
CPSC506 Complexity of Computation Term 2, 2020

1 RL = NL

We denote the class of languages that are accepted by logarithmically space bounded PTMs with one sided
error by RL. Just as RP ⊆ NP, it is straightforward to show that RL ⊆ NL. It turns out that RL = NL. While
this may seem surprising at first, it follows as a result of the fact that probabilistic log space bounded classes
can fruitfully use more than a polynomial number of steps. In contrast, the class NL is the same whether or
not we require that the underlying machines halt in polynomial time.

Theorem 1 (Gill) NL = RL.

Proof We show the harder direction, that NL ⊆ RL. Let L be accepted by a NTM M that is O(log n)
space bounded. Without loss of generality, assume that M has at most two possible transitions from any
configuration. Let c be a constant such that for all x ∈ L, there is an accepting computation of M on x that
halts in at most t(|x|) = cdlog |x|e steps. We construct a PTM M ′ that accepts L as follows. On input x, the
machine iterates the following steps until it halts.

1. SimulateM on x from the initial configuration for t(|x|) steps, where at each step, one of the possible
(nondeterministic) transitions ofM is chosen uniformly at random. IfM accepts, then halt and accept.

2. Generate t(|x|) + 1 random bits. If all are heads, reject.

Clearly, M ′ rejects all inputs not in L with probability 1. If x ∈ L, then any single simulation of M on x in
step 1 will halt and accept with probability at least 2−t(|x|). Therefore,

Prob[M ′ rejects x]

=

∞∑
i=1

Prob[M ′ rejects after exactly i iterations]

≤
∞∑
i=1

Prob[i iterations of step 1 do not accept] · Prob[ith iteration of step 2 rejects]

≤
∞∑
i=1

(1− 2−t(|x|))i2−t(|x|)+1

= 2−t(|x|)+1
∞∑
i=1

(1− 2−t(|x|))i

< 2−t(|x|)+12t(|x|) = 1/2.

Hence, Prob[M ′ accepts x] > 1/2, as required.

2 UPATH is in RLP

Let UPATH (Undirected Graph Reachability) = {〈G, s, t〉 | there is a path from s to t in undirected graph G}.
We have seen that UPATH is in NL. Here, we show a stronger result. Let RLP be the class of languages that



are accepted by a PTM M that is both logarithmically space bounded and polynomial time bounded and has
1-sided error.

Theorem 2 UPATH ∈ RLP.

The randomized algorithm for UPATH is quite simple. On input 〈G = (V,E), s, t〉, a random walk is
performed on the graph, starting at s. That is, nodes of the graph are visited according to the following
random process: initially s is visited, and when node i is visited, an adjacent node j is chosen uniformly at
random and node j is visited next. If t is reached at some step, the algorithm halts and accepts. If t is not
reached within 6e(n−1) steps of the walk, where n = |V | and e = |E|, then the algorithm halts and rejects.

Clearly, this algorithm runs in polynomial time and rejects input graphs in which there is no path from
s to t. Therefore, let 〈G, s, t〉 be in UPATH. Let T (G, s, t) be the expected number of edges traversed by a
random walk starting at s, until t is reached. We would like to bound T (G, s, t). For an edge {i, j} of G, let
Tij be the expected time to reach j on a random walk starting at node i. Let σ be any simple path from s to
t. Then, T (G, s, t) ≤

∑
(i,j)∈σ Tij . We will show in Section 4 that Tij ≤ 2e. Then

T (G, s, t) =
∑

(i,j)∈σ

Tij ≤ 2e
∑

(i,j)∈σ

1 = 2e|σ| ≤ 2e(n− 1).

We now apply Markov’s inequality to bound the probability that the algorithm rejects the input 〈G, s, t〉 in
UPATH.

Markov’s Inequality. If X is a nonnegative random variable and k is a positive real then

Prob[X ≥ kE[X]] ≤ 1/k.

Proof Let f(X) be an indicator variable that is 1 if X ≥ t and is 0 otherwise. Then,

Prob[X ≥ t] = E[f(X)].

Since f(X) ≤ X/t, we have that E[f(X)] ≤ E[X/t] = E[X]/t. Choosing t = kE[X], we have that

Prob[X ≥ kE[X]] ≤ E[X]/(kE[X]) = 1/k.

The number of edges traversed on a random walk from s to t is a random variable. A direct application of
Markov’s Inequality with k = 3 to this random variable shows that the probability that more than 6e(n− 1)
edges are traversed on a random walk from s to t is at most 1/3. We conclude that the algorithm accepts
〈G, s, t〉 with probability > 1/2.

