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Lure 

Suppose an associate handed you a 500 digit number N, and informed you, "I know the 
prime factorization of N." What  would convince you of the truth of your associate's 
statement? 

If your associate could be persuaded to reveal the factorization to you, a few simple 
tests would convince you of the statement 's  truth. Unfortunately the associate responds 
to this request by saying, "The factorization is a secret. In fact, I would like to convince 
you that I know the factorization of N without divulging any other useful information." 
How can you hope to be convinced that your associate is not deceiving you? Needless to 
say, a primality testing algorithm quickly reveals N to be composite, but your favorite 
factorization algorithms make no progress whatever. 

These seemingly irreconcilable positions (the associate's unwillingness to reveal any 
knowledge, your unwillingness to accept your associate's statement without proof) are 
reconcilable through a protocol known as a "zero knowledge interactive proof", intro- 
duced by Goldwasser, Mica]i, and Rackofl ~ [15] in 1985. Informally, an interactive proof 
is a pair of protocols executed by two parties, called the "prover" and the "verifier", 
whereby the prover attempts to convince the verifier of the validity of some proposition 
II. The prover, even by deviating from its protocol, should not be able to convince the 
verifier of the truth of II if, in fact, II is false. An interactive proof is "zero knowledge" 
if the verifier, even by deviating from its protocol, cannot gain any information from 
the prover (other than the validity of II) that  it could not have derived efficiently itself. 
More specifically, for any verifier that  outputs after interacting with the prover, there 
is an algorithm that,  without benefit of interacting with the prover, produces outputs 
from a distribution indistinguishable from that  of the verifier. 

The interested reader can find careful definitions of these notions in [20]. The 
particular problem of knowledge of factorization will be left on the hook until the last 
section. The intervening sections contain some interesting historical digressions. 
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Figure 1: The Structure of Squaring in Z3* 5 

1 Background in Computational Number Theory 

This section discusses some algorithmic questions related to the structure of squaring 
modulo N, and their relation to factoring. For a more comprehensive introduction to 
computational number theory, see Angluin [3]. 

For any positive integer N, let Z~ denote the multiplicative group of integers modulo 
N, that is, 

Z ~ r = { z l O < z < N a n d  g c d ( ~ , N ) = l } .  

(god(a, b) denotes the greatest common divisor of a and b.) Figure 1 contains a directed 
graph that illustrates the structure of squaring in Z3%. There is a vertex for each 
element of Z'as, and an edge (u,v) whenever u 2 ~  v (mod 35). A quadratic residue 
modulo N is simply a "perfect square" in the group Z~r. For example, an examination 
of Figure 1 reveals that the quadratic residues modulo 35 are 1, 4, 9, 11, 16, and 29. 
Notice also that  every quadratic residue modulo 35 has exactly 4 square roots modulo 
35, and that they come in 2 pairs of additive inverses modulo 35. (For example, 
8 + 27 ~ 13 + 22 ~ 0 (rood 35).) The fact that each quadratic residue has 4 square 
roots modulo 35 derives from the fact that 35 has 2 distinct odd prime factors. In 
general, if N has k distinct odd prime factors, then every quadratic residue modulo N 
will have exactly 24 square roots modulo N. 

A function will be said to be easy if there is a probabilistic, polynomial expected 
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time algorithm that computes it. (A "probabilistic" algorithm is one that  is permitted 
access to a random number generator. A "polynomial time" algorithm is one that,  
given any input ~, terminates within a number of steps that is a polynomially bounded 
fi]nction of the length of z; for number-theoretic algorithms, integers can be assumed to 
be input in decimal representation. The expectation in the definition of "easy" is taken 
over possible outcomes of the random number generator, not over possible inputs.) The 
following number-theoretic problems, among numerous others, are not believed to be 
easy [2,4,21]: 

Q u a d r a t i c  r e s i d u o s i t y :  Given N and • E Z~, determine whether of not z is a quadratic 
residue modulo N. 

S q u a r e  root:  Given N and a quadratic residue z modulo N, output any y such that 
y2 ~ ~e (mod N). 

F a c t o r i z a l i o n :  Given N, output its prime factorization. 

