aϕ|

• The value of Aϕ could be double exponential in
|Aϕ|

An IPS to test if Aϕ> 0

Problems with this IPS idea:
• The degree of polynomial α1(x) (or equivalently,

A1(x)) could be exponential in |Aϕ|

• The value of Aϕ could be double exponential in
|Aϕ|

An IPS to test if Aϕ> 0

Problems with this IPS idea:

• The degree of polynomial α1(x) (or equivalently,
A1(x)) could be exponential in |Aϕ|
– Solution: convert ϕ to an equivalent simple qbf

before arithmetizing

• The value of Aϕ could be double exponential in
|Aϕ|

An IPS to test if Aϕ> 0

Problems with this IPS idea:

• The degree of polynomial α1(x) (or equivalently,
A1(x)) could be exponential in |Aϕ|
– Solution: convert ϕ to an equivalent simple qbf

before arithmetizing

• The value of Aϕ could be double exponential in
|Aϕ|
– Solution: perform polynomial evaluations modulo a

small prime

Simple QBFs

• Call a variable x of φ simple if x is in the scope of
at most one ∀ quantifier that is within the scope
of the quantifier of φ to which x is bound

• A qbf φ is simple if all variables of φ are simple

• Exercise: which of these is simple?

Simple QBFs

• Call a variable x of φ simple if x is in the scope of
at most one ∀ quantifier that is within the scope
of the quantifier of φ to which x is bound

• A qbf φ is simple if all variables of φ are simple

• Simplification Lemma: Given an instance ϕ´ of
TQBF, we can convert ϕ´ into a simple instance ϕ
in polynomial time, such that ϕ´ is valid if and
only if ϕ is valid

Simple QBFs

• Call a variable x of φ simple if x is in the scope of
at most one ∀ quantifier that is within the scope
of the quantifier of φ to which x is bound

• A qbf φ is simple if all variables of φ are simple

• Low-Degree Lemma: Let ϕ be simple, and let
Aϕ = Qx α(x). Then the degree of α(x) is at
most 2|α|.

• Our goal is to show that TQBF is in IP

• Ideas so far:

– Prover will help verifier evaluate an arithmetization
of the TQBF instance

– WLOG, work with simple qbf instances

– Arithmetizations of simple qbf’s can be expressed as
low-degree polynomials

– Polynomial evaluation can be done modulo primes
to avoid working with large values

• To be continued…

Summary

