CPSC506 Complexity of Computation Term 2, 2020

Homework # 2
Due Wed Feb 12.

1. Recall that the recursive algorithm Reach(x, y, i) tests, for given graph G = (V, E), whether
there is a path in G from node z to node y of length at most 2°.

The base case of the algorithm, when ¢ = 0, simply tests whether = y or whether (z,y) is
an edge of G.

Assume that = and y are binary strings, represented with k& (= [log |V'|]) bits.

Describe how to construct a fan-in 2 Boolean circuit with AND, NOT and OR gates that has
2k input bits (k bits corresponding to x and k corresponding to y), and outputs true if and
only if this base case test is true. Your circuit should have depth O(log |V'| + log | E|). (The
circuit will depend on G a description of (G is not an input to the circuit.)

2. Show one of the following:

(a) 2SAT is complete for NL, with respect to log space (<;,,) reductions.

The 2SAT problem is: given a Boolean formula that is the conjunction (AND) of
clauses, where each clause is the disjunction (OR) of at most two literals (where a
literal is either x; or ;, for some variable x;), is the formula satisfiable?

(b) The Emptiness Problem for Intersection of Finite Automata (EIFA) is PSPACE-complete,
with respect to polynomial time (<,)) reductions.

The EIFA problem is: given a list of deterministic finite state automata Ay, Ao, ... Ag,
is the language L(A;) N L(As) N ... N L(Ay) empty?

3. The following construction will be useful later in the semester: Describe a polynomial time
deterministic algorithm that, given a quantified boolean formula ¢ with no free variables,
outputs a quantified boolean formula ¢’ in prenex normal form with negations only over
variables, such that ¢ is valid if and only if ¢’ is.

Formally, we inductively define a quantified Boolean formula (qbf) ¢ over variable set X,
and its associated sets I, and B of free and bound variables respectively, as follows. For
every x € X, x is a quantified Boolean formula with F, = {z} and B, = (. Also, if ¢ and
¢ are quantified Boolean formulas such that £y N By = () and Fy N By = () then

° g5 is a quantified Boolean formula with free variable set F, and bound variable set By;

e (pV ¢')and (¢ A ¢) are quantified Boolean formulas with free variable set F}, U Fyy
and bound variable set By U By, and

e if © ¢ B, then (3x¢) and (Vz¢) are quantified Boolean formulas with free variable set
F, — {«} and bound literal set B, U {x}.

(Sometimes when there is no ambiguity, parentheses are omitted.)

For example,

o =Vr(Fy((zVy) AVz((x Az)V(yAZ)))VIw(zV(y Aw))), and
¢ =Vr((xVy) AVz((x A 2)V (y A 2)) VVw(z V (x Aw)))).

are quantified Boolean formulas; in ¢ all variables are bound, whereas in ¢/, y is free.

If all variables of a quantified Boolean formula ¢ are bound, then ¢’s truth value can be
defined inductively in a natural way. We say that ¢ is valid if its value is true. Also we can
define what is the quantifier to which a particular variable is bound.

We say that ¢ is in prenex normal form if ¢ is of the form (Q1x1(Qaxs . .. (Qnznd’)...)),
where each Q); is either 3 or V, and ¢’ does not have quantifiers. (If parentheses are omitted,
¢ is of the form Q1x1Q2xs . .. Q,x,¢".) We say that ¢ has negations only over variables if
any expression of the form p of ¢ is such that p is a variable.

. (More on quantified boolean formulas.) If a variable = occurs in gbf (Q),p), where) €
{3,V}, then we say that z is in the scope of (). We say that a gbf ¢ is simple if any variable
x of ¢ is in the scope of at most one V quantifier that is within the scope of the quantifier of
¢ to which z is bound. For example, the quantified formula ¢ given in problem 3 is simple,
but the formula ¢’ is not.

Describe a log space deterministic algorithm that, given as input a quantified Boolean for-
mula ¢ with no free variables and negations only over variables, outputs a simple quantified
Boolean formula ¢’ which also has negations only over variables and such that ¢ is valid if
and only if ¢/ is.