The main result needed from this section is that the last two of these problems are 
computationally equivalent, in the sense that,  if either is easy, the other is easy as well. 
The remainder of this section outlines the proof of this equivalence. For one half of the 
equivalence, if you had the prime factorization p~'p;~ . . . p ~  of N, you could compute 
a square root of • modulo N by computing a square root of z modulo p~' for each 
1 < i < h (an easy problem due to the special form of the modulus [1,5,17,18]), and 
combining these results via the Chinese remainder algorithm [16]. 

The other half of the equivalence is more relevant to subsequent sections. The 
special case of k = 2 distinct prime factors is due to Rabin [17], and will be assumed 
here for illustrative purposes. The generalization to arbitrary composites N is relatively 
straightforward [20]. 

First, note that  knowing two square roots modulo N of the same element, one from 
each of the two pairs of additive inverses, is sumcient to factor N. In particular, if 
s 2 _= t 2 (rood N) and s ~ ~ t  (mod N), then g = gcd(s + t , N )  is a proper factor of 
N: surely g is a factor of N, so all that remains is to show that  g # 1 and g # N. 
The fact that s + t ~ 0 (mod N) rules out the possibility g = N. Note that N divides 
s 2 - t 2 = (s  + t ) ( s  - t ) ,  by hypothesis. If g = gcd(s + t, N) = 1, then N would divide 
s - t, contradicting the hypothesis s ~ t (mod N).  

To illustrate this fact from Figure 1, 33 and 23 are both square roots of 4 modulo 
35, and gcd(33 + 23, 35) = 7, a proper factor of 35. Similarly, gcd(27 + 13,35) = 5, 
another proper factor. 

Now suppose you had an efficient algorithm that produced a single square root of 
modulo N, even for only a fixed fraction of the quadratic residues • modulo N. Then 
you could factor N efficiently as follows. Use the random number generator to find 
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a random, uniformly distributed element t of Z~. Let z = t 2 rood N, and invoke the 
hypothesized algorithm to produce a square root s of z modulo N. If this algorithm 
fails because z is not among the fraction of quadratic residues it can handle, or if 
s .~ ±t  (mod N), then try a new random t. Otherwise gcd(s + t, N) is a proper factor 
of N. Having been given only z, the square root subroutine has no bias toward either 
pair of square roots. Hence, the expected number of iterations of this procedure until 
N is factored is constant. 

2 F l i p p i n g  a C o i n  b y  T e l e p h o n e  

Zero knowledge interactive proofs can be motivated by an interesting problem known 
as "flipping a fair coin by telephone" [6]. This problem might arise during a phone call 
with your boss: 

Boss: "I've chosen you to prepare this year's departmental  budget." 

You: "Why me? Can' t  you get someone else to do it?" 

Boss: "Tell you what: I'll flip a coin. If you call it, I'll find someone else to do the 
budget." 

You: "But, but, . . . "  

Boss: "Quick, it 's in the air. Call it." 

You: "Uh, heads." 

Boss: "Sorry, it 's tails. Have the budget on my desk in the morning." 

Rabin [19] and Blum [6], suspecting the possibility of cheating in such a scenario, 
devised a clever solution based on the presumed intractabili ty of factoring. The protocol 
for each participant is given in Figure 2. The convention regarding announcement of 
cheating is that any participant who correctly catches the other cheating automatically 
wins the toss. 

If both participants follow their protocols, then s ~_ ~ t  (mod N)  with probability 
exactly 1 ~, resulting in a fair coin toss. 

It is not difficult to see that  the boss can no longer cheat to advantage. Even 
if s is not uniformly distributed among the square roots of z, the fact that t is so 
distributed and is secret from the boss prevents any bias of s toward ~ t  mod N. If the 
boss stupidly chooses N with k > 2 distinct odd prime factors, then the probability 

1 that s ~ ±t  (rood N) is decreased to 2 -k+l < i" 
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Your Private Computation 

i f  N is a prime power 

t h e n  announce cheating; 

choose  t E Z~ randomly 
uniformly; 

z ~ t 2 r o o d  N ;  

i f s  ~ ¢ z  ( m o d N )  

t h e n  announce cheating; 

9 ~ gcd(s + t, N); 

Phone 
Line 

N ,4 , , ,  

and 

!t 

Boss's Private Computation 

choose 2 distinct large primes p, q; 

N 4- pq; 

i f  z is not a quadratic residue 
modulo N 

t h e n  announce cheating; 

choose  a random, uniform square 
root s of a~ modulo N, using N's  
factorization as in Section 1; 

i f  g is a proper divisor of N 
t h e n  you win 
else boss wins. 

