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1 RL=NL

We denote the class of languages that are accepted by logarithmically space bounded PTMs with one sided
error by RL. Just as RP C NP, it is straightforward to show that RL. C NL. It turns out that RL = NL. While
this may seem surprising at first, it follows as a result of the fact that probabilistic log space bounded classes
can fruitfully use more than a polynomial number of steps. In contrast, the class NL is the same whether or
not we require that the underlying machines halt in polynomial time.

Theorem 1 (Gill) NL = RL.

Proof We show the harder direction, that NL. C RL. Let L be accepted by a NTM M that is O(logn)
space bounded. Without loss of generality, assume that M has at most two possible transitions from any
configuration. Let c be a constant such that for all z € L, there is an accepting computation of M on x that
halts in at most ¢(|z|) = c['°%1#I steps. We construct a PTM M’ that accepts L as follows. On input z, the
machine iterates the following steps until it halts.

1. Simulate M on x from the initial configuration for ¢(|z|) steps, where at each step, one of the possible
(nondeterministic) transitions of M is chosen uniformly at random. If M accepts, then halt and accept.

2. Generate t(|z|) 4+ 1 random bits. If all are heads, reject.

Clearly, M’ rejects all inputs not in L with probability 1. If 2z € L, then any single simulation of M on x in
step 1 will halt and accept with probability at least 27*(12]), Therefore,

Prob[ M’ rejects x]
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Hence, Prob[M’ accepts x] > 1/2, as required. U

2 UPATH is in RLP

Let UPATH (Undirected Graph Reachability) = {(G, s, t) | there is a path from s to ¢ in undirected graph G'}.
We have seen that UPATH is in NL. Here, we show a stronger result. Let RLP be the class of languages that



are accepted by a PTM M that is both logarithmically space bounded and polynomial time bounded and has
1-sided error.

Theorem 2 UPATH € RLP.

The randomized algorithm for UPATH is quite simple. On input (G = (V, E), s,t), a random walk is
performed on the graph, starting at s. That is, nodes of the graph are visited according to the following
random process: initially s is visited, and when node ¢ is visited, an adjacent node j is chosen uniformly at
random and node j is visited next. If ¢ is reached at some step, the algorithm halts and accepts. If ¢ is not
reached within 6e(n — 1) steps of the walk, where n = |V'| and e = | E/|, then the algorithm halts and rejects.

Clearly, this algorithm runs in polynomial time and rejects input graphs in which there is no path from
s to t. Therefore, let (G, s,t) be in UPATH. Let T'(G, s, t) be the expected number of edges traversed by a
random walk starting at s, until ¢ is reached. We would like to bound T'(G, s, t). For an edge {3, j} of G, let
T;; be the expected time to reach j on a random walk starting at node 7. Let o be any simple path from s to
t. Then, T'(G, s,t) < Z(i,j)eg T;;. We will show in Section 4 that T;; < 2e. Then

T(G,s,t)= Y T;<2 » 1=2elo|<2e(n—1).
(i,7)€0 (4,9)€0

We now apply Markov’s inequality to bound the probability that the algorithm rejects the input (G, s, t) in
UPATH.

Markov’s Inequality. If X is a nonnegative random variable and k is a positive real then
Prob|X > kE[X]] < 1/k.
Proof Let f(X) be an indicator variable that is 1 if X > ¢ and is 0 otherwise. Then,
Prob[X > t] = E[f(X)].
Since f(X) < X/t, we have that E[f(X)] < E[X/t] = E[X]/t. Choosing t = kE[X], we have that
Prob[X > kE[X]] < E[X]|/(kE[X]) = 1/k.

O

The number of edges traversed on a random walk from s to ¢ is a random variable. A direct application of
Markov’s Inequality with & = 3 to this random variable shows that the probability that more than 6e(n — 1)
edges are traversed on a random walk from s to ¢ is at most 1/3. We conclude that the algorithm accepts
(G, s, t) with probability > 1/2.

