
Zero Knowledge Interactive Proofs of Knowledge
(A Digest)

Martin Tompa

IBM Research Division
Thomas J. Watson Research Center

P. O. Box 218
Yorktown Heights, New York 10598

Lure

Suppose an associate handed you a 500 digit number N, and informed you, "I know the
prime factorization of N." What would convince you of the truth of your associate's
statement?

If your associate could be persuaded to reveal the factorization to you, a few simple
tests would convince you of the statement 's truth. Unfortunately the associate responds
to this request by saying, "The factorization is a secret. In fact, I would like to convince
you that I know the factorization of N without divulging any other useful information."
How can you hope to be convinced that your associate is not deceiving you? Needless to
say, a primality testing algorithm quickly reveals N to be composite, but your favorite
factorization algorithms make no progress whatever.

These seemingly irreconcilable positions (the associate's unwillingness to reveal any
knowledge, your unwillingness to accept your associate's statement without proof) are
reconcilable through a protocol known as a "zero knowledge interactive proof", intro-
duced by Goldwasser, Mica]i, and Rackofl ~ [15] in 1985. Informally, an interactive proof
is a pair of protocols executed by two parties, called the "prover" and the "verifier",
whereby the prover attempts to convince the verifier of the validity of some proposition
II. The prover, even by deviating from its protocol, should not be able to convince the
verifier of the truth of II if, in fact, II is false. An interactive proof is "zero knowledge"
if the verifier, even by deviating from its protocol, cannot gain any information from
the prover (other than the validity of II) that it could not have derived efficiently itself.
More specifically, for any verifier that outputs after interacting with the prover, there
is an algorithm that, without benefit of interacting with the prover, produces outputs
from a distribution indistinguishable from that of the verifier.

The interested reader can find careful definitions of these notions in [20]. The
particular problem of knowledge of factorization will be left on the hook until the last
section. The intervening sections contain some interesting historical digressions.

2 Session 1

1

/ f \
34 29 6

8 27 13 22

16< 11

/ l \ / i \
24 4 31 19 9 26

2 33 12 23 3 32 17 18

Figure 1: The Structure of Squaring in Z3* 5

1 Background in Computational Number Theory

This section discusses some algorithmic questions related to the structure of squaring
modulo N, and their relation to factoring. For a more comprehensive introduction to
computational number theory, see Angluin [3].

For any positive integer N, let Z~ denote the multiplicative group of integers modulo
N, that is,

Z ~ r = { z l O < z < N a n d g c d (~ , N) = l } .

(god(a, b) denotes the greatest common divisor of a and b.) Figure 1 contains a directed
graph that illustrates the structure of squaring in Z3%. There is a vertex for each
element of Z'as, and an edge (u,v) whenever u 2 ~ v (mod 35). A quadratic residue
modulo N is simply a "perfect square" in the group Z~r. For example, an examination
of Figure 1 reveals that the quadratic residues modulo 35 are 1, 4, 9, 11, 16, and 29.
Notice also that every quadratic residue modulo 35 has exactly 4 square roots modulo
35, and that they come in 2 pairs of additive inverses modulo 35. (For example,
8 + 27 ~ 13 + 22 ~ 0 (rood 35).) The fact that each quadratic residue has 4 square
roots modulo 35 derives from the fact that 35 has 2 distinct odd prime factors. In
general, if N has k distinct odd prime factors, then every quadratic residue modulo N
will have exactly 24 square roots modulo N.

A function will be said to be easy if there is a probabilistic, polynomial expected

Zero-Knowledge Interactive Proofs of Knowledge 3

time algorithm that computes it. (A "probabilistic" algorithm is one that is permitted
access to a random number generator. A "polynomial time" algorithm is one that,
given any input ~, terminates within a number of steps that is a polynomially bounded
fi]nction of the length of z; for number-theoretic algorithms, integers can be assumed to
be input in decimal representation. The expectation in the definition of "easy" is taken
over possible outcomes of the random number generator, not over possible inputs.) The
following number-theoretic problems, among numerous others, are not believed to be
easy [2,4,21]:

Q u a d r a t i c r e s i d u o s i t y : Given N and • E Z~, determine whether of not z is a quadratic
residue modulo N.

