Applications of the PCP Theorem to Hardness of Approximation

See lecture slides for definitions of approximation algorithm and approximation ratio.
Lemma 1 Let L be NP-complete. Suppose that there is a polynomial time mapping from instances x of L to instances x^{\prime} of a maximization problem Π such that

$$
\begin{aligned}
& x \in L \Rightarrow \quad \text { Opt }\left(x^{\prime}\right)=g(x) \text { and } \\
& x \notin L \Rightarrow \quad \text { Opt }\left(x^{\prime}\right)<(1-c) g(x),
\end{aligned}
$$

where $g(x) \in \mathbb{N}$, g is polynomial-time computable, and $0<c<1$. If Π has a polynomial-time approximation algorithm A with approximation ratio $1+c /(1-c)$, then $N P=P$.

Proof We use A to construct a polynomial time algorithm A_{L} for L. Given instance x of L, A_{L} computes x^{\prime} and runs A on x^{\prime}. If the value of the solution found by A, namely $A\left(x^{\prime}\right)$, is at least $(1-c) g(x)$ then A_{L} accepts x, otherwise A_{L} rejects x.

To see that A_{L} is correct, note that if $x \in L$ then $\operatorname{Opt}\left(x^{\prime}\right)=g(x)$. Since A_{L} has approximation ratio $1+c /(1-c)$, from the definition of approximation ratio it must be that

$$
\operatorname{Opt}\left(x^{\prime}\right) / A\left(x^{\prime}\right)=g(x) / A\left(x^{\prime}\right) \leq 1+c /(1-c) .
$$

From this and a little algebra it follows that $A\left(x^{\prime}\right) \geq(1-c) g(x)$. In contrast, if $x \notin L$ then by hypothesis of the lemma it must be that $A\left(x^{\prime}\right)<(1-c) g(x)$. Thus, A_{L} is correct.

Lemma 2 (a) Corresponding to any Boolean function of q variables is an equivalent q-CNF formula (i.e. a formula in conjunctive normal form in which each clause has at most q literals) with at most 2^{q} clauses.
(b) Corresponding to any q-CNF formula ϕ is a 3CNF formula ϕ^{\prime} such that ϕ is satisfiable if and only if ϕ^{\prime} is. Moreover, the number of clauses in ϕ^{\prime} is at most q times the number of clauses in ϕ.

Proof We first prove part (a). Let F be a Boolean function of q variables $v_{1}, v_{2}, \ldots, v_{q}$. Create a q-DNF formula that has one term for each assignment a of the variables that sets F to 1 : the term is $l_{1} \wedge l_{2} \wedge \ldots \wedge l_{q}$ where $l_{i}=v_{i}$ if $v_{i}=1$ in assignment a and $l_{i}=\bar{v}_{i}$ if $v_{i}=0$ in assignment a. For example, if $q=3$ and $F(1,0,0)=1$ then the q-DNF formula contains the term $v_{1} \wedge \bar{v}_{2} \wedge \bar{v}_{3}$.

Convert this q-DNF formula into a q-CNF formula inductively as follows. If the q-DNF formula has just one term, it is already in q-CNF form. If it has k terms, inductively convert the formula consisting of just the first $k-1$ terms into q-CNF form to obtain $C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$ and let $D=l_{1} \wedge l_{2} \wedge \ldots \wedge l_{q}$ be the k th term in the q-DNF formula. We need to convert

$$
\left(C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}\right) \vee\left(l_{1} \wedge l_{2} \wedge \ldots \wedge l_{q}\right)
$$

into q-CNF form. To do this, we will apply one of the distributive laws for Boolean algebras, namely

$$
\left(\phi_{1} \wedge \phi_{2}\right) \vee \phi_{3} \equiv\left(\phi_{1} \vee \phi_{3}\right) \wedge\left(\phi_{2} \vee \phi_{3}\right)
$$

