Homework # 2 Due Wed Feb 12.

1. Recall that the recursive algorithm $\operatorname{Reach}(x, y, i)$ tests, for given graph G = (V, E), whether there is a path in G from node x to node y of length at most 2^i .

The base case of the algorithm, when i = 0, simply tests whether x = y or whether (x, y) is an edge of G.

Assume that x and y are binary strings, represented with $k (= \lceil \log |V| \rceil)$ bits.

Describe how to construct a fan-in 2 Boolean circuit with AND, NOT and OR gates that has 2k input bits (k bits corresponding to x and k corresponding to y), and outputs true if and only if this base case test is true. Your circuit should have depth $O(\log |V| + \log |E|)$. (The circuit will depend on G; a description of G is not an input to the circuit.)

- 2. Show one of the following:
 - (a) 2SAT is complete for NL, with respect to log space (\leq_{log}) reductions. The 2SAT problem is: given a Boolean formula that is the conjunction (AND) of clauses, where each clause is the disjunction (OR) of at most two literals (where a literal is either x_i or \bar{x}_i , for some variable x_i), is the formula satisfiable?
 - (b) The Emptiness Problem for Intersection of Finite Automata (EIFA) is PSPACE-complete, with respect to polynomial time (≤_p) reductions.
 The EIFA problem is: given a list of deterministic finite state automata A₁, A₂,...A_k, is the language L(A₁) ∩ L(A₂) ∩ ... ∩ L(A_k) empty?
- 3. The following construction will be useful later in the semester: Describe a polynomial time deterministic algorithm that, given a quantified boolean formula ϕ with no free variables, outputs a quantified boolean formula ϕ' in prenex normal form with negations only over variables, such that ϕ is valid if and only if ϕ' is.

Formally, we inductively define a quantified Boolean formula (qbf) ϕ over variable set X, and its associated sets F_{ϕ} and B_{ϕ} of free and bound variables respectively, as follows. For every $x \in X$, x is a quantified Boolean formula with $F_x = \{x\}$ and $B_x = \emptyset$. Also, if ϕ and ϕ' are quantified Boolean formulas such that $F_{\phi} \cap B_{\phi'} = \emptyset$ and $F_{\phi'} \cap B_{\phi} = \emptyset$ then

- $\bar{\phi}$ is a quantified Boolean formula with free variable set F_{ϕ} and bound variable set B_{ϕ} ;
- (φ ∨ φ') and (φ ∧ φ') are quantified Boolean formulas with free variable set F_φ ∪ F_{φ'} and bound variable set B_φ ∪ B_{φ'}, and
- if x ∉ B_φ then (∃xφ) and (∀xφ) are quantified Boolean formulas with free variable set F_φ - {x} and bound literal set B_φ ∪ {x}.

(Sometimes when there is no ambiguity, parentheses are omitted.)

For example,

$$\phi = \forall x (\exists y ((x \lor y) \land \forall z ((x \land z) \lor (y \land \bar{z}))) \lor \exists w (z \lor (y \land \bar{w}))), \text{ and} \\ \phi' = \forall x ((x \lor y) \land \forall z (((x \land z) \lor (y \land \bar{z})) \lor \forall w (z \lor (x \land \bar{w})))).$$

are quantified Boolean formulas; in ϕ all variables are bound, whereas in ϕ' , y is free.

If all variables of a quantified Boolean formula ϕ are bound, then ϕ 's truth value can be defined inductively in a natural way. We say that ϕ is *valid* if its value is true. Also we can define what is the quantifier to which a particular variable is bound.

We say that ϕ is in *prenex normal form* if ϕ is of the form $(Q_1x_1(Q_2x_2...(Q_nx_n\phi')...))$, where each Q_i is either \exists or \forall , and ϕ' does not have quantifiers. (If parentheses are omitted, ϕ is of the form $Q_1x_1Q_2x_2...Q_nx_n\phi'$.) We say that ϕ has *negations only over variables* if any expression of the form $\bar{\rho}$ of ϕ is such that ρ is a variable.

4. (More on quantified boolean formulas.) If a variable x occurs in qbf $(Q_y \rho)$, where $Q \in \{\exists, \forall\}$, then we say that x is in the scope of Q. We say that a qbf ϕ is simple if any variable x of ϕ is in the scope of at most one \forall quantifier that is within the scope of the quantifier of ϕ to which x is bound. For example, the quantified formula ϕ given in problem 3 is simple, but the formula ϕ' is not.

Describe a log space deterministic algorithm that, given as input a quantified Boolean formula ϕ with no free variables and negations only over variables, outputs a simple quantified Boolean formula ϕ' which also has negations only over variables and such that ϕ is valid if and only if ϕ' is.