S q u a r e root: Given N and a quadratic residue z modulo N, output any y such that
y2 ~ ~e (mod N).

F a c t o r i z a l i o n : Given N, output its prime factorization.

The main result needed from this section is that the last two of these problems are
computationally equivalent, in the sense that, if either is easy, the other is easy as well.
The remainder of this section outlines the proof of this equivalence. For one half of the
equivalence, if you had the prime factorization p~'p;~ . . . p ~ of N, you could compute
a square root of • modulo N by computing a square root of z modulo p~' for each
1 < i < h (an easy problem due to the special form of the modulus [1,5,17,18]), and
combining these results via the Chinese remainder algorithm [16].

The other half of the equivalence is more relevant to subsequent sections. The
special case of k = 2 distinct prime factors is due to Rabin [17], and will be assumed
here for illustrative purposes. The generalization to arbitrary composites N is relatively
straightforward [20].

First, note that knowing two square roots modulo N of the same element, one from
each of the two pairs of additive inverses, is sumcient to factor N. In particular, if
s 2 _= t 2 (rood N) and s ~ ~ t (mod N), then g = gcd(s + t , N) is a proper factor of
N: surely g is a factor of N, so all that remains is to show that g # 1 and g # N.
The fact that s + t ~ 0 (mod N) rules out the possibility g = N. Note that N divides
s 2 - t 2 = (s + t) (s - t) , by hypothesis. If g = gcd(s + t, N) = 1, then N would divide
s - t, contradicting the hypothesis s ~ t (mod N).

To illustrate this fact from Figure 1, 33 and 23 are both square roots of 4 modulo
35, and gcd(33 + 23, 35) = 7, a proper factor of 35. Similarly, gcd(27 + 13,35) = 5,
another proper factor.

Now suppose you had an efficient algorithm that produced a single square root of
modulo N, even for only a fixed fraction of the quadratic residues • modulo N. Then
you could factor N efficiently as follows. Use the random number generator to find

4 Sess ion I

a random, uniformly distributed element t of Z~. Let z = t 2 rood N, and invoke the
hypothesized algorithm to produce a square root s of z modulo N. If this algorithm
fails because z is not among the fraction of quadratic residues it can handle, or if
s .~ ±t (mod N), then try a new random t. Otherwise gcd(s + t, N) is a proper factor
of N. Having been given only z, the square root subroutine has no bias toward either
pair of square roots. Hence, the expected number of iterations of this procedure until
N is factored is constant.

2 F l i p p i n g a C o i n b y T e l e p h o n e

Zero knowledge interactive proofs can be motivated by an interesting problem known
as "flipping a fair coin by telephone" [6]. This problem might arise during a phone call
with your boss:

Boss: "I've chosen you to prepare this year's departmental budget."

You: "Why me? Can' t you get someone else to do it?"

Boss: "Tell you what: I'll flip a coin. If you call it, I'll find someone else to do the
budget."

You: "But, but, . . . "

Boss: "Quick, it 's in the air. Call it."

You: "Uh, heads."

Boss: "Sorry, it 's tails. Have the budget on my desk in the morning."

Rabin [19] and Blum [6], suspecting the possibility of cheating in such a scenario,
devised a clever solution based on the presumed intractabili ty of factoring. The protocol
for each participant is given in Figure 2. The convention regarding announcement of
cheating is that any participant who correctly catches the other cheating automatically
wins the toss.

If both participants follow their protocols, then s ~_ ~ t (mod N) with probability
exactly 1 ~, resulting in a fair coin toss.