3 Background: Markov Chains

To bound Tij , we will apply some theory of Markov chains. A finite Markov Chain (with discrete time and
stationary transition probabilities) is an infinite sequence X0, X1, X2, . . . , of random variables, each over
state space S such that for all i, j, a0, a1, . . . , ak−2 ∈ S,

Prob[Xk = j | X0 = a0, X1 = a1, . . . Xk−2 = ak−2, Xk−1 = i] = Prob[Xk = j | Xk−1 = i] = Pij ,



where Pij may depend on i and j but not on k, a0, a1, . . . , ak−2. For example, the matrix

P =

(
1− p p
q 1− q

)
together with the initial condition thatX0 = 1 with probability 1 defines a Markov chain over state space
{1, 2}. In what follows, we assume that the state space is {1, 2, . . . , n}. For any l ∈ N, P lij is the probability
of going from state i to state j in exactly l steps; this can be proved by induction on l.

Definition 1 A Markov Chain is irreducible if and only if for all i, j, there exists t such that

Prob[Xt = j | X0 = i] > 0.

Theorem 3 Let P be the transition probability matrix of an irreducible finite Markov chain. Then πP = π
has a unique solution π up to constant multiplicative factors.

A proof of this can be found in “A First Course in Stochastic Processes” by Karlin and Taylor, 1975, Chapter
3, Theorem 1.3.
Example. For the P of our example above, π = (q/(p+ q), p/(p+ q)).

Definition 2 A random walk on an undirected connected graph G = (V,E) is an irreducible Markov chain
with state space equal to V and

Puv =

{
1/d(u), if {u, v} ∈ E,
0, otherwise.

Let P be the transition probability matrix of a random walk on G. Let π be the unique vector such that
πP = π and

∑
i πi = 1. Let N(u) be the set of neighbours of a node u of G and let d(u) = |N(u)| be the

degree of node u. Then, πi = d(i)/(2e). To see this, note that for all j ∈ V ,

[πP ]j =
∑
i∈V

πiPij =
∑
i∈N(j)

d(i)

2e

1

d(i)
=

1

2e

∑
i∈N(j)

1 =
d(j)

2e

and ∑
i∈V

πi =
∑
i∈V

d(i)/(2e) = 1.

Example. Consider the line graph G = ({1, 2, 3, 4, 5}, {{1, 2}, {2, 3}, {3, 4}, {4, 5}}. For this graph, if π
satisfies Theorem 3 and its elements sum to 1, then π1 = π5 = 1/8, and π2 = π3 = π4 = 1/4.

Definition 3 A random commute from i to j is a random walk starting at i that ends the first time it returns
to i after having at some point visited j.

For i, j, u, v ∈ V with {u, v} ∈ E, let θijuv be the expected number of times edge {u, v} is visited from u
to v on a random commute from i to j.
Example. Continuing informally with our line graph example, 2, 3, 4, 3, 4, 5, 4, 3, 2 is an example of a
commute from 2 to 3.

Also for this example, it is not hard to see that θ1212 = 1. Consider θ1223. When a walk moves from
node 1 to node 2, half of the time the walk returns to node 1 without visiting node 3 at all. The other half of



the time, node 3 is visited, in which case we expect to visit node 2 two more times before completing our
commute at node 1. Therefore,

θ1223 = (1/2)0 + (1/2)2 = 1.

In fact, for all edges {u, v}, θ12uv = 1.
We will next show that for any graph G, θijuv is independent of u and v. We first consider v.

Claim 1 θijuv is independent of v. That is, for all v′ ∈ N(u), θijuv = θijuv′ .

This claim follows from the fact that each time u is visited on a random commute from i to j, v and v′ are
visited after u with equal probability. Let θiju equal θijuv for any v.

Claim 2 θiju is independent of u.

Proof For all u ∈ V ,

d(u)θiju =
∑

v∈N(u)

θijv =
∑

v∈N(u)

d(v)θijv1/d(v) =
∑
v∈V

d(v)θijvPvu. (1)

Here, the term on the left is the expected number of times the random commute leaves u and the term on the
right is the expected the number of times that the random commute enters u. Let π′u = d(u)θiju. Then from
Equation (1), π′ = π′P . Since π is unique up to constant multiplicative factors,

d(u)θiju = λij
d(u)

2e
,

where λij is a constant independent of u. Therefore, θiju = λij/(2e).

4 Back to Tij

Recall that Tij is the expected number of steps to reach j on a random walk starting at node i, where {i, j}
is an edge of G.

Theorem 4 Tij ≤ 2e.

Proof

Tij ≤
∑
{u,v}∈E

(θijuv + θijvu) =
∑
{u,v}∈E

2θijij = θijij(
∑
{u,v}∈E

2) = θijij(2e) ≤ 2e.