On the first application, we obtain

$$
\left(C_{1} \vee\left(l_{1} \wedge l_{2} \wedge \ldots \wedge l_{q}\right)\right) \wedge\left(C_{2} \vee\left(l_{1} \wedge l_{2} \wedge \ldots \wedge l_{q}\right)\right) \wedge \ldots \wedge\left(C_{m} \vee\left(l_{1} \wedge l_{2} \wedge \ldots \wedge l_{q}\right)\right) .
$$

Applying the law m further times, for $1 \leq i \leq m$ we convert the term $C_{i} \vee\left(l_{1} \wedge l_{2} \wedge \ldots \wedge l_{q}\right)$ to

$$
\left(C_{i} \vee l_{1}\right) \wedge\left(C_{i} \vee l_{2}\right) \wedge \ldots \wedge\left(C_{i} \wedge l_{q}\right)
$$

The resulting formula, say ϕ, is in CNF form. To obtain a formula in q-CNF form, if any literal occurs twice in the same clause of ϕ then remove one occurrance of the literal, and if both v_{i} and \bar{v}_{i} occur in the same clause then remove both v_{i} and \bar{v}_{i}. Both of these rules result in an equivalent formula ϕ^{\prime}.

Finally, we can remove redundant clauses from ϕ^{\prime} as follows: if the literals of some clause C of ϕ^{\prime} are a subset of the literals of another clause C^{\prime}, then we can remove C to obtain an equivalent formula. Applying this rule until there are no redundant clauses, we obtain a formula $\phi^{\prime \prime}$ with at most 2^{q} clauses.

Next we prove part (b). The method for doing this is exactly as used in constructing a 3CNF formula in the proof of the Cook-Levin Theorem. That is, for any clause ($l_{1} \vee l_{2} \vee \ldots \vee l_{r}$) with $r \geq 4$ literals, introduce new variables $y_{1}, y_{2}, \ldots y_{r-3}$ to convert the clause to

$$
\left(l_{1} \vee l_{2} \vee y_{1}\right) \wedge\left(\bar{y}_{1} \vee l_{3} \vee y_{2}\right) \ldots \wedge\left(\bar{y}_{r-4} \vee l_{r-2} \vee y_{r-3}\right) \wedge\left(\bar{y}_{r-3} \vee l_{r-1} \vee l_{r}\right) .
$$

Theorem 1 For some constant $c>1$ if there is a polynomial time algorithm for Max 3SAT with approximation ratio c then $N P=P$.

Proof We will show that for any language L in NP, there is a polynomial time reduction f from L to Max 3SAT and a polynomial time computable function g such that

$$
\begin{aligned}
& x \in L \Rightarrow \quad \operatorname{Opt}(f(x))=g(x) \text { and } \\
& x \notin L \Rightarrow \operatorname{Opt}(f(x))<(1-c) g(x) .
\end{aligned}
$$

Then from Lemma 1, unless $\mathrm{NP}=\mathrm{P}$, there is no polynomial time approximation algorithm for Π with approximation ratio $1+c /(1-c)$ and the theorem follows.

Let L be in NP and let V be a PCP verifier for L that uses q queries and $r(|x|)=O(\log |x|)$ random bits on any instance x of L. Let the length of the proof provided to V on inputs of length n be $l(n)$ (we can assume without loss of generality that the length of the proof depends only on the input length). We describe a reduction f that, given x, produces a 3-CNF formula ϕ_{x} that has one variable π_{i} for for each position i of the proof, $1 \leq i \leq l(|x|)$, plus some additional variables.

For any fixed string τ of random bits of V on x, let $b_{\tau, 1}, b_{\tau, 2}, \ldots, b_{\tau, q}$ be the positions of the proof that V queries when its random string is τ. Let f_{τ} be the Boolean formula on q variables that evaluates to 1 on a given assignment to the q variables if and only if the verifier accepts on that assignment of values to its queries, when the verifier's random bit string is τ. By Lemma 2 (a), f_{τ} can be represented as a q-CNF formula with 2^{q} clauses over the variables $\pi_{b_{\tau, 1}}, \pi_{b_{\tau, 2}}, \ldots \pi_{b_{\tau, q}}$. Let ϕ_{τ} be the 3-CNF formula obtained from f_{τ} as in Lemma 2 (b). Let ϕ_{x} be the conjunction of the ϕ_{τ} for all τ. Each of the formulas ϕ_{τ} has constant size that depends only on q and not on the length of x. Since the total number of random strings τ is $2^{r(|x|)}=2^{O(\log (|x|))}$, the size of ϕ_{x} is polynomial in $|x|$. Moreover, ϕ_{x} can be constructed in time polynomial in $|x|$ using simulations of the verifier V and the constructions of Lemma 2.

