$1 \mathrm{RL}=\mathrm{NL}$

We denote the class of languages that are accepted by logarithmically space bounded PTMs with one sided error by $R L$. Just as $R P \subseteq N P$, it is straightforward to show that $R L \subseteq N L$. It turns out that $R L=N L$. While this may seem surprising at first, it follows as a result of the fact that probabilistic log space bounded classes can fruitfully use more than a polynomial number of steps. In contrast, the class NL is the same whether or not we require that the underlying machines halt in polynomial time.

Theorem 1 (Gill) NL = RL.
Proof We show the harder direction, that NL \subseteq RL. Let L be accepted by a NTM M that is $O(\log n)$ space bounded. Without loss of generality, assume that M has at most two possible transitions from any configuration. Let c be a constant such that for all $x \in L$, there is an accepting computation of M on x that halts in at most $t(|x|)=c^{\lceil\log |x|\rceil}$ steps. We construct a PTM M^{\prime} that accepts L as follows. On input x, the machine iterates the following steps until it halts.

1. Simulate M on x from the initial configuration for $t(|x|)$ steps, where at each step, one of the possible (nondeterministic) transitions of M is chosen uniformly at random. If M accepts, then halt and accept.
2. Generate $t(|x|)+1$ random bits. If all are heads, reject.

Clearly, M^{\prime} rejects all inputs not in L with probability 1 . If $x \in L$, then any single simulation of M on x in step 1 will halt and accept with probability at least $2^{-t(|x|)}$. Therefore,

$$
\begin{aligned}
& \operatorname{Prob}\left[M^{\prime} \text { rejects } x\right] \\
= & \sum_{i=1}^{\infty} \operatorname{Prob}\left[M^{\prime} \text { rejects after exactly } i \text { iterations }\right] \\
\leq & \sum_{i=1}^{\infty} \operatorname{Prob}[i \text { iterations of step } 1 \text { do not accept }] \cdot \operatorname{Prob}[i \text { th iteration of step } 2 \text { rejects }] \\
\leq & \sum_{i=1}^{\infty}\left(1-2^{-t(|x|)}\right)^{i} 2^{-t(|x|)+1} \\
= & 2^{-t(|x|)+1} \sum_{i=1}^{\infty}\left(1-2^{-t(|x|)}\right)^{i} \\
< & 2^{-t(|x|)+1} 2^{t(|x|)}=1 / 2
\end{aligned}
$$

Hence, $\operatorname{Prob}\left[M^{\prime}\right.$ accepts $\left.x\right]>1 / 2$, as required.

2 UPATH is in RLP

Let UPATH (Undirected Graph Reachability) $=\{\langle G, s, t\rangle \mid$ there is a path from s to t in undirected graph $G\}$. We have seen that UPATH is in NL. Here, we show a stronger result. Let RLP be the class of languages that
are accepted by a PTM M that is both logarithmically space bounded and polynomial time bounded and has 1 -sided error.

Theorem 2 UPATH \in RLP.
The randomized algorithm for UPATH is quite simple. On input $\langle G=(V, E), s, t\rangle$, a random walk is performed on the graph, starting at s. That is, nodes of the graph are visited according to the following random process: initially s is visited, and when node i is visited, an adjacent node j is chosen uniformly at random and node j is visited next. If t is reached at some step, the algorithm halts and accepts. If t is not reached within $6 e(n-1)$ steps of the walk, where $n=|V|$ and $e=|E|$, then the algorithm halts and rejects.