3 Background: Markov Chains

To bound T3, we will apply some theory of Markov chains. A finite Markov Chain (with discrete time and
stationary transition probabilities) is an infinite sequence X, X1, Xo, ..., of random variables, each over
state space .S such that for all 4, j, ag, a1, ...,ar_9 € 5,

PI‘Ob[)(],C :j ’ X(] = ao,X1 = aj,-.. -Xk—2 = ak—Zan—l = ’L] = Prob[Xk :j | Xk—l = Z] = Pz'ja



where P;; may depend on 7 and j but not on £, ag, a1, . . ., ar—2. For example, the matrix

(1)
q 1—g¢q

together with the initial condition thatXy = 1 with probability 1 defines a Markov chain over state space
{1, 2}. In what follows, we assume that the state space is {1,2,...,n}. Forany [ € N, lej is the probability
of going from state i to state j in exactly [ steps; this can be proved by induction on /.

Definition 1 A Markov Chain is irreducible if and only if for all i, j, there exists t such that
Prob[X; =j | Xo =1] > 0.

Theorem 3 Let P be the transition probability matrix of an irreducible finite Markov chain. Then 1P =
has a unique solution T up to constant multiplicative factors.

A proof of this can be found in “A First Course in Stochastic Processes” by Karlin and Taylor, 1975, Chapter
3, Theorem 1.3.
Example. For the P of our example above, 7 = (¢/(p + q),p/(p + q)).

Definition 2 A random walk on an undirected connected graph G = (V, E) is an irreducible Markov chain
with state space equal to V and

p _{ 1/d(u), if{u,v} € E,

oo, otherwise.

Let P be the transition probability matrix of a random walk on GG. Let 7 be the unique vector such that
mP =mand ), m; = 1. Let N (u) be the set of neighbours of a node v of G and let d(u) = | N (u)| be the
degree of node u. Then, 7; = d(i)/(2e). To see this, note that for all j € V,

WPl = Smpy = S A0 L1 L _di)
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d mi=> d(i)/(2e) =1.
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Example. Consider the line graph G = ({1,2,3,4,5}, {{1, 2}, {2,3},{3,4},{4,5}}. For this graph, if 7
satisfies Theorem 3 and its elements sum to 1, then 7 = 75 = 1/8, and my = w3 = w4 = 1/4.

Definition 3 A random commute from ¢ to j is a random walk starting at i that ends the first time it returns
to i after having at some point visited j.

For i, j,u,v € V with {u,v} € E, let 0;j,, be the expected number of times edge {u, v} is visited from u
to v on a random commute from ¢ to j.
Example. Continuing informally with our line graph example, 2, 3, 4, 3, 4, 5, 4, 3, 2 is an example of a
commute from 2 to 3.

Also for this example, it is not hard to see that #1215 = 1. Consider 612935. When a walk moves from
node 1 to node 2, half of the time the walk returns to node 1 without visiting node 3 at all. The other half of



the time, node 3 is visited, in which case we expect to visit node 2 two more times before completing our
commute at node 1. Therefore,

01203 = (1/2)0 + (1/2)2 =

In fact, for all edges {u, v}, 0124, = 1.
We will next show that for any graph G, 6; 4, is independent of v and v. We first consider v.

Claim 1 6, is independent of v. That is, for all v € N (u), Oijuy = 8;junr-

This claim follows from the fact that each time w is visited on a random commute from ¢ to j, v and v’ are
visited after u with equal probability. Let 6;;,, equal 6;;,, for any v.

Claim 2 0;;, is independent of u.

Proof Forallu € V,

Oju= Y Biju= > d®)biu1/dv) = d(v)8ijo P (1)

vEN (u) veEN (u) veV

Here, the term on the left is the expected number of times the random commute leaves « and the term on the
right is the expected the number of times that the random commute enters w. Let 7, = d(u)b;,,.. Then from
Equation (1), 7’ = #/ P. Since 7 is unique up to constant multiplicative factors,

d(u
d(u)@wu = )\ij;e),

where \;; is a constant independent of w. Therefore, 0;;,, = X;;/(2e). O

4 Back to T};

Recall that Tj; is the expected number of steps to reach j on a random walk starting at node ¢, where {7, j}
is an edge of G.

Theorem 4 T;; < 2e.

Proof

Ti; < Z (Oijuv + Oijou) = Z 20i5ij = 03jiz( Z 2) = 045i;(2e) < 2e.
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