CPSC506 Complexity of Computation Term 2, 2020

Applications of the PCP Theorem to Hardness of Approximation
See lecture slides for definitions of approximation algorithm and approximation ratio.

Lemma 1 Let L be NP-complete. Suppose that there is a polynomial time mapping from instances x of L
to instances =’ of a maximization problem 11 such that

x € L= Opt(z)) =g(x)and
v ¢ L= Opi(z') <(1-c)g(),

where g(x) € N, g is polynomial-time computable, and 0 < ¢ < 1. IfII has a polynomial-time approxima-
tion algorithm A with approximation ratio 1 + ¢/(1 — ¢), then NP=P.

Proof We use A to construct a polynomial time algorithm Aj; for L. Given instance x of L, Af,
computes 2’ and runs A on z’. If the value of the solution found by A, namely A(z'), is at least (1 — ¢)g(z)
then Ay accepts x, otherwise Ay, rejects x.

To see that Ay, is correct, note that if € L then Opt(z’) = g(x). Since Ay, has approximation ratio
1+ ¢/(1 — ¢), from the definition of approximation ratio it must be that

Opi(a/)/A(a’) = g(a) [A(e') < 1+ ¢/(1).

From this and a little algebra it follows that A(z') > (1 — ¢)g(z). In contrast, if ¢ L then by hypothesis
of the lemma it must be that A(z’) < (1 — ¢)g(x). Thus, Ay is correct.
O

Lemma 2 (a) Corresponding to any Boolean function of q variables is an equivalent q-CNF formula (i.e. a
formula in conjunctive normal form in which each clause has at most q literals) with at most 29 clauses.

(b) Corresponding to any q-CNF formula ¢ is a 3CNF formula ¢’ such that ¢ is satisfiable if and only if
¢’ is. Moreover, the number of clauses in ¢' is at most q times the number of clauses in ¢.

Proof We first prove part (a). Let I be a Boolean function of ¢ variables v1, v2, . . ., v4. Create a ¢-DNF
formula that has one term for each assignment a of the variables that sets /" to 1: the termis [y Ala A... Al,
where l; = v; if v; = 1 in assignment @ and I; = v; if v; = 0 in assignment a. For example, if ¢ = 3 and
F(1,0,0) = 1 then the ¢-DNF formula contains the term vy A Uy A U3.

Convert this ¢-DNF formula into a ¢-CNF formula inductively as follows. If the g-DNF formula has just
one term, it is already in ¢-CNF form. If it has % terms, inductively convert the formula consisting of just
the first £ — 1 terms into ¢-CNF form to obtain C1 ACo A ... ACp,andlet D = I3 Ala A ... Al be the kth
term in the ¢-DNF formula. We need to convert

(Cl/\02/\.../\Cm)\/(ll/\lg/\.../\lq)
into ¢-CNF form. To do this, we will apply one of the distributive laws for Boolean algebras, namely

(1 AN P2) V 3 = (1 V ¢3) A (P2 V ¢3).

On the first application, we obtain
(CLVI NN NL))N(CoV (AN A AN A (C V(AN AL N).
Applying the law m further times, for 1 <4 < m we convert the term C; V (I; Ala A ... Aly) to
(CiVI)N(CiViI) N AN (Ci Ny).

The resulting formula, say ¢, is in CNF form. To obtain a formula in ¢-CNF form, if any literal occurs twice
in the same clause of ¢ then remove one occurrance of the literal, and if both v; and v; occur in the same
clause then remove both v; and ;. Both of these rules result in an equivalent formula ¢'.

Finally, we can remove redundant clauses from ¢’ as follows: if the literals of some clause C of ¢’ are a
subset of the literals of another clause C’, then we can remove C' to obtain an equivalent formula. Applying
this rule until there are no redundant clauses, we obtain a formula ¢” with at most 27 clauses.

Next we prove part (b). The method for doing this is exactly as used in constructing a 3CNF formula
in the proof of the Cook-Levin Theorem. That is, for any clause ({1 V I3 V ... V [,) with r > 4 literals,
introduce new variables ¥, vy, . . . y»_3 to convert the clause to

(l1 ViV yl) N (gﬁ VigV yg) RRVAN (Qr_4 Vi_9V yr_g) N (gjr_g Vi_1V lr).

0

Theorem 1 For some constant ¢ > 1 if there is a polynomial time algorithm for Max 3SAT with approxi-
mation ratio c then NP=P.

Proof We will show that for any language L in NP, there is a polynomial time reduction f from L to
Max 3SAT and a polynomial time computable function g such that

x€ L= Opt(f(z)) =g(x)and
¢ L= Opt(f(r)) <(1-cg(z).

Then from Lemma 1, unless NP=P, there is no polynomial time approximation algorithm for II with ap-
proximation ratio 1 + ¢/(1 — ¢) and the theorem follows.

Let L be in NP and let V' be a PCP verifier for L that uses ¢ queries and r(|z|) = O(log |z|) random
bits on any instance x of L. Let the length of the proof provided to V" on inputs of length n be I(n) (we can
assume without loss of generality that the length of the proof depends only on the input length). We describe
a reduction f that, given z, produces a 3-CNF formula ¢,, that has one variable 7; for for each position ¢ of
the proof, 1 < i < (|z|), plus some additional variables.