Clearly, this algorithm runs in polynomial time and rejects input graphs in which there is no path from s to t. Therefore, let $\langle G, s, t\rangle$ be in UPATH. Let $T(G, s, t)$ be the expected number of edges traversed by a random walk starting at s, until t is reached. We would like to bound $T(G, s, t)$. For an edge $\{i, j\}$ of G, let $T_{i j}$ be the expected time to reach j on a random walk starting at node i. Let σ be any simple path from s to t. Then, $T(G, s, t) \leq \sum_{(i, j) \in \sigma} T_{i j}$. We will show in Section 4 that $T_{i j} \leq 2 e$. Then

$$
T(G, s, t)=\sum_{(i, j) \in \sigma} T_{i j} \leq 2 e \sum_{(i, j) \in \sigma} 1=2 e|\sigma| \leq 2 e(n-1) .
$$

We now apply Markov's inequality to bound the probability that the algorithm rejects the input $\langle G, s, t\rangle$ in UPATH.

Markov's Inequality. If X is a nonnegative random variable and k is a positive real then

$$
\operatorname{Prob}[X \geq k E[X]] \leq 1 / k
$$

Proof Let $f(X)$ be an indicator variable that is 1 if $X \geq t$ and is 0 otherwise. Then,

$$
\operatorname{Prob}[X \geq t]=E[f(X)] .
$$

Since $f(X) \leq X / t$, we have that $E[f(X)] \leq E[X / t]=E[X] / t$. Choosing $t=k E[X]$, we have that

$$
\operatorname{Prob}[X \geq k E[X]] \leq E[X] /(k E[X])=1 / k .
$$

The number of edges traversed on a random walk from s to t is a random variable. A direct application of Markov's Inequality with $k=3$ to this random variable shows that the probability that more than $6 e(n-1)$ edges are traversed on a random walk from s to t is at most $1 / 3$. We conclude that the algorithm accepts $\langle G, s, t\rangle$ with probability $>1 / 2$.

3 Background: Markov Chains

To bound $T_{i j}$, we will apply some theory of Markov chains. A finite Markov Chain (with discrete time and stationary transition probabilities) is an infinite sequence $X_{0}, X_{1}, X_{2}, \ldots$, of random variables, each over state space S such that for all $i, j, a_{0}, a_{1}, \ldots, a_{k-2} \in S$,

$$
\operatorname{Prob}\left[X_{k}=j \mid X_{0}=a_{0}, X_{1}=a_{1}, \ldots X_{k-2}=a_{k-2}, X_{k-1}=i\right]=\operatorname{Prob}\left[X_{k}=j \mid X_{k-1}=i\right]=P_{i j},
$$

where $P_{i j}$ may depend on i and j but not on $k, a_{0}, a_{1}, \ldots, a_{k-2}$. For example, the matrix

$$
P=\left(\begin{array}{ll}
1-p & p \\
q & 1-q
\end{array}\right)
$$

together with the initial condition that $X_{0}=1$ with probability 1 defines a Markov chain over state space $\{1,2\}$. In what follows, we assume that the state space is $\{1,2, \ldots, n\}$. For any $l \in \mathbb{N}, P_{i j}^{l}$ is the probability of going from state i to state j in exactly l steps; this can be proved by induction on l.

Definition 1 A Markov Chain is irreducible if and only if for all i, j, there exists t such that

$$
\operatorname{Prob}\left[X_{t}=j \mid X_{0}=i\right]>0 .
$$

Theorem 3 Let P be the transition probability matrix of an irreducible finite Markov chain. Then $\pi P=\pi$ has a unique solution π up to constant multiplicative factors.

A proof of this can be found in "A First Course in Stochastic Processes" by Karlin and Taylor, 1975, Chapter 3, Theorem 1.3.
Example. For the P of our example above, $\pi=(q /(p+q), p /(p+q))$.
Definition $2 A$ random walk on an undirected connected graph $G=(V, E)$ is an irreducible Markov chain with state space equal to V and

$$
P_{u v}= \begin{cases}1 / d(u), & \text { if }\{u, v\} \in E, \\ 0, & \text { otherwise } .\end{cases}
$$