It is not difficult to see that the boss can no longer cheat to advantage. Even
if s is not uniformly distributed among the square roots of z, the fact that t is so
distributed and is secret from the boss prevents any bias of s toward ~ t mod N. If the
boss stupidly chooses N with k > 2 distinct odd prime factors, then the probability

1 that s ~ ±t (rood N) is decreased to 2 -k+l < i"

Zero-Knowledge Interactive Proofs of Knowledge 5

Your Private Computation

i f N is a prime power

t h e n announce cheating;

choose t E Z~ randomly
uniformly;

z ~ t 2 r o o d N ;

i f s ~ ¢ z (m o d N)

t h e n announce cheating;

9 ~ gcd(s + t, N);

Phone
Line

N ,4 , , ,

and

!t

Boss's Private Computation

choose 2 distinct large primes p, q;

N 4- pq;

i f z is not a quadratic residue
modulo N

t h e n announce cheating;

choose a random, uniform square
root s of a~ modulo N, using N's
factorization as in Section 1;

i f g is a proper divisor of N
t h e n you win
else boss wins.

Figure 2: Protocol for Flipping a Coin by Telephone

6 S e s s i o n 1

Similar reasoning would indicate that you can't cheat your boss to much advantage
either. By the presumed intractability of factorization, the chance of you factoring N
without the boss's aid can be ignored as negligible. The only aid your boss might be
supplying is the random square root s. In the event that you are destined to lose due
to s ~ ~£t (rood N), this is no aid in factoring N, since you could have computed it
unaided from t.

Fischer (see [4]) pointed out a subtle flaw in this reasoning. Namely, s might be
an aid in factoring N if you didn't know the value of t. Suppose there was some
hypothetical quadratic residue z that was easy to compute from N, and such that
knowledge of any one square root of z modulo N was sufficient to make factoring N
easy. Then you could cheat by computing and transmitt ing such an z, and using the
obligingly revealed square root s to factor N. No one knows of the existence of such
hypothetical quadratic residues, but no one knows how to prove their nonexistence
either. Without the latter, the protocol in Figure 2 cannot be proved fair.

Is the problem of flipping a fair coin by this method doomed? The fortunate answer
in the negative came from Goldwasser, Micali, and Rackoff [15], who invented zero
knowledge interactive proofs. This idea can be used to circumvent Fischer's objection,
as follows [11,15]. After receiving z, the boss should be unwilling to reveal a square root
without some convincing "interactive proof" that you already know some square roof
t of z modulo N . You, on the other hand, want this interactive proof to reveal "zero
knowledge" about the value oft , since any such knowledge might enable the boss to bias
the choice of s toward ± t mod N. Such a subprotocol for knowledge of a square root,
devised in the same paper by Goldwasser, Micali, and Rackoff [15], should be inserted
between the transmissions of z and s. This subprotocol is presented in Section 3. The
correctness of the resulting coin-flipping protocol is proved by Fischer et al. [12].

3 P r o o f f o r K n o w l e d g e o f a S q u a r e R o o t

Figure 3 contains the protocol for a zero knowledge interactive proof that the prover
knows a square root t of z modulo N. A complete proof of the correctness of this
protocol is given by Tompa and Woll [20]. The underlying intuition is sketched in the
remainder of this section.

If the prover does know some square root of z modulo N and both participants
follow their protocols, then neither will announce cheating, independent of the random
number generators' output.

1 that the prover doesn't Next it will be shown that the probability is at most
know a square root of z modulo N (and possibly deviates from its protocol), yet the

1 might not seem to be a reassuring level verifier doesn't detect cheating. Although
of confidence, the protocol of Figure 3 can simply be repeated 7" times to decrease the

Zero-Knowledge Interactive Proofs of Knowledge 7

Prover (z, N, t)

c o m m e n t : z ~ t 2 (mod N);

choose r E Z~r randomly
uniformly;

y ~ r 2 rood N;

i f / 3 ~ {0,1}

t h e n announce cheating;

z ~ tar mod N;

and

Comm.

Channel

Y

Z

choose /3 E {0, 1} randomly and
uniformly;

i f z 2 ¢ zay (rood N)

t h e n announce cheating.

