CPSC506

The Time Hierarchy Theorem

Does more time mean more language recognition power? That is, if g(n) grows faster than f(n), does DTIME(g(n)) contain languages that are not in DTIME(f(n))? Here, DTIME(f(n)) denotes the set of decision problems that can be solved in O(f(n)) time by a deterministic Turing machine. The Time Hierarchy Theorem shows that the answer to this question is "yes" if g grows sufficiently faster than f.

Theorem 1 (*Time Hierarchy Theorem*) Let g(n) be a time constructible function and let f(n) be such that $f(n) \log f(n) = o(g(n))$. Then

 $DTIME(g(n)) - DTIME(f(n)) \neq \emptyset.$

Here by "time constructible" we mean that there is a Turing machine that, on input 1^n , writes $1^{g(n)}$ on its tape in O(g(n)) time.

Proof: We will construct a DTM M_g that runs in O(g(n)) time, such that if $L(M_g)$ is the language accepted by M_g (set of binary strings on which M_g outputs "yes") then $L(M_g) \notin \text{DTIME}(f(n))$. We'll use a *diagonalization* argument: we construct M_g so that for every TM M_x that runs in O(f(n)) time, M_g does the opposite of M_x on some input w. That is, M_g outputs "yes" on w if and only if M_x outputs "no" w.

To do this, M_g will need to be able to simulate other TMs. We'll use the Hennie-Stearns univeral TM simulation for this purpose. This universal TM takes as input a description x of a Turing machine M_x , plus another input w, and simulates M_x on w. If M_x runs in cf(|w|) time on input w then the simulation takes at most $c'f(|w|) \log f(|w|)$) steps for some other constant c' that depends on c (see Theorem 1.13 of Arora and Barak).

A simple approach to diagonalization is for M_g to do the opposite of M_x on input x. That won't work in this proof because the proof details are sensitive to time. Instead, M_g simulates M_x on inputs of the form $w = 0^i 1x$. M_g is guaranteed to complete the simulation (and thus is able to do the opposite of M_x) for sufficiently large i. (The technique of concatenating 0^i to the input is called "padding" and is handy in other situations too.) M_g does the following on input w.

- If $w = 0^i 1x$ for some $i \ge 0$, where x is the binary encoding of any Turing machine:
 - 1. Mark off g(|w|) cells on a tape. This is possible since g is time constructible.
 - 2. Let M_x be the TM encoded by x. Using the universal TM of Hennie and Stearns, simulate M_x on w until one (or both) of the following conditions is satisfied:
 - (a) M_x halts, or
 - (b) The number of simulation steps has reached the limit g(|w|) (use the tape marked in step 1 to check this).
 - 3. Output "no" if M_x output "yes" in step 2 (a)
- Output "yes"

We first show that M_g runs in O(g(n)) time. Checking whether x is a valid encoding of a TM can be done in O(|x|) = O(|w|) time, since a TM encoding is simply a list of transition triples in a fixed format. Step 1 can be done O(g(|w|)) time because we assume that g is time-constructible, and Step 2 stops after g(|w|) steps. The remaining steps take O(1) time. So the overall time is O(g(n)).

To complete the proof, we show that $L(M_g) \not\subseteq \text{DTIME}(f(n))$. Let x be the encoding of a TM M_x that runs in time O(f(n)). Then there is some constant c such that for sufficiently large i, M_x on input $w = 0^i 1x$ takes at most cf(|w|) steps. The Hennie-Stearns universal TM can simulate cf(|w|) steps of M in at most $c'f(|w|) \log f(|w|)$ steps, for some other constant c' that depends on c. Since $f(n) \log(f(n)) = o(g(n))$, for sufficiently large i we know that $c'f(|w|) \log(f(|w|)) \leq g(|w|)$.

Therefore, for sufficiently large *i*, the simulation of M_x on input $w = 0^i 1x$ halts due to condition 2 (a), before condition 2 (b) is reached. (The 0^i "padding" of the input ensures that M_g can complete the simulation of M_x the within the time limit of g(|w|).)

In this case, M_x outputs "yes" on w if and only if M_g outputs "no" on w. Therefore, $L(M_g) \neq L(M_x)$. Since M_x is an arbitrary TM whose running time is O(f(n)), it must be that $L(M_g) \notin DTIME(f(n))$, completing the proof.