If x is in L then there is a proof π that causes the verifier V to accept with probability 1 . Thus there is a truth assignment to the variables $\pi_{1}, \pi_{2}, \ldots, \pi_{l(|x|)}$ that can be extended to a satisfying assignment of ϕ_{x}. Thus if $x \in L, \operatorname{Opt}(f(x))$ equals the number of clauses in ϕ_{x}.

If x is not in L then for all proofs π, the verifier V accepts with probability at most $1 / 2$. Thus any extension of any truth assignment to the variables $\pi_{1}, \pi_{2}, \ldots \pi_{l(|x|)}$ satisfies at most half of the formulas ϕ_{τ}. Therefore, for any truth assignment to ϕ_{x}, at least one clause in at least half of the ϕ_{τ} is not satisfied. Since each ϕ_{τ} has at most $q 2^{q}$ clauses, at most a fraction $1-1 /\left(2 q 2^{q}\right)$ of the clauses of ϕ_{x} are simultaneously satisfiable. Thus if $x \notin L, \operatorname{Opt}(f(x))$ is at most $1-1 /\left(2 q 2^{q}\right)$ times the number of clauses in ϕ_{x}.

In summary, we have

$$
\begin{aligned}
& x \in L \Rightarrow \operatorname{Opt}(f(x))=\text { number of clauses in } \phi_{x} \text { and } \\
& x \notin L \Rightarrow \operatorname{Opt}(f(x))<(1-c)\left(\text { number of clauses in } \phi_{x}\right),
\end{aligned}
$$

where c is any constant less than $1 /\left(2 q 2^{q}\right)$. This completes the proof.

Theorem 2 If there is a polynomial time algorithm for Max Clique with approximation ratio $2-\epsilon$ for any $\epsilon>0$, then $N P=P$.

Proof The proof has a similar structure to that of Theorem 1. We will show that for any language L in NP, there is a polynomial time reduction f from L to Max Clique and a polynomial time computable function g from positive integers to positive integers such that

$$
\begin{aligned}
& x \in L \Rightarrow \quad \operatorname{Opt}(f(x))=g(x) \text { and } \\
& x \notin L \Rightarrow \operatorname{Opt}(f(x))<(1-c) g(x) .
\end{aligned}
$$

Then from Lemma 2, unless $\mathrm{NP}=\mathrm{P}$, there is no polynomial time approximation algorithm for Π with approximation ratio $1+c /(1-c)$, and the theorem follows.

Let L be in NP and let V be a PCP verifier for L that uses q queries and $r(|x|)=O(\log |x|)$ random bits on any instance x of L. Let the length of the proof provided to V on inputs of length n be $l(n)$. We describe a reduction f that, given x, produces a graph G_{x}.

For any given string τ of random bits of V on x, let $b_{\tau, 1}, b_{\tau, 2}, \ldots, b_{\tau, q}$ be the positions of the proof that V queries when its random string is τ. The nodes of G_{x} are of the form $\left(\tau, v_{1} v_{2} \ldots v_{q}\right)$ where each v_{i} is a bit and the verifier V accepts on instance x and random string τ when the bits of the proof π that are queried are v_{1}, \ldots, v_{q}, that is, when $\pi_{b_{\tau, 1}}=v_{1}, \pi_{b_{\tau, 2}}=v_{2}, \ldots, \pi_{b_{\tau, q}}=v_{q}$.