Figure 2: Protocol for Flipping a Coin by Telephone 
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Similar reasoning would indicate that you can't  cheat your boss to much advantage 
either. By the presumed intractability of factorization, the chance of you factoring N 
without the boss's aid can be ignored as negligible. The only aid your boss might be 
supplying is the random square root s. In the event that you are destined to lose due 
to s ~ ~£t (rood N), this is no aid in factoring N, since you could have computed it 
unaided from t. 

Fischer (see [4]) pointed out a subtle flaw in this reasoning. Namely, s might be 
an aid in factoring N if you didn't know the value of t. Suppose there was some 
hypothetical quadratic residue z that was easy to compute from N, and such that 
knowledge of any one square root of z modulo N was sufficient to make factoring N 
easy. Then you could cheat by computing and transmitt ing such an z, and using the 
obligingly revealed square root s to factor N. No one knows of the existence of such 
hypothetical quadratic residues, but no one knows how to prove their nonexistence 
either. Without the latter, the protocol in Figure 2 cannot be proved fair. 

Is the problem of flipping a fair coin by this method doomed? The fortunate answer 
in the negative came from Goldwasser, Micali, and Rackoff [15], who invented zero 
knowledge interactive proofs. This idea can be used to circumvent Fischer's objection, 
as follows [11,15]. After  receiving z, the boss should be unwilling to reveal a square root 
without some convincing "interactive proof" that you already know some square roof 
t of z modulo N .  You, on the other hand, want this interactive proof to reveal "zero 
knowledge" about the value oft ,  since any such knowledge might enable the boss to bias 
the choice of s toward ± t  mod N. Such a subprotocol for knowledge of a square root, 
devised in the same paper by Goldwasser, Micali, and Rackoff [15], should be inserted 
between the transmissions of z and s. This subprotocol is presented in Section 3. The 
correctness of the resulting coin-flipping protocol is proved by Fischer et al. [12]. 

3 P r o o f  f o r  K n o w l e d g e  o f  a S q u a r e  R o o t  

Figure 3 contains the protocol for a zero knowledge interactive proof that the prover 
knows a square root t of z modulo N. A complete proof of the correctness of this 
protocol is given by Tompa and Woll [20]. The underlying intuition is sketched in the 
remainder of this section. 

If the prover does know some square root of z modulo N and both participants 
follow their protocols, then neither will announce cheating, independent of the random 
number generators'  output. 

1 that the prover doesn't  Next it will be shown that  the probability is at most 
know a square root of z modulo N (and possibly deviates from its protocol), yet the 

1 might not seem to be a reassuring level verifier doesn't  detect cheating. Although 
of confidence, the protocol of Figure 3 can simply be repeated 7" times to decrease the 
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Prover (z, N, t) 

c o m m e n t :  z ~ t 2 (mod N); 

choose  r E Z~r randomly 
uniformly; 

y ~ r 2 rood N; 

i f / 3 ~  {0,1} 

t h e n  announce cheating; 

z ~ tar mod N; 

and 

Comm. 

Channel 

Y 

Z 

choose  /3 E {0, 1} randomly and 
uniformly; 

i f  z 2 ¢ zay (rood N) 

t h e n  announce cheating. 

Figure 3: Zero Knowledge Interactive Proof of Knowledge of a Square Root 

1 probability of undetected cheating from ~ to 2-". 

