
Space Bounded Randomized 
Complexity Classes

one-sided error, log space bounded classes
handy techniques for probabilistic reasoning



RLP

• A language L is in RLP if there is an log-space and 
poly-time PTM M such that 
– if x ∈ L then Pr[M accepts x] ≥ 2/3 and 
– if x ∉ L then Pr[M accepts x] = 0



UPATH is in RLP

• UPATH = { (G,s,t) | node t can be reached from node 
s in an undirected graph G}



UPATH is in RLP

UPATH Algorithm: 
• On input (G,s,t), follow a random path from s
– If t is reached at some step, halt and accept
– If t is not reached within 6e(n-1) steps, halt and reject

• The algorithm is correct if t is not reachable from 
s, since it must reject

• What if t is reachable from s?



Analysis of UPATH

• Let T(G,s,t) be the number of edges of G that are 

traversed on a random walk from s to t

• Claim: Expected value of T(G,s,t) ≤ 2e(n-1)

• We can use the claim and Markov’s inequality to 

show that the random walk algorithm accepts yes 

instances of UPATH with probability at least 2/3



Analysis of UPATH

• Markov’s Inequality: If X is a nonnegative random 
variable and k is a positive real then

Prob[X ≥ k E[X] ] ≤ 1/k

• Let X be T(G,s,t), i.e., the number of edges of G that 
are traversed on a random walk from s to t

• Since the expected value of T(G,s,t) ≤ 2e(n-1), then 
the probability that a random walk from s takes at 
least 6e(n-1) steps to reach t is at most 1/3



Analysis of UPATH

• Let T(G,s,t) be the number of edges of G that are 
traversed on a random walk from s to t

• We still need to prove the claim that the expected 
value of T(G,s,t) ≤ 2e(n-1)

• We need some background on Markov Chains



Background on Markov Chains

A finite Markov chain with discrete time and stationary 
transition probabilities is an infinite sequence of 
random variables over some state space S

X0, X1, X2, ...,
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A finite Markov chain with discrete time and stationary 
transition probabilities is an infinite sequence of 
random variables over some state space S

X0, X1, X2, ...,

such that for all i, j in S, Prob[Xk = j | Xk-1 = i]  =  Pij,
where Pij may depend on i and j but not on k 

The matrix P is called the transition matrix



Background on Markov Chains

A finite Markov chain with discrete time and stationary 
transition probabilities is an infinite sequence pf
random variables over some state space S

X0, X1, X2, ...,

such that for all i, j in S, Prob[Xk = j | Xk-1 = i]  =  Pij,
where Pij may depend on i and j but not on k

Pij
m is the probability of reaching j from i in exactly m 

steps (there is an easy proof by induction on m)



Background on Markov Chains

A Markov Chain is irreducible if for all states i and j, 
there exists k such that

Prob[Xk = j | X0 = i] > 0

Theorem: Let P be the transition matrix of an 
irreducible Markov Chain. Then  !P =  ! has a unique 
solution  ! up to constant multiplicative factors

If ∑i!i = 1, ! is sometimes referred to as the 
stationary distribution of the Markov chain



Markov Chains and Random Walks on Graphs

• For an undirected connected graph  G = (V,E), let
– N(u) be the set of neighbours of node u
– d(u) = |N(u)| be the degree of node u

• A random walk on G is an irreducible Markov chain 
with state space equal to V and with
– Puv =   1/d(u), if {u,v} is in E
– Puv =   0, if {u,v} is not in E

• The stationary distribution ! of this random walk is 
such that !u = d(u)/2e



Analysis of UPATH: Random Commutes

A random commute from i to j in G is a random 
walk starting at i that ends the first time it returns to 
i after having at some point visited j

Let θijuv be the expected number of times edge 
{u,v} is visited from u to v on a random commute 
from i to j



Analysis of UPATH: Random Commutes

Claim: θijuv is independent of v: for all v′ in N(u), 
θijuv =  θijuv′

Proof follows from fact that each time u is visited, it 
is equally likely that v or v’ is visited next
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Analysis of UPATH: Random Commutes

Claim: Let θiju be θijuv for any v. Then θiju is 
independent of u. 

Proof: The following identity holds for any u in V:

d(u) θiju =  ∑v ∈ N(u) θijv
= ∑v ∈ N(u) d(v) θijv 1/d((v)
= ∑v ∈ V d(v) θijv Pvu

So, the vector of terms d(u) θiju is a constant times 
the stationary distribution !, where the constant is 
independent of u (but depends on i and j).



For an edge {i,j} of G, let Tij be the expected time to 
reach j from i on a random walk starting at i

Claim: Tij ≤ 2e.
Proof: Tij ≤ ∑{u,v}∈E ( θijuv + θijvu ) = 2e θijij ≤ 2e

Analysis of UPATH: Back to T(G,s,t)



Analysis of UPATH: Back to T(G,s,t)

For an edge {i,j} of G, let Tij be the expected time to 
reach j from i on a random walk starting at i

Claim: Tij ≤ 2e.
Proof: Tij ≤ ∑{u,v}∈E ( θijuv + θijvu ) = 2e θijij ≤ 2e.

Finally: if p is a path of length at most n-1 from s to 
t, then T(G,s,t) ≤ ∑{i,j}∈p Tij ≤  2e(n-1)
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In fact, UPATH is in Log Space: Shown by Omer Reingold, 2004. 



• Many conjecture that 
– BPP = P

– RLP = L (here L is “log space”, see Reingold, Trevisan, 
Vadhan 2004)

• Reingold’s proof uses theory of graph expanders

• There’s an extensive body of work on 
pseudorandom generators, motivated in part by 
the goal of resolving these conjectures (see 
appendix of Arora-Barak)

Summary


