CPSC506

Applications of the PCP Theorem to Hardness of Approximation

See lecture slides for definitions of approximation algorithm and approximation ratio.

Lemma 1 Let L be NP-complete. Suppose that there is a polynomial time mapping from instances x of L to instances x' of a maximization problem Π such that

$$\begin{array}{ll} x \in L \Rightarrow & Opt(x') = g(x) \text{ and} \\ x \notin L \Rightarrow & Opt(x') < (1-c)g(x), \end{array}$$

where $g(x) \in \mathbb{N}$, g is polynomial-time computable, and 0 < c < 1. If Π has a polynomial-time approximation algorithm A with approximation ratio 1 + c/(1 - c), then NP=P.

Proof We use A to construct a polynomial time algorithm A_L for L. Given instance x of L, A_L computes x' and runs A on x'. If the value of the solution found by A, namely A(x'), is at least (1-c)g(x) then A_L accepts x, otherwise A_L rejects x.

To see that A_L is correct, note that if $x \in L$ then Opt(x') = g(x). Since A_L has approximation ratio 1 + c/(1 - c), from the definition of approximation ratio it must be that

$$Opt(x')/A(x') = g(x)/A(x') \le 1 + c/(1-c).$$

From this and a little algebra it follows that $A(x') \ge (1-c)g(x)$. In contrast, if $x \notin L$ then by hypothesis of the lemma it must be that A(x') < (1-c)g(x). Thus, A_L is correct.

Lemma 2 (a) Corresponding to any Boolean function of q variables is an equivalent q-CNF formula (i.e. a formula in conjunctive normal form in which each clause has at most q literals) with at most 2^q clauses.

(b) Corresponding to any q-CNF formula ϕ is a 3CNF formula ϕ' such that ϕ is satisfiable if and only if ϕ' is. Moreover, the number of clauses in ϕ' is at most q times the number of clauses in ϕ .

Proof We first prove part (a). Let F be a Boolean function of q variables v_1, v_2, \ldots, v_q . Create a q-DNF formula that has one term for each assignment a of the variables that sets F to 1: the term is $l_1 \wedge l_2 \wedge \ldots \wedge l_q$ where $l_i = v_i$ if $v_i = 1$ in assignment a and $l_i = \bar{v}_i$ if $v_i = 0$ in assignment a. For example, if q = 3 and F(1, 0, 0) = 1 then the q-DNF formula contains the term $v_1 \wedge \bar{v}_2 \wedge \bar{v}_3$.

Convert this q-DNF formula into a q-CNF formula inductively as follows. If the q-DNF formula has just one term, it is already in q-CNF form. If it has k terms, inductively convert the formula consisting of just the first k - 1 terms into q-CNF form to obtain $C_1 \wedge C_2 \wedge \ldots \wedge C_m$ and let $D = l_1 \wedge l_2 \wedge \ldots \wedge l_q$ be the kth term in the q-DNF formula. We need to convert

$$(C_1 \wedge C_2 \wedge \ldots \wedge C_m) \vee (l_1 \wedge l_2 \wedge \ldots \wedge l_q)$$

into q-CNF form. To do this, we will apply one of the distributive laws for Boolean algebras, namely

$$(\phi_1 \land \phi_2) \lor \phi_3 \equiv (\phi_1 \lor \phi_3) \land (\phi_2 \lor \phi_3).$$

On the first application, we obtain

$$(C_1 \vee (l_1 \wedge l_2 \wedge \ldots \wedge l_q)) \wedge (C_2 \vee (l_1 \wedge l_2 \wedge \ldots \wedge l_q)) \wedge \ldots \wedge (C_m \vee (l_1 \wedge l_2 \wedge \ldots \wedge l_q)).$$

Applying the law m further times, for $1 \le i \le m$ we convert the term $C_i \lor (l_1 \land l_2 \land \ldots \land l_q)$ to

$$(C_i \vee l_1) \wedge (C_i \vee l_2) \wedge \ldots \wedge (C_i \wedge l_q).$$

The resulting formula, say ϕ , is in CNF form. To obtain a formula in q-CNF form, if any literal occurs twice in the same clause of ϕ then remove one occurrance of the literal, and if both v_i and \bar{v}_i occur in the same clause then remove both v_i and \bar{v}_i . Both of these rules result in an equivalent formula ϕ' .

Finally, we can remove redundant clauses from ϕ' as follows: if the literals of some clause C of ϕ' are a subset of the literals of another clause C', then we can remove C to obtain an equivalent formula. Applying this rule until there are no redundant clauses, we obtain a formula ϕ'' with at most 2^q clauses.