Example: Suppose that for language L the verifier makes three queries (on any random string and instance). Fix an instance x of L and suppose that the verifier V uses two random bits on instances of length $|x|$. Suppose furthermore that when the string of random bits is $\tau=01$, the bits of the proof that are queried by the verifier are at positions $b_{\tau, 1}=2, b_{\tau, 2}=7$ and $b_{\tau, 3}=21$. Let the decision of the verifier on random string $\tau=01$, for each of the eight possible assignments to the bits of the proof that are queried, be given by the following truth table:

proof at position 2	proof at position 7	proof at position 21	verifier's decision on random string $\tau=01$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Then the nodes $(\tau=01,001),(\tau=01,100)$, and $(\tau=01,111)$ are in the graph.
We say that two nodes $\left(\tau, v_{1} v_{2} \ldots v_{q}\right)$ and $\left(\tau^{\prime}, v_{1}^{\prime} v_{2}^{\prime} \ldots v_{q}^{\prime}\right)$ are compatible if, when the verifier queries the same position of the proof on random strings τ and τ^{\prime} then the value at that position is the same. Formally, nodes $\left(\tau, v_{1} v_{2} \ldots v_{q}\right)$ and $\left(\tau^{\prime}, v_{1}^{\prime} v_{2}^{\prime} \ldots v_{q}^{\prime}\right)$ are compatible if, whenever $b_{\tau, i}=b_{\tau^{\prime}, j}$ then $v_{i}=v_{j}^{\prime}$. The graph G_{x} has an edge between every pair of compatible nodes. Note that there are no edges between two nodes for the same random string τ.

Example: Continuing with the previous example, suppose that in addition to the nodes $(\tau=01,001),(\tau=$ $01,100)$, and $(\tau=01,111)$, the nodes $\left(\tau^{\prime}=11,100\right),\left(\tau^{\prime}=11,101\right)$, and $\left(\tau^{\prime}=11,110\right)$ are also in graph G_{x}. Suppose furthermore that when the string of random bits is $\tau^{\prime}=11$, the bits of the proof that are queried by the verifier are at positions $b_{\tau^{\prime}, 1}=3, b_{\tau^{\prime}, 2}=4$ and $b_{\tau^{\prime}, 3}=7$. Then on both τ and τ^{\prime}, position 7 is queried. Since $b_{\tau, 2}=b_{\tau^{\prime}, 3}=7$, there is an edge between nodes $\left(\tau=01, v_{1} v_{2} v_{3}\right)$ and $\left(\tau=11, v_{1}^{\prime} v_{2}^{\prime} v_{3}^{\prime}\right)$ if and only if $v_{2}=v_{3}^{\prime}$. Thus, in our example, the following edges are in the graph G_{x} :

$$
\begin{aligned}
& \left((\tau=01,001),\left(\tau^{\prime}=11,100\right)\right), \\
& \left((\tau=01,100),\left(\tau^{\prime}=11,100\right)\right), \\
& \left((\tau=01,001),\left(\tau^{\prime}=11,110\right)\right), \\
& \left((\tau=01,100),\left(\tau^{\prime}=11,110\right)\right), \text { and } \\
& \left((\tau=01,111),\left(\tau^{\prime}=11,101\right)\right),
\end{aligned}
$$

Suppose that $x \in L$. Then there is a proof that causes the verifier to accept with probability 1 . Therefore, there is a set of nodes of size $2^{r(|x|)}$ that form a clique in G_{x}.

Suppose that $x \notin L$. Then all proofs cause the verifier to accept with probability at most $1 / 2$. Therefore, the largest clique in G_{x} has size at most $2^{r(|x|)-1}$; if there were a larger clique, we could find a proof on which the verifier accepts with probability greater than $1 / 2$.

In summary,

$$
\begin{aligned}
& x \in L \Rightarrow \quad \operatorname{Opt}(f(x))=2^{r(|x|)} \text { and } \\
& x \notin L \Rightarrow \quad \operatorname{Opt}(f(x)) \geq 2^{r(|x|)-1} .
\end{aligned}
$$

Then from Lemma 2, unless $\mathrm{NP}=\mathrm{P}$, there is no polynomial time approximation algorithm for Π with approximation ratio $1+(1 / 2) /(1-(1 / 2))-\epsilon=2-\epsilon$ for any $\epsilon>0$ and the theorem follows.

