
CPSC506 Complexity of Computation Term 2, 2020

Applications of the PCP Theorem to Hardness of Approximation

See lecture slides for definitions of approximation algorithm and approximation ratio.

Lemma 1 Let L be NP-complete. Suppose that there is a polynomial time mapping from instances x of L
to instances x′ of a maximization problem Π such that

x ∈ L⇒ Opt(x′) = g(x) and
x 6∈ L⇒ Opt(x′) < (1− c)g(x),

where g(x) ∈ N, g is polynomial-time computable, and 0 < c < 1. If Π has a polynomial-time approxima-
tion algorithm A with approximation ratio 1 + c/(1− c), then NP=P.

Proof We use A to construct a polynomial time algorithm AL for L. Given instance x of L, AL
computes x′ and runs A on x′. If the value of the solution found by A, namely A(x′), is at least (1− c)g(x)
then AL accepts x, otherwise AL rejects x.

To see that AL is correct, note that if x ∈ L then Opt(x′) = g(x). Since AL has approximation ratio
1 + c/(1− c), from the definition of approximation ratio it must be that

Opt(x′)/A(x′) = g(x)/A(x′) ≤ 1 + c/(1− c).

From this and a little algebra it follows that A(x′) ≥ (1 − c)g(x). In contrast, if x 6∈ L then by hypothesis
of the lemma it must be that A(x′) < (1− c)g(x). Thus, AL is correct.

Lemma 2 (a) Corresponding to any Boolean function of q variables is an equivalent q-CNF formula (i.e. a
formula in conjunctive normal form in which each clause has at most q literals) with at most 2q clauses.

(b) Corresponding to any q-CNF formula φ is a 3CNF formula φ′ such that φ is satisfiable if and only if
φ′ is. Moreover, the number of clauses in φ′ is at most q times the number of clauses in φ.

Proof We first prove part (a). Let F be a Boolean function of q variables v1, v2, . . . , vq. Create a q-DNF
formula that has one term for each assignment a of the variables that sets F to 1: the term is l1∧ l2∧ . . .∧ lq
where li = vi if vi = 1 in assignment a and li = v̄i if vi = 0 in assignment a. For example, if q = 3 and
F (1, 0, 0) = 1 then the q-DNF formula contains the term v1 ∧ v̄2 ∧ v̄3.

Convert this q-DNF formula into a q-CNF formula inductively as follows. If the q-DNF formula has just
one term, it is already in q-CNF form. If it has k terms, inductively convert the formula consisting of just
the first k− 1 terms into q-CNF form to obtain C1 ∧C2 ∧ . . .∧Cm and let D = l1 ∧ l2 ∧ . . .∧ lq be the kth
term in the q-DNF formula. We need to convert

(C1 ∧ C2 ∧ . . . ∧ Cm) ∨ (l1 ∧ l2 ∧ . . . ∧ lq)

into q-CNF form. To do this, we will apply one of the distributive laws for Boolean algebras, namely

(φ1 ∧ φ2) ∨ φ3 ≡ (φ1 ∨ φ3) ∧ (φ2 ∨ φ3).



On the first application, we obtain

(C1 ∨ (l1 ∧ l2 ∧ . . . ∧ lq)) ∧ (C2 ∨ (l1 ∧ l2 ∧ . . . ∧ lq)) ∧ . . . ∧ (Cm ∨ (l1 ∧ l2 ∧ . . . ∧ lq)).

Applying the law m further times, for 1 ≤ i ≤ m we convert the term Ci ∨ (l1 ∧ l2 ∧ . . . ∧ lq) to

(Ci ∨ l1) ∧ (Ci ∨ l2) ∧ . . . ∧ (Ci ∧ lq).

The resulting formula, say φ, is in CNF form. To obtain a formula in q-CNF form, if any literal occurs twice
in the same clause of φ then remove one occurrance of the literal, and if both vi and v̄i occur in the same
clause then remove both vi and v̄i. Both of these rules result in an equivalent formula φ′.

Finally, we can remove redundant clauses from φ′ as follows: if the literals of some clause C of φ′ are a
subset of the literals of another clause C ′, then we can remove C to obtain an equivalent formula. Applying
this rule until there are no redundant clauses, we obtain a formula φ′′ with at most 2q clauses.