Let P be the transition probability matrix of a random walk on G. Let π be the unique vector such that $\pi P=\pi$ and $\sum_{i} \pi_{i}=1$. Let $N(u)$ be the set of neighbours of a node u of G and let $d(u)=|N(u)|$ be the degree of node u. Then, $\pi_{i}=d(i) /(2 e)$. To see this, note that for all $j \in V$,

$$
[\pi P]_{j}=\sum_{i \in V} \pi_{i} P_{i j}=\sum_{i \in N(j)} \frac{d(i)}{2 e} \frac{1}{d(i)}=\frac{1}{2 e} \sum_{i \in N(j)} 1=\frac{d(j)}{2 e}
$$

and

$$
\sum_{i \in V} \pi_{i}=\sum_{i \in V} d(i) /(2 e)=1
$$

Example. Consider the line graph $G=(\{1,2,3,4,5\},\{\{1,2\},\{2,3\},\{3,4\},\{4,5\}\}$. For this graph, if π satisfies Theorem 3 and its elements sum to 1 , then $\pi_{1}=\pi_{5}=1 / 8$, and $\pi_{2}=\pi_{3}=\pi_{4}=1 / 4$.

Definition 3 A random commute from ito j is a random walk starting at that ends the first time it returns to i after having at some point visited j.

For $i, j, u, v \in V$ with $\{u, v\} \in E$, let $\theta_{i j u v}$ be the expected number of times edge $\{u, v\}$ is visited from u to v on a random commute from i to j.
Example. Continuing informally with our line graph example, 2, 3, 4, 3, 4, 5, 4, 3, 2 is an example of a commute from 2 to 3 .

Also for this example, it is not hard to see that $\theta_{1212}=1$. Consider θ_{1223}. When a walk moves from node 1 to node 2 , half of the time the walk returns to node 1 without visiting node 3 at all. The other half of
the time, node 3 is visited, in which case we expect to visit node 2 two more times before completing our commute at node 1 . Therefore,

$$
\theta_{1223}=(1 / 2) 0+(1 / 2) 2=1 .
$$

In fact, for all edges $\{u, v\}, \theta_{12 u v}=1$.
We will next show that for any graph $G, \theta_{i j u v}$ is independent of u and v. We first consider v.
Claim $1 \theta_{i j u v}$ is independent of v. That is, for all $v^{\prime} \in N(u), \theta_{i j u v}=\theta_{i j u v^{\prime}}$.
This claim follows from the fact that each time u is visited on a random commute from i to j, v and v^{\prime} are visited after u with equal probability. Let $\theta_{i j u}$ equal $\theta_{i j u v}$ for any v.

Claim $2 \theta_{i j u}$ is independent of u.
Proof For all $u \in V$,

$$
\begin{equation*}
d(u) \theta_{i j u}=\sum_{v \in N(u)} \theta_{i j v}=\sum_{v \in N(u)} d(v) \theta_{i j v} 1 / d(v)=\sum_{v \in V} d(v) \theta_{i j v} P_{v u} . \tag{1}
\end{equation*}
$$

Here, the term on the left is the expected number of times the random commute leaves u and the term on the right is the expected the number of times that the random commute enters u. Let $\pi_{u}^{\prime}=d(u) \theta_{i j u}$. Then from Equation (1), $\pi^{\prime}=\pi^{\prime} P$. Since π is unique up to constant multiplicative factors,

$$
d(u) \theta_{i j u}=\lambda_{i j} \frac{d(u)}{2 e},
$$

where $\lambda_{i j}$ is a constant independent of u. Therefore, $\theta_{i j u}=\lambda_{i j} /(2 e)$.

4 Back to $T_{i j}$

Recall that $T_{i j}$ is the expected number of steps to reach j on a random walk starting at node i, where $\{i, j\}$ is an edge of G.

Theorem $4 T_{i j} \leq 2 e$.

Proof

$$
T_{i j} \leq \sum_{\{u, v\} \in E}\left(\theta_{i j u v}+\theta_{i j v u}\right)=\sum_{\{u, v\} \in E} 2 \theta_{i j i j}=\theta_{i j i j}\left(\sum_{\{u, v\} \in E} 2\right)=\theta_{i j i j}(2 e) \leq 2 e .
$$