Figure 3: Zero Knowledge Interactive Proof of Knowledge of a Square Root

1 probability of undetected cheating from ~ to 2-".

Fix y. For i E {0, 1}, let zl be the response sent by the prover to the message/3 = i.
If the verifier doesn't announce cheating after receiving z0, then z0 is a square root of
y modulo N. If the verifier doesn't announce cheating after receiving zl, then zl is
a square root of zy modulo N. But if the prover knew these two square roots, then
the prover would also know a square root z~-tZl mod N of z. (This gives an indication
of what it means for the prover to "know" a square root, namely, the prover could
compute it efficiently. For a careful definition, see [20].) Hence, if the prover doesn't
know such a square root of z modulo N, the verifier will announce cheating following
one of the two possible choices of/3.

Finally, why does the verifier, even by deviating from its protocol, gain only know-
ledge that it could have computed easily itself? Intuitively, the reason is as follows.
When/3 = 0, the verifier receives the information (y, z) = (p2, p), where p is uniformly
chosen from Z~r. When/3 = 1, the verifier receives the information (!t,z) = (zp2,zp),
where p is uniformly chosen from Z~. In either case, this is information from a distri-
bution that the verifier can reproduce without the prover's aid.

8 S e s s i o n 1

Prover (N, factorization(N))

Use factorization(N) to compute a
square root s of • modulo N, as
in Section 1;

Comm.

Channel
Ve,'i er (iV)

choose t E Z,N* randomly
uniformly;

z ~-- t ~ r o o d N ;

It .

i f s 2 ~ z (m o d N)

t h e n announce cheating.

and

Figure 4: First Interactive Proof of Knowledge of Factorization

Prover (N, factorization(N))

Use factorization(N) to compute a
square root of z modulo N, as in
Section 1;

Comm.

Channel
Veri/ er

choose t E Z~r randomly
uniformly;

~ t 2 mod N ;

I Zero knowledge interactive proof of Figure 3 that the
prover knows a square root of z modulo N.

and

Figure 5: Second Interactive Proof of Knowledge of Factorization

Zero-Knowledge Interactive Proofs of Knowledge 9

4 P r o o f f o r K n o w l e d g e o f F a c t o r i z a t i o n

We return finally to the zero knowledge interactive proof that your associate knows
the prime factorization of some given integer N. This proof was discovered by Tompa
and Woll [20], where details of the proof of correctness may be found.

From the result described in Section 1, it is sufficient for the prover to demonstrate
the ability to extract a square root of arbitrary quadratic residues modulo N. Thus, a
first at tempt might look something like the protocol given in Figure 4. Like the zero
knowledge interactive proof of Section 3, this one can be repeated with new random
values t in order to increase the verifier's confidence that the prover knows the factor-
ization of N. It is clear, though, that this protocol is not zero knowledge, as the prover
reveals a square root s of z that the verifier might not have known. In fact, even a
verifier not deviating from the protocol of Figure 4 may learn a proper factor of N.

This problem is addressed in the amended protocol of Figure 5. The basis for this is
that the verifier need not receive a square root of z modulo N in order to be convinced
that the prover knows N's factorization: it is sufficient if the verifier is convinced that
the prover knows such a square root. This protocol is an improvement over that in
Figure 4, but a moment's reflection shows that it is still not zero knowledge. By telling
the verifier that it knows a square root of z modulo N, the prover is releasing the
information that z is a quadratic residue modulo N, which a deviating verifier may
not have known. (Recall from Section 1 that quadratic residuosity is not easy for the
verifier to determine unaided.)

As in the protocol of Section 2, the prover should be unwilling to reveal the fact that
z is a quadratic residue modulo N before being convinced that the verifier already knows
that fact. The protocol of Figure 6 corrects this, and is indeed zero knowledge [20].

Acknowledgements

I am grateful to Mike Fischer and Heather Woll for numerous enlightening discussions
about these topics.

10 Session 1

Prover (N, factorization(N)) Comm.