Next we prove part (b). The method for doing this is exactly as used in constructing a 3CNF formula
in the proof of the Cook-Levin Theorem. That is, for any clause (l1 ∨ l2 ∨ . . . ∨ lr) with r ≥ 4 literals,
introduce new variables y1, y2, . . . yr−3 to convert the clause to

(l1 ∨ l2 ∨ y1) ∧ (ȳ1 ∨ l3 ∨ y2) . . . ∧ (ȳr−4 ∨ lr−2 ∨ yr−3) ∧ (ȳr−3 ∨ lr−1 ∨ lr).

Theorem 1 For some constant c > 1 if there is a polynomial time algorithm for Max 3SAT with approxi-
mation ratio c then NP=P.

Proof We will show that for any language L in NP, there is a polynomial time reduction f from L to
Max 3SAT and a polynomial time computable function g such that

x ∈ L⇒ Opt(f(x)) = g(x) and
x 6∈ L⇒ Opt(f(x)) < (1− c)g(x).

Then from Lemma 1, unless NP=P, there is no polynomial time approximation algorithm for Π with ap-
proximation ratio 1 + c/(1− c) and the theorem follows.

Let L be in NP and let V be a PCP verifier for L that uses q queries and r(|x|) = O(log |x|) random
bits on any instance x of L. Let the length of the proof provided to V on inputs of length n be l(n) (we can
assume without loss of generality that the length of the proof depends only on the input length). We describe
a reduction f that, given x, produces a 3-CNF formula φx that has one variable πi for for each position i of
the proof, 1 ≤ i ≤ l(|x|), plus some additional variables.

For any fixed string τ of random bits of V on x, let bτ,1, bτ,2, . . . , bτ,q be the positions of the proof that
V queries when its random string is τ . Let fτ be the Boolean formula on q variables that evaluates to 1
on a given assignment to the q variables if and only if the verifier accepts on that assignment of values to
its queries, when the verifier’s random bit string is τ . By Lemma 2 (a), fτ can be represented as a q-CNF
formula with 2q clauses over the variables πbτ,1 , πbτ,2 , . . . πbτ,q . Let φτ be the 3-CNF formula obtained
from fτ as in Lemma 2 (b). Let φx be the conjunction of the φτ for all τ . Each of the formulas φτ has
constant size that depends only on q and not on the length of x. Since the total number of random strings
τ is 2r(|x|) = 2O(log(|x|)), the size of φx is polynomial in |x|. Moreover, φx can be constructed in time
polynomial in |x| using simulations of the verifier V and the constructions of Lemma 2.



If x is in L then there is a proof π that causes the verifier V to accept with probability 1. Thus there is
a truth assignment to the variables π1, π2, . . . , πl(|x|) that can be extended to a satisfying assignment of φx.
Thus if x ∈ L, Opt(f(x)) equals the number of clauses in φx.

If x is not in L then for all proofs π, the verifier V accepts with probability at most 1/2. Thus any
extension of any truth assignment to the variables π1, π2, . . . πl(|x|) satisfies at most half of the formulas φτ .
Therefore, for any truth assignment to φx, at least one clause in at least half of the φτ is not satisfied. Since
each φτ has at most q2q clauses, at most a fraction 1 − 1/(2q2q) of the clauses of φx are simultaneously
satisfiable. Thus if x 6∈ L, Opt(f(x)) is at most 1− 1/(2q2q) times the number of clauses in φx.

In summary, we have

x ∈ L⇒ Opt(f(x)) = number of clauses in φx and
x 6∈ L⇒ Opt(f(x)) < (1− c)( number of clauses in φx),

where c is any constant less than 1/(2q2q). This completes the proof.

Theorem 2 If there is a polynomial time algorithm for Max Clique with approximation ratio 2− ε for any
ε > 0, then NP=P.

Proof The proof has a similar structure to that of Theorem 1. We will show that for any language L
in NP, there is a polynomial time reduction f from L to Max Clique and a polynomial time computable
function g from positive integers to positive integers such that

x ∈ L⇒ Opt(f(x)) = g(x) and
x 6∈ L⇒ Opt(f(x)) < (1− c)g(x).

