
CPSC506 Complexity of Computation Term 2, 2020

1 Interactive Proof Systems

We define an interactive proof system (IPS) to be a nondeterministic Turing machine with read-only input
tape whose non-halting states are partitioned into two types: existential and coin-flipping. For simplicity,
we require that the transition relation δ is such that there are exactly two possible next steps from each
coin-flipping state.

Let M be an IPS and let C be a configuration of M . C is either an existential, coin-flipping, accept-
ing, or rejecting configuration depending on its state. We define the probability of reaching an accepting
configuration from C, which we denote by Proba[C], recursively as follows:

• If C is a rejecting or accepting configuration then Proba[C] = 0 or 1, respectively.

• If C is an existential configuration then Proba[C] = maxC→C′ Proba[C ′].

• If C is a coin-flipping configuration then Proba[C] = 1
2(Proba[C ′] + Proba[C ′′]), where C ′ and C ′′

are the two configurations reachable from C.

Let Prob[M accepts x] be Proba[C0], where C0 is the initial configuration of M on x. We say that the IPS
M accepts language L with bounded error if the following holds.

• For all x ∈ L, Prob[M accepts x] > 2/3,

• For all x 6∈ L, Prob[M accepts x] < 1/3.

Let IP denote the set of languages that have bounded error interactive proof systems M that are polyno-
mial time bounded. The following lemma is not hard to prove:

Lemma 1 IP is closed under ≤pm. That is, if L ∈ IP and L′ ≤pm L, then L′ ∈ IP.

Interactive proof systems model protocols in which an (existential) prover aims to convince a proba-
bilistic verifier that an input should be accepted. Just as BPP can be considered the class of languages with
efficient algorithms, so can IP be viewed as the class of languages that have efficient proofs of membership.
Might IP contain more languages than NP? Building on the work of Lund et al., Shamir showed that in fact
IP = PSPACE. Showing that IP ⊆ PSPACE is not too difficult - can you see how to do it? We will prove the
other direction. In the next sections, we provide some useful background needed to prove this result.

2 More on Quantified Boolean Formulas

We will need to work with quantified Boolean formulas in which quantifiers are not all required to precede
a quantifier-free boolean formula.

Example. Two quantified Boolean formulas (the first is slightly modified from an example in Papadim-
itriou’s textbook) are:

φ = ∀x∃y[(x ∨ y) ∧ ∀z[(x ∧ z) ∨ (y ∧ z̄) ∨ ∃w(z ∨ (y ∧ w̄))]], and (1)

τ = ∀x[(x ∨ y) ∧ ∀z[((x ∧ z) ∨ (y ∧ z̄)) ∨ ∀w(z ∨ (x ∧ w̄))]]. (2)

Each variable is either free or bound to a quantifier; in φ all variables are bound, whereas in τ , y is free.
We can associate with every quantified Boolean formula φ a set Fφ of free variables and a set Bφ of bound
variables. For simplicity, we will require that each quantifier pertains to a distinct variable.

Formally, we inductively define a quantified Boolean formula (qbf) φ over variable setX , and its associ-
ated sets Fφ and Bφ of free and bound variables respectively, as follows. For every x ∈ X , x is a quantified
Boolean formula with Fx = {x} and Bx = ∅. Also, if φ and φ′ are quantified Boolean formulas such that
Fφ ∩Bφ′ = ∅ and Fφ′ ∩Bφ = ∅ then

• φ̄ is a quantified Boolean formula with free variable set Fφ and bound variable set Bφ;

• (φ ∨ φ′) and (φ ∧ φ′) are quantified Boolean formulas with free variable set Fφ ∪ Fφ′ and bound
variable set Bφ ∪Bφ′ , and

• if x 6∈ Bφ then (∃xφ) and (∀xφ) are quantified Boolean formulas with free variable set Fφ−{x} and
bound literal set Bφ ∪ {x}.