Fix y. For i E {0, 1}, let zl be the response sent by the prover to the message/3 = i. 
If the verifier doesn't announce cheating after receiving z0, then z0 is a square root of 
y modulo N. If the verifier doesn't announce cheating after receiving zl, then zl is 
a square root of zy  modulo N. But if the prover knew these two square roots, then 
the prover would also know a square root z~-tZl mod N of z. (This gives an indication 
of what it means for the prover to "know" a square root, namely, the prover could 
compute it efficiently. For a careful definition, see [20].) Hence, if the prover doesn't 
know such a square root of z modulo N, the verifier will announce cheating following 
one of the two possible choices of/3. 

Finally, why does the verifier, even by deviating from its protocol, gain only know- 
ledge that it could have computed easily itself? Intuitively, the reason is as follows. 
When/3  = 0, the verifier receives the information (y, z) = (p2, p), where p is uniformly 
chosen from Z~r. When/3  = 1, the verifier receives the information (!t,z) = (zp2,zp), 
where p is uniformly chosen from Z~. In either case, this is information from a distri- 
bution that the verifier can reproduce without the prover's aid. 
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Prover ( N, factorization(N)) 

Use factorization(N) to compute a 
square root s of • modulo N, as 
in Section 1; 

Comm. 

Channel 
Ve,'i er (iV) 

choose  t E Z,N* randomly 
uniformly; 

z ~-- t ~ r o o d  N ;  

It .  

i f s  2 ~ z  ( m o d N )  

t h e n  announce cheating. 

and 

Figure 4: First Interactive Proof of Knowledge of Factorization 

Prover ( N, factorization(N)) 

Use factorization(N) to compute a 
square root of z modulo N,  as in 
Section 1; 

Comm. 

Channel 
Veri/ er 

choose  t E Z~r randomly 
uniformly; 

~ t 2 mod N ;  

I Zero knowledge interactive proof of Figure 3 that the 
prover knows a square root of z modulo N. 

and 

Figure 5: Second Interactive Proof of Knowledge of Factorization 
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4 P r o o f  f o r  K n o w l e d g e  o f  F a c t o r i z a t i o n  

We return finally to the zero knowledge interactive proof that your associate knows 
the prime factorization of some given integer N. This proof was discovered by Tompa 
and Woll [20], where details of the proof of correctness may be found. 

From the result described in Section 1, it is sufficient for the prover to demonstrate 
the ability to extract a square root of arbitrary quadratic residues modulo N. Thus, a 
first at tempt might look something like the protocol given in Figure 4. Like the zero 
knowledge interactive proof of Section 3, this one can be repeated with new random 
values t in order to increase the verifier's confidence that the prover knows the factor- 
ization of N. It is clear, though, that this protocol is not zero knowledge, as the prover 
reveals a square root s of z that the verifier might not have known. In fact, even a 
verifier not deviating from the protocol of Figure 4 may learn a proper factor of N. 

This problem is addressed in the amended protocol of Figure 5. The basis for this is 
that the verifier need not receive a square root of z modulo N in order to be convinced 
that the prover knows N's  factorization: it is sufficient if the verifier is convinced that 
the prover knows such a square root. This protocol is an improvement over that in 
Figure 4, but a moment's reflection shows that it is still not zero knowledge. By telling 
the verifier that it knows a square root of z modulo N, the prover is releasing the 
information that z is a quadratic residue modulo N, which a deviating verifier may 
not have known. (Recall from Section 1 that quadratic residuosity is not easy for the 
verifier to determine unaided.) 

As in the protocol of Section 2, the prover should be unwilling to reveal the fact that 
z is a quadratic residue modulo N before being convinced that the verifier already knows 
that fact. The protocol of Figure 6 corrects this, and is indeed zero knowledge [20]. 
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Prover ( N, factorization(N)) Comm.  

Channel 

Z 

Verifier ( N) 

c h o o s e  t E Z~r randomly and 
uniformly; 

z ~ t ~ m o d  N ;  

Zero knowledge interactive proof of Figure 3 that the 
verifier knows a square root of z modulo N. 

Use factorization(N) to compute a 
square root of z modulo N, as in 
Section 1; 

Zero knowledge interactive proof of Figure 3 that the ] 
prover knows a square root of z modulo N. I 

Figure 6: Zero Knowledge Interactive Proof of Knowledge of Factorization 
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