Then from Lemma 2, unless NP=P, there is no polynomial time approximation algorithm for Π with ap-
proximation ratio 1 + c/(1− c), and the theorem follows.

Let L be in NP and let V be a PCP verifier for L that uses q queries and r(|x|) = O(log |x|) random bits
on any instance x of L. Let the length of the proof provided to V on inputs of length n be l(n). We describe
a reduction f that, given x, produces a graph Gx.

For any given string τ of random bits of V on x, let bτ,1, bτ,2, . . . , bτ,q be the positions of the proof that
V queries when its random string is τ . The nodes of Gx are of the form (τ, v1v2 . . . vq) where each vi is a
bit and the verifier V accepts on instance x and random string τ when the bits of the proof π that are queried
are v1, . . . , vq, that is, when πbτ,1 = v1, πbτ,2 = v2, . . ., πbτ,q = vq.

Example: Suppose that for language L the verifier makes three queries (on any random string and instance).
Fix an instance x of L and suppose that the verifier V uses two random bits on instances of length |x|.
Suppose furthermore that when the string of random bits is τ = 01, the bits of the proof that are queried
by the verifier are at positions bτ,1 = 2, bτ,2 = 7 and bτ,3 = 21. Let the decision of the verifier on random
string τ = 01, for each of the eight possible assignments to the bits of the proof that are queried, be given
by the following truth table:



proof at proof at proof at verifier’s decision
position 2 position 7 position 21 on random string τ = 01

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Then the nodes (τ = 01, 001), (τ = 01, 100), and (τ = 01, 111) are in the graph.

We say that two nodes (τ, v1v2 . . . vq) and (τ ′, v′1v
′
2 . . . v

′
q) are compatible if, when the verifier queries

the same position of the proof on random strings τ and τ ′ then the value at that position is the same.
Formally, nodes (τ, v1v2 . . . vq) and (τ ′, v′1v

′
2 . . . v

′
q) are compatible if, whenever bτ,i = bτ ′,j then vi = v′j .

The graph Gx has an edge between every pair of compatible nodes. Note that there are no edges between
two nodes for the same random string τ .

Example: Continuing with the previous example, suppose that in addition to the nodes (τ = 01, 001), (τ =
01, 100), and (τ = 01, 111), the nodes (τ ′ = 11, 100), (τ ′ = 11, 101), and (τ ′ = 11, 110) are also in
graph Gx. Suppose furthermore that when the string of random bits is τ ′ = 11, the bits of the proof that are
queried by the verifier are at positions bτ ′,1 = 3, bτ ′,2 = 4 and bτ ′,3 = 7. Then on both τ and τ ′, position 7
is queried. Since bτ,2 = bτ ′,3 = 7, there is an edge between nodes (τ = 01, v1v2v3) and (τ = 11, v′1v

′
2v
′
3) if

and only if v2 = v′3. Thus, in our example, the following edges are in the graph Gx:

((τ = 01, 001), (τ ′ = 11, 100)),
((τ = 01, 100), (τ ′ = 11, 100)),
((τ = 01, 001), (τ ′ = 11, 110)),
((τ = 01, 100), (τ ′ = 11, 110)), and
((τ = 01, 111), (τ ′ = 11, 101)).

Suppose that x ∈ L. Then there is a proof that causes the verifier to accept with probability 1. Therefore,
there is a set of nodes of size 2r(|x|) that form a clique in Gx.

Suppose that x 6∈ L. Then all proofs cause the verifier to accept with probability at most 1/2. Therefore,
the largest clique in Gx has size at most 2r(|x|)−1; if there were a larger clique, we could find a proof on
which the verifier accepts with probability greater than 1/2.

In summary,
x ∈ L⇒ Opt(f(x)) = 2r(|x|) and
x 6∈ L⇒ Opt(f(x)) ≥ 2r(|x|)−1.

Then from Lemma 2, unless NP=P, there is no polynomial time approximation algorithm for Π with ap-
proximation ratio 1 + (1/2)/(1− (1/2))− ε = 2− ε for any ε > 0 and the theorem follows.