Sometimes when there is no ambiguity, parentheses are omitted for clarity as in the examples (1) and (2)
above. If all variables of a quantified Boolean formula φ are bound, then φ’s truth value can be defined
inductively in a natural way. We say that φ is valid if its value is true. Also we can define in a natural way
what is the quantifier to which a particular variable is bound. If a variable x occurs in qbf (Qyρ), where
Q ∈ {∃,∀}, then we say that x is in the scope of Q.

Let φ be a quantified Boolean formula. We say that φ is simple if any variable x of φ is in the scope of
at most one ∀ quantifier that is within the scope of the quantifier of φ to which x is bound. We say that φ
is in prenex normal form if φ is of the form (Q1x1(Q2x2 . . . (Qnxnφ) . . .)), where each Qi is either ∃ or ∀,
and φ does not have quantifiers. We say that φ has negations only over variables if any expression of the
form ρ̄ of φ is such that ρ is a variable. In what follows, we assume without loss of generality that qbf’s
have negations only over variables.

Example. The quantified formula φ given in (1) is simple. However, the formula τ given in (2) is not
simple. (Why?)

Lemma 2 There is a deterministic polynomial time bounded algorithm that, given as input a quantified
Boolean formula φ with no free variables, outputs a simple quantified Boolean formula φ′ such that φ is
valid if and only if φ′ is.

Proof (Sketch) On input φ, the algorithm repeats the following until a simple formula is obtained: Let x be a
variable that is in the scope of at least two ∀ quantifiers that are within the scope of the quantifier to which x
is bound. LetQz be the leftmost ∀ quantifier that contains x in its scope, such that z 6= x. Let (Qzρ) be a qbf
nested in φ (i.e. (Qzρ) is a quantified Boolean formula). Replace (Qzρ) by (Qz(∃x′((x∧x′)∨(x̄∧x̄′))∧ρ′),
where ρ′ is obtained from ρ by replacing all occurrences of x by x′.
Exercise: show that the above algorithm is correct and runs in polynomial time. Can you see how to
implement the algorithm in log space?

Example. The formula ∃yτ , where τ is given in (2) has no free variables, but is not simple. Applying the
algorithm of Lemma 2, we get

∃y∀x[(x ∨ y) ∧ ∀z((∃x′((x ∧ x′) ∨ (x̄ ∧ x̄′))) ∧ [((x′ ∧ z) ∨ (y ∧ z̄)) ∨ ∀w(z ∨ (x′ ∧ w̄))])].

3 Arithmetizing Quantified Boolean Formulas

We arithmetize a quantified Boolean formula with negations only over variables by replacing each ∨ by +,
each ∧ by ·, each x̄ by (1− x), each ∃x by

∑
x∈{0,1}, and each ∀ by

∏
x∈{0,1}.

Example. The arithmetization of φ given in Equation (1) is

Aφ =
1∏

x=0

1∑
y=0

[(x+ y) ·
1∏
z=0

[(x · z + y · (1− z)) +
1∑

w=0

(z + y · (1− w))]]. (3)

If φ has no free variables, then we can associate a value with Aφ in a natural way and denote it by v(Aφ).
For Aφ given in (3) above, v(Aφ) = 96.

Exercise. Calculate v(Aφ) for the following φ:

∃x∀y((x ∧ y) ∨ (x̄ ∧ ȳ))

∀x1∀x2 . . . ∀xn∃y(y ∨ ȳ).

The following lemma can be proved in a straightforward way by induction over the number of ∨,∧,∃,
and ∀ symbols of a formula.

Lemma 3 For any quantified Boolean formula φ with no free variables and negations only over variables,
φ is valid if and only if v(Aφ) > 0. Also, v(Aφ) ≤ 22

|Aφ| .