Next we prove part (b). The method for doing this is exactly as used in constructing a 3CNF formula in the proof of the Cook-Levin Theorem. That is, for any clause $(l_1 \vee l_2 \vee \ldots \vee l_r)$ with $r \ge 4$ literals, introduce new variables $y_1, y_2, \ldots, y_{r-3}$ to convert the clause to

$$(l_1 \lor l_2 \lor y_1) \land (\bar{y}_1 \lor l_3 \lor y_2) \dots \land (\bar{y}_{r-4} \lor l_{r-2} \lor y_{r-3}) \land (\bar{y}_{r-3} \lor l_{r-1} \lor l_r)$$

Theorem 1 For some constant c > 1 if there is a polynomial time algorithm for Max 3SAT with approximation ratio c then NP=P.

Proof We will show that for any language L in NP, there is a polynomial time reduction f from L to Max 3SAT and a polynomial time computable function g such that

$$x \in L \Rightarrow \operatorname{Opt}(f(x)) = g(x) \text{ and}$$

 $x \notin L \Rightarrow \operatorname{Opt}(f(x)) < (1-c)g(x).$

Then from Lemma 1, unless NP=P, there is no polynomial time approximation algorithm for Π with approximation ratio 1 + c/(1 - c) and the theorem follows.

Let L be in NP and let V be a PCP verifier for L that uses q queries and $r(|x|) = O(\log |x|)$ random bits on any instance x of L. Let the length of the proof provided to V on inputs of length n be l(n) (we can assume without loss of generality that the length of the proof depends only on the input length). We describe a reduction f that, given x, produces a 3-CNF formula ϕ_x that has one variable π_i for for each position i of the proof, $1 \le i \le l(|x|)$, plus some additional variables.

For any fixed string τ of random bits of V on x, let $b_{\tau,1}, b_{\tau,2}, \ldots, b_{\tau,q}$ be the positions of the proof that V queries when its random string is τ . Let f_{τ} be the Boolean formula on q variables that evaluates to 1 on a given assignment to the q variables if and only if the verifier accepts on that assignment of values to its queries, when the verifier's random bit string is τ . By Lemma 2 (a), f_{τ} can be represented as a q-CNF formula with 2^{q} clauses over the variables $\pi_{b_{\tau,1}}, \pi_{b_{\tau,2}}, \ldots, \pi_{b_{\tau,q}}$. Let ϕ_{τ} be the 3-CNF formula obtained from f_{τ} as in Lemma 2 (b). Let ϕ_{x} be the conjunction of the ϕ_{τ} for all τ . Each of the formulas ϕ_{τ} has constant size that depends only on q and not on the length of x. Since the total number of random strings τ is $2^{r(|x|)} = 2^{O(\log(|x|))}$, the size of ϕ_{x} is polynomial in |x|. Moreover, ϕ_{x} can be constructed in time polynomial in |x| using simulations of the verifier V and the constructions of Lemma 2.

If x is in L then there is a proof π that causes the verifier V to accept with probability 1. Thus there is a truth assignment to the variables $\pi_1, \pi_2, \ldots, \pi_{l(|x|)}$ that can be extended to a satisfying assignment of ϕ_x . Thus if $x \in L$, Opt(f(x)) equals the number of clauses in ϕ_x .

If x is not in L then for all proofs π , the verifier V accepts with probability at most 1/2. Thus any extension of any truth assignment to the variables $\pi_1, \pi_2, \ldots \pi_{l(|x|)}$ satisfies at most half of the formulas ϕ_{τ} . Therefore, for any truth assignment to ϕ_x , at least one clause in at least half of the ϕ_{τ} is not satisfied. Since each ϕ_{τ} has at most $q2^q$ clauses, at most a fraction $1 - 1/(2q2^q)$ of the clauses of ϕ_x are simultaneously satisfiable. Thus if $x \notin L$, Opt(f(x)) is at most $1 - 1/(2q2^q)$ times the number of clauses in ϕ_x .

In summary, we have

$$x \in L \Rightarrow \operatorname{Opt}(f(x)) = \operatorname{number} \operatorname{of} \operatorname{clauses} \operatorname{in} \phi_x$$
 and
 $x \notin L \Rightarrow \operatorname{Opt}(f(x)) < (1-c)(\operatorname{number} \operatorname{of} \operatorname{clauses} \operatorname{in} \phi_x)$

where c is any constant less than $1/(2q2^q)$. This completes the proof.

Theorem 2 If there is a polynomial time algorithm for Max Clique with approximation ratio $2 - \epsilon$ for any $\epsilon > 0$, then NP=P.