For any fixed string 7 of random bits of V on z, let b, 1, b2, ..., br 4 be the positions of the proof that
V' queries when its random string is 7. Let f; be the Boolean formula on ¢ variables that evaluates to 1
on a given assignment to the ¢ variables if and only if the verifier accepts on that assignment of values to
its queries, when the verifier’s random bit string is 7. By Lemma 2 (a), f can be represented as a ¢-CNF
formula with 29 clauses over the variables m,_,, Ty _,, ... T, . Let ¢ be the 3-CNF formula obtained
from f; as in Lemma 2 (b). Let ¢, be the conjunction of the ¢, for all 7. Each of the formulas ¢, has
constant size that depends only on ¢ and not on the length of x. Since the total number of random strings
7 is 27(#D) = 20(oe(lz])) " the size of ¢, is polynomial in |z|. Moreover, ¢, can be constructed in time
polynomial in |x| using simulations of the verifier V' and the constructions of Lemma 2.

If x is in L then there is a proof 7 that causes the verifier V' to accept with probability 1. Thus there is
a truth assignment to the variables 71, 7, . . ., 7y(|,|) that can be extended to a satisfying assignment of ¢,
Thus if x € L, Opt(f(z)) equals the number of clauses in ¢, .

If = is not in L then for all proofs 7, the verifier V' accepts with probability at most 1/2. Thus any
extension of any truth assignment to the variables 71, g, . .. ||y satisfies at most half of the formulas ¢-.
Therefore, for any truth assignment to ¢, at least one clause in at least half of the ¢, is not satisfied. Since
each ¢, has at most ¢27 clauses, at most a fraction 1 — 1/(2¢29) of the clauses of ¢, are simultaneously
satisfiable. Thus if x ¢ L, Opt(f(z)) is at most 1 — 1/(2¢27) times the number of clauses in ¢,,.

In summary, we have

x € L= Opt(f(r)) = number of clauses in ¢, and
x ¢ L= Opt(f(x)) < (1—c)(number of clauses in ¢),

where c is any constant less than 1/(2¢27). This completes the proof.
0

Theorem 2 [f there is a polynomial time algorithm for Max Clique with approximation ratio 2 — € for any
€ > 0, then NP=P.

Proof The proof has a similar structure to that of Theorem 1. We will show that for any language L
in NP, there is a polynomial time reduction f from L to Max Clique and a polynomial time computable
function g from positive integers to positive integers such that

x € L= Opt(f(z)) =g(zr)and
v ¢ L= Opt(f(z)) <(1-c)g(z).

Then from Lemma 2, unless NP=P, there is no polynomial time approximation algorithm for II with ap-
proximation ratio 1 4+ ¢/(1 — ¢), and the theorem follows.

Let L be in NP and let V' be a PCP verifier for L that uses ¢ queries and r(|z|) = O(log |x|) random bits
on any instance x of L. Let the length of the proof provided to V' on inputs of length n be I(n). We describe
areduction f that, given x, produces a graph G .

For any given string 7 of random bits of V" on z, let b, 1, b2, ..., br 4 be the positions of the proof that
V' queries when its random string is 7. The nodes of G, are of the form (7,vjvs ... v,) where each v; is a
bit and the verifier V' accepts on instance x and random string 7 when the bits of the proof 7 that are queried
are vy, ..., v, thatis, when m,_, = vy, mp_, = V2, ..., Tp, , = Vg-

Example: Suppose that for language L the verifier makes three queries (on any random string and instance).
Fix an instance x of L and suppose that the verifier V' uses two random bits on instances of length |z|.
Suppose furthermore that when the string of random bits is 7 = 01, the bits of the proof that are queried
by the verifier are at positions b, 1 = 2, by 2 = 7 and b, 3 = 21. Let the decision of the verifier on random
string 7 = 01, for each of the eight possible assignments to the bits of the proof that are queried, be given
by the following truth table:

proof at proof at proof at verifier’s decision
position 2 position 7 position 21 | on random string 7 = 01
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Then the nodes (7 = 01,001), (7 = 01, 100), and (7 = 01,111) are in the graph.

We say that two nodes (7, v1v2 ... vg) and (7/,v{vy . . . vy) are compatible if, when the verifier queries

the same position of the proof on random strings 7 and 7’ then the value at that position is the same.
Formally, nodes (7,v1v2 . ..v,) and (7', vjvy . .. vy) are compatible if, whenever b.; = b,/ ; then v; = v}
The graph G, has an edge between every pair of compatible nodes. Note that there are no edges between

two nodes for the same random string 7.

Example: Continuing with the previous example, suppose that in addition to the nodes (7 = 01,001), (7 =
01,100), and (7 = 01,111), the nodes (¥ = 11,100), (7" = 11,101), and (7" = 11,110) are also in
graph G.. Suppose furthermore that when the string of random bits is 7/ = 11, the bits of the proof that are
queried by the verifier are at positions b,/ 1 = 3, b;» 2 = 4 and b,/ 3 = 7. Then on both 7 and 7'/, position 7
is queried. Since b, 2 = b,/ 3 = 7, there is an edge between nodes (7 = 01, vivov3) and (7 = 11, vjvyvs) if
and only if vy = vj. Thus, in our example, the following edges are in the graph G

Suppose that x € L. Then there is a proof that causes the verifier to accept with probability 1. Therefore,
there is a set of nodes of size 2"(1) that form a clique in G.

Suppose that = ¢ L. Then all proofs cause the verifier to accept with probability at most 1/2. Therefore,
the largest clique in G, has size at most 27(I#D=1. if there were a larger clique, we could find a proof on
which the verifier accepts with probability greater than 1/2.

In summary,

re€ L= Opt(f(z)) = 20D and
rg L= Opt(fix)) > 201,

Then from Lemma 2, unless NP=P, there is no polynomial time approximation algorithm for II with ap-

proximation ratio 1 + (1/2)/(1 — (1/2)) — e = 2 — € for any € > 0 and the theorem follows.
0