If we write Aφ given in (3) above as
∏
x α, then α is a (univariate) polynomial in x. Let |α| be the

number of symbols in the string α. Continuing with our example, |α| is 40 (it would be a little longer if all
parentheses were in place) and α = α(x) = 2x2 + 8x+ 6. We denote the degree of a univariate polynomial
p by deg(p). In general, the degree of α could be exponential. (Can you see why?) However, when α is
simple, this is not the case, as the next lemma shows.

Lemma 4 Let (Qxφ) be a simple quantified Boolean formula with no free variables and let (Oxα) be its
arithmetization. Then, deg(α(x)) ≤ 2|α|.

Proof Since (Qxφ) is simple, any occurrence of x in α is in the scope of at most one
∏

. For each
subexpression (

∏
y β) of α such that x occurs in β, replace the expression (

∏
y β) by (β(0) · β(1)), where

for i ∈ {0, 1}, β(i) is obtained from β by substituting i for y. Let α′ be the resulting expression obtained
from α. Then |α′| ≤ 2|α| and no occurrence of x in α′ is in the scope of a

∏
.

We claim that deg(α′) ≤ |α′|. The proof of this claim is by induction on |α′|. The base cases are
when α′ is a constant, in which case deg(α′) = 0 ≤ |α′|, or α′ = x or α′ = (1 − x), in which case
deg(α′) = 1 ≤ |α′|. If α′ = (β + β′) then, applying the induction hypothesis to β and β′, we have that

deg(α′) = max[deg(β), deg(β′)] ≤ |β|+ |β′| < |α′|.

If α′ = β · β′ then deg(α′) = deg(β) + deg(β′) ≤ |β| + |β′| < |α′|. Finally, if α′ = (
∏
y β) then, since x

can not occur in β, deg(α′) = deg(β) = 0 < |β| < |α′|.
Therefore, we have that deg(α) = deg(α′) ≤ |α′| ≤ 2|α|.

Lemma 5 Let A be the arithmetization of a quantified Boolean formula with no free variables such that
v(A) 6= 0. Then for sufficiently large |A|, v(A) > 0 if and only if there is a prime p between 2|A| and 22|A|

such that v(A) 6= 0 mod p.

Proof To prove this, we will use two important results from number theory. (Both can be stated more
generally than stated here.)

Chinese Remainder Theorem: Let m be the product of distinct primes p1, p2, . . . , pk. Then for any inte-
gers r1, r2, . . . , rk, there is a unique r in the range 0 ≤ r < m such that for all i, r = ri mod pi.

Prime Number Theorem: For any sufficiently large positive real number x, the number of primes that are
≤ x is at least x/ lnx.

From the Prime Number Theorem, the number of primes≤ 22|A| is at least 2|A|+1 if |A| is large enough.
Also, the number of primes≤ 2|A| is trivially at most 2|A|. Subtracting the second bound from the first gives
us that the number of primes between 2|A| and 22|A| is at least 2|A|, for sufficiently large |A|.

Hence, the product of these primes, say m, is greater than 22
|A|

. Using Lemma 3, we have that v(A) ≤
22

|A|
< m. Therefore by the Chinese Remainder Theorem, it follows that if v(A) = 0 mod pi for every

prime pi in the range 2|A| < pi < 22|A|, then v(A) = 0. Since v(A) 6= 0, we conclude that for some prime
p between 2|A| and 22|A|, v(A) 6= 0 mod p.

4 PSPACE ⊆ IP

Our goal is to show that PSPACE ⊆ IP, where IP is the class of languages L that have a polynomial-time
interactive proof system. That is, a prover can convince a probabilistic verifier that an instance of L is a
yes instance, in polynomial time and with bounded error. Let TQBF be the set of valid quantified Boolean
formulas in prenex normal form. Since TQBF is PSPACE-complete, from Lemma 1 of the last lecture, it is
sufficient to show that TQBF is in IP. By Lemma 2 of the last lecture, it is sufficient to show that the language
of all valid simple quantified Boolean formulas (not necessarily in prenex form) is in IP. We describe an IPS
for this language.