Proof The proof has a similar structure to that of Theorem 1. We will show that for any language L in NP, there is a polynomial time reduction f from L to Max Clique and a polynomial time computable function g from positive integers to positive integers such that

$$x \in L \Rightarrow \operatorname{Opt}(f(x)) = g(x) \text{ and}$$

 $x \notin L \Rightarrow \operatorname{Opt}(f(x)) < (1-c)g(x).$

Then from Lemma 2, unless NP=P, there is no polynomial time approximation algorithm for Π with approximation ratio 1 + c/(1 - c), and the theorem follows.

Let L be in NP and let V be a PCP verifier for L that uses q queries and $r(|x|) = O(\log |x|)$ random bits on any instance x of L. Let the length of the proof provided to V on inputs of length n be l(n). We describe a reduction f that, given x, produces a graph G_x .

For any given string τ of random bits of V on x, let $b_{\tau,1}, b_{\tau,2}, \ldots, b_{\tau,q}$ be the positions of the proof that V queries when its random string is τ . The nodes of G_x are of the form $(\tau, v_1v_2 \ldots v_q)$ where each v_i is a bit and the verifier V accepts on instance x and random string τ when the bits of the proof π that are queried are v_1, \ldots, v_q , that is, when $\pi_{b_{\tau,1}} = v_1, \pi_{b_{\tau,2}} = v_2, \ldots, \pi_{b_{\tau,q}} = v_q$.

Example: Suppose that for language L the verifier makes three queries (on any random string and instance). Fix an instance x of L and suppose that the verifier V uses two random bits on instances of length |x|. Suppose furthermore that when the string of random bits is $\tau = 01$, the bits of the proof that are queried by the verifier are at positions $b_{\tau,1} = 2$, $b_{\tau,2} = 7$ and $b_{\tau,3} = 21$. Let the decision of the verifier on random string $\tau = 01$, for each of the eight possible assignments to the bits of the proof that are queried, be given by the following truth table:

-	proof at position 7	-	verifier's decision on random string $\tau = 01$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Then the nodes $(\tau = 01, 001), (\tau = 01, 100)$, and $(\tau = 01, 111)$ are in the graph.

We say that two nodes $(\tau, v_1v_2 \dots v_q)$ and $(\tau', v'_1v'_2 \dots v'_q)$ are *compatible* if, when the verifier queries the same position of the proof on random strings τ and τ' then the value at that position is the same. Formally, nodes $(\tau, v_1v_2 \dots v_q)$ and $(\tau', v'_1v'_2 \dots v'_q)$ are compatible if, whenever $b_{\tau,i} = b_{\tau',j}$ then $v_i = v'_j$. The graph G_x has an edge between every pair of compatible nodes. Note that there are no edges between two nodes for the same random string τ .

Example: Continuing with the previous example, suppose that in addition to the nodes $(\tau = 01, 001), (\tau = 01, 100)$, and $(\tau = 01, 111)$, the nodes $(\tau' = 11, 100), (\tau' = 11, 101)$, and $(\tau' = 11, 110)$ are also in graph G_x . Suppose furthermore that when the string of random bits is $\tau' = 11$, the bits of the proof that are queried by the verifier are at positions $b_{\tau',1} = 3$, $b_{\tau',2} = 4$ and $b_{\tau',3} = 7$. Then on both τ and τ' , position 7 is queried. Since $b_{\tau,2} = b_{\tau',3} = 7$, there is an edge between nodes $(\tau = 01, v_1v_2v_3)$ and $(\tau = 11, v'_1v'_2v'_3)$ if and only if $v_2 = v'_3$. Thus, in our example, the following edges are in the graph G_x :

$$\begin{array}{l} ((\tau=01,001),(\tau'=11,100)),\\ ((\tau=01,100),(\tau'=11,100)),\\ ((\tau=01,001),(\tau'=11,110)),\\ ((\tau=01,100),(\tau'=11,110)), \text{ and }\\ ((\tau=01,111),(\tau'=11,101)). \end{array}$$

Suppose that $x \in L$. Then there is a proof that causes the verifier to accept with probability 1. Therefore, there is a set of nodes of size $2^{r(|x|)}$ that form a clique in G_x .

Suppose that $x \notin L$. Then all proofs cause the verifier to accept with probability at most 1/2. Therefore, the largest clique in G_x has size at most $2^{r(|x|)-1}$; if there were a larger clique, we could find a proof on which the verifier accepts with probability greater than 1/2.

In summary,

$$x \in L \Rightarrow \operatorname{Opt}(f(x)) = 2^{r(|x|)}$$
 and
 $x \notin L \Rightarrow \operatorname{Opt}(f(x)) \ge 2^{r(|x|)-1}.$

Then from Lemma 2, unless NP=P, there is no polynomial time approximation algorithm for Π with approximation ratio $1 + (1/2)/(1 - (1/2)) - \epsilon = 2 - \epsilon$ for any $\epsilon > 0$ and the theorem follows.