
CPSC506 Complexity of Computation Term 2, 2020

The Time Hierarchy Theorem
Does more time mean more language recognition power? That is, if g(n) grows faster than f(n),
does DTIME(g(n)) contain languages that are not in DTIME(f(n))? Here, DTIME(f(n)) denotes
the set of decision problems that can be solved in O(f(n)) time by a deterministic Turing machine.
The Time Hierarchy Theorem shows that the answer to this question is “yes” if g grows sufficiently
faster than f .

Theorem 1 (Time Hierarchy Theorem) Let g(n) be a time constructible function and let f(n) be
such that f(n) log f(n) = o(g(n)). Then

DTIME(g(n))− DTIME(f(n)) 6= ∅.

Here by “time constructible” we mean that there is a Turing machine that, on input 1n, writes 1g(n)

on its tape in O(g(n)) time.

Proof: We will construct a DTM Mg that runs in O(g(n)) time, such that if L(Mg) is the language
accepted by Mg (set of binary strings on which Mg outputs “yes”) then L(Mg) 6∈ DTIME(f(n)).
We’ll use a diagonalization argument: we construct Mg so that for every TM Mx that runs in
O(f(n)) time, Mg does the opposite of Mx on some input w. That is, Mg outputs “yes” on w if
and only if Mx outputs “no” w.

To do this, Mg will need to be able to simulate other TMs. We’ll use the Hennie-Stearns
univeral TM simulation for this purpose. This universal TM takes as input a description x of a
Turing machine Mx, plus another input w, and simulates Mx on w. If Mx runs in cf(|w|) time on
input w then the simulation takes at most c′f(|w|) log f(|w|)) steps for some other constant c′ that
depends on c (see Theorem 1.13 of Arora and Barak).

A simple approach to diagonalization is for Mg to do the opposite of Mx on input x. That
won’t work in this proof because the proof details are sensitive to time. Instead, Mg simulates Mx

on inputs of the form w = 0i1x. Mg is guaranteed to complete the simulation (and thus is able to
do the opposite of Mx) for sufficiently large i. (The technique of concatenating 0i to the input is
called “padding” and is handy in other situations too.)

Mg does the following on input w.

• If w = 0i1x for some i ≥ 0, where x is the binary encoding of any Turing machine:

1. Mark off g(|w|) cells on a tape. This is possible since g is time constructible.

2. Let Mx be the TM encoded by x. Using the universal TM of Hennie and Stearns,
simulate Mx on w until one (or both) of the following conditions is satisfied:

(a) Mx halts, or
(b) The number of simulation steps has reached the limit g(|w|) (use the tape marked

in step 1 to check this).

3. Output “no” if Mx output “yes” in step 2 (a)

• Output “yes”

We first show that Mg runs in O(g(n)) time. Checking whether x is a valid encoding of a TM
can be done in O(|x|) = O(|w|) time, since a TM encoding is simply a list of transition triples in
a fixed format. Step 1 can be done O(g(|w|)) time because we assume that g is time-constructible,
and Step 2 stops after g(|w|) steps. The remaining steps take O(1) time. So the overall time is
O(g(n)).

To complete the proof, we show that L(Mg) 6⊆ DTIME(f(n)). Let x be the encoding of a TM
Mx that runs in time O(f(n)). Then there is some constant c such that for sufficiently large i, Mx

on input w = 0i1x takes at most cf(|w|) steps. The Hennie-Stearns universal TM can simulate
cf(|w|) steps of M in at most c′f(|w|) log f(|w|)) steps, for some other constant c′ that depends
on c. Since f(n) log(f(n)) = o(g(n)), for sufficiently large i we know that c′f(|w|) log(f(|w|)) ≤
g(|w|).

Therefore, for sufficiently large i, the simulation of Mx on input w = 0i1x halts due to condi-
tion 2 (a), before condition 2 (b) is reached. (The 0i “padding” of the input ensures that Mg can
complete the simulation of Mx the within the time limit of g(|w|).)

In this case, Mx outputs “yes” on w if and only if Mg outputs “no” on w. Therefore, L(Mg) 6=
L(Mx). Since Mx is an arbitrary TM whose running time is O(f(n)), it must be that L(Mg) 6∈
DTIME(f(n)), completing the proof.