4.1 The Protocol

Simple-TQBF-IPS(φ)
// φ is simple, and has m symbols of type ∃ or ∀

• Guess p and a0.
Check that p is prime, that 2|Aφ| < p < 22|Aφ| and that 0 < a0 ≤ p− 1; if not, reject.
// The goal is to show that v(Aφ) = a0 mod p.
Let A0 = Aφ.

• For i from 1 to m do

1. Let Ai−1 be of the form ci + c′iOuAi(u), where Ou is the first
∑

or
∏

symbol of Ai−1.
// Here, Ai(u) refers to the string of symbols following the Ou operator.
// Later in the analysis, we will also use Ai(u) to refer to the polynomial in u

2. Guess the coefficients of a polynomial αi(u) of degree at most 2|Aφ|.
// The claim is that the polynomials Ai(u) and αi(u) are the same.

3. Check that ci + c′iOuαi(u) = ai−1 mod p; if not, reject.

4. Choose ri ∈ [0 . . . p− 1] randomly and uniformly.

5. Let ai = αi(ri) mod p.

6. Let Ai be the expression Ai(ri).

• Check that v(Am) = am; if so, accept, and otherwise reject.

4.2 Example

The following example is from Papadimitriou’s text. Let φ be as in Equation (1), and let A0 be the arithme-
tization Aφ, given in Equation (3).

Suppose that the prime p guessed in the first step is 13. (Let’s ignore the fact that 13 is less than 2|Aφ|.)
Also, let a0 = 5 (= 96 mod 13 = v(A0) mod 13). The rounds of the protocol proceed as follows, for
particular “correct” guesses and random choices of the ri:

Round 1.

1. A0 =
∏1
x=0A1(x), where

A1(x) =
1∑
y=0

[(x+ y) ·
1∏
z=0

[x · z + y · (1− z) +
1∑

w=0

(z + y · (1− w))]].

2. α1(x) = 2x2 + 8x+ 6.

3. α1(0)α1(1) = 6 · 16 = 5 mod 13 = a0 mod 13.

4. r1 = 9.

5. a1 = α1(r1) mod 13 = 2 · 92 + 8 · 9 + 6 mod 13 = 6 mod 13.

6. A1 =
∑1

y=0[(9 + y) ·
∏1
z=0[9 · z + y · (1− z) +

∑1
w=0(z + y · (1− w))]].

Round 2.

1. A1 =
∑1

y=0A2(y), where

A2(y) = (9 + y) ·
1∏
z=0

[9 · z + y · (1− z) +

1∑
w=0

(z + y · (1− w))].

2. α2(y) = 2y3 + y2 + 3y.

3. α2(0) + α2(1) = 6 mod 13 = a1 mod 13.

4. r2 = 3.

5. a2 = α2(3) mod 13 = (2 · 33 + 32 + 3 · 3) mod 13 = 7 mod 13.

6. A2 = (9 + 3) ·
∏1
z=0[9 · z + 3 · (1− z) +

∑1
w=0(z + 3 · (1− w))].

Round 3.

1. A2 = (9 + 3)
∏1
z=0A3(z), where A3(z) = 9 · z + 3 · (1− z) +

∑1
w=0(z + 3 · (1− w)).

2. α3(z) = 8z + 6.

3. 12α3(0)α3(1) = 12 · 6 mod 13 = 7 mod 13 = a2 mod 13.

4. r3 = 7.

5. a3 = α3(r3) mod 13 = 8 · 7 + 6 mod 13 = 10 mod 13.

6. A3 = 9 · 7 + 3 · (1 − 7)) +
∑1

w=0(7 + 3 · (1 − w)) = 45 +
∑1

w=0(7 + 3 · (1 − w)) =
6 +

∑1
w=0(7 + 3 · (1− w)) mod 13.

Round 4.

1. A3 = 6 +
∑1

w=0A4(w), where A4(w) = 7 + 3 · (1− w).

2. α4(w) = 10− 3w.

3. 6 + α4(0) + α4(1) = 6 + 10 + 7 mod 13 = 10 mod 13 = a3.

4. r4 = 2.

5. a4 = α4(r4) mod 13 = 10− 6 mod 13 = 4 mod 13.

6. A4 = 7 + 3 · (1− 2)) = 4 mod 13.

Upon exiting the repeat loop, A4 = 4 = a4, and so the input is accepted.

4.3 Proof of Correctness

In proving correctness of the protocol, the more interesting case is when the input φ is not valid. The
following lemma will be useful for this case.

For a given input φ, let S = S(φ) be a strategy of the IPS on φ, i.e., sequence of nondeterministic
transition choices that determine the polynomials αi(u) at step 2, plus the initial choices of p and a0. For an
execution of the protocol with this strategy, letEi = Ei(φ, S) be the event that ai 6= v(Ai) either the verifier
rejects before the end of round i is reached, or ai 6= v(Ai). Intuitively, event Ei corresponds to the cases
where either the verified has determined before the end of step i that the prover is trying to cheat, and so has
rejected, or that the prover has to continue to prove something that’s not true, namely that ai = v(Ai).

Lemma 6 Let φ be a simple quantified Boolean formula with Aφ = 0. Let S be any strategy of the IPS on
φ. Then for all i, 1 ≤ i ≤ m, Prob[Ei] ≥ (1 − 2n

2n)i, where n = |Aφ| and the probability is taken over the
random choices of the ri during the run of the protocol.

Proof The proof is by induction on i. The lemma is clearly true when i = 0, since by hypothesis, either
v(Aφ) 6= a0 or a0 = 0, and in the latter case the protocol does not reach round 1. Suppose the claim is true
for i − 1. Then, event Ei−1 occurs with probability at least (1 − 2n

2n)i−1. Suppose that indeed event Ei−1
occurs and that the end of round i of the protocol is reached. Then considering Ai(u) as a polynomial, it
must be the case that αi(u) 6= Ai(u) (otherwise, the run would have rejected at step 3 of the ith iteration).
Since the polynomial αi(u) − Ai(u) has degree at most 2n, it has at most 2n roots. Hence, the probability
that ri (chosen randomly and uniformly from the range [0, . . . , p− 1]) is a root of αi(u)−Ai(u) is at most
2n/2n, since p > 2n. Therefore,

Prob[Ei | Ei−1] ≥ Prob[ri is not a root of αi(u)−Ai(u) | Ei−1 and round i+ 1 is reached] ≥ 1− 2n/2n.

As a result,

Prob[Ei] ≥ Prob[Ei | Ei−1]Prob[Ei−1] ≥
(

1− 2n

2n

)(
1− 2n

2n

)i−1
=

(
1− 2n

2n

)i
.

Theorem 1 PSPACE ⊆ IP.

Proof (Sketch) It is not hard to show that the protocol runs in polynomial time, and if Aφ 6= 0 then
there is a sequence of guesses that causes the protocol to accept with probability 1.

We will show that for sufficiently large inputs φ, if Aφ = 0 then no matter what the strategy is, the
probability that the protocol accepts is small. First, no matter what p is chosen, Aφ = 0 mod p. If a0 is
chosen to be 0, then the protocol rejects; hence suppose that a0 6= 0, in which case Aφ 6= a0 mod p. By
Lemma 6, the probability that the run rejects before exiting the for loop, or that the for loop is exited with
v(Am) 6= am (in which case the protocol rejects upon exiting the for loop), is at least (1− 2n

2n)m. (Here, m
is the number of quantifiers of φ.) Therefore, the protocol rejects with probability at least (1− 2n/2n)m ≥
(1− 2n/2n)n. This quantity goes to 1 as n goes to infinity.