Channel

Z

Verifier (N)

c h o o s e t E Z~r randomly and
uniformly;

z ~ t ~ m o d N ;

Zero knowledge interactive proof of Figure 3 that the
verifier knows a square root of z modulo N.

Use factorization(N) to compute a
square root of z modulo N, as in
Section 1;

Zero knowledge interactive proof of Figure 3 that the]
prover knows a square root of z modulo N. I

Figure 6: Zero Knowledge Interactive Proof of Knowledge of Factorization

Zero-Knowledge Interactive Proofs of Knowledge 11

R e f e r e n c e s

[1]

[2]

[3]

[4]

[6]

[7]

[8]

[9]

[10]

[11]

L. M. Adleman, K. Manders, and G. Miller, "On Taking Roots in Finite Fields",
I8th Annual Symposium on Foundations of Computer Science, Providence, Rhode
Island, October-November 1977, 175-178.

L. M. Adleman, and K. S. McCurley, "Open Problems in Number Theoretic Com-
plexity", Discrete Algorithms and Complezity - - Proceedings of the Japan-US
Joint Seminar. Perspectives in Computing, vol. 15, Academic Press, San Diego,
1987, 237-262.

D. Angluin, "Lecture Notes on the Complexity of Some Problems in Number
Theory", Technical Report 243, Yale University, August 1982.

D. Angluin and D. Lichtenstein, "Provable Security of Cryptosystems: a Survey",
Technical Report TR-288, Yale University, October 1983.

E. Berlekamp, "Factoring Polynomials over Large Finite Fields", Mathematics of
Computation, vol. 24, 1970, 713-735.

M. Blum, "Three Applications of the Oblivious Transfer", University of California
at Berkeley, unpublished manuscript, September 1981.

G. Brassard and C. Crfpeau, "Non-Transitive Transfer of Confidence: A Perfect
Zero-Knowledge Interactive Protocol for SAT and Beyond", ~7th Annual Sym-
posium on Foundations of Computer Science, Toronto, Ontario, October 1986,
188-195.

D. Chaum, "Demonstrating that a Public Predicate can be Satisfied Without
Revealing Any Information About How", Advances in Cryptology - - Crypto '86
Proceedings. A. M. Odlyzko (ed.), Lecture Notes in Computer Science, vol. 263,
Springer-Verlag, Berlin, 1987, 195-199.

D. Chaum and J. van de Graaf, "An Improved Protocol for Demonstrating
Possession of a Discrete Logarithm and Some Generalizations", Eurocrypt 87,
Amsterdam, The Netherlands, April 1987, IV-15 to IV-21.

U. Feige, A. Fiat, and A. Shamir, "Zero Knowledge Proofs of Identity", Proceedings
of the Nineteenth Annual ACM Symposium on Theory of Computing, New York,
N.Y., May 1987, 210-217.

M. J. Fischer, S. Micali, and C. Rackoff, "A Secure Protocol for the Oblivious
Transfer", Eurocrypt 84.

12 S e s s i o n 1

[12]

[13]

[14]

[15]

[16]

[17]

[ls]

[19]

[2o]

[21]

M. J. Fischer, S. Micali, C. Rackoff, M. Tompa, and D. K. Wittenberg, "An
Oblivious Transfer Protocol", in preparation.

Z. GMil, S. Haber, and M. Yung, "Mimimum-Knowledge Interactive Proofs for
Decision Problems", 1987, to appear.

O. Goldreich, S. Micali, and A. Wigderson, "Proofs that Yield Nothing But their
Validity and a Methodology of Cryptographic Protocol Design", g7th Annual Sym-
posium on Foundations of Computer Science, Toronto, Ontario, October 1986,
174-187.

S. Goldwasser, S. Micali, and C. Rackoff, "The Knowledge Complexity of Interac-
tive Proof-Systems", Proceedings of the Seventeenth Annual A CM Symposium on
Theory of Computing, Providence, Rhode Island, May 1985, 291-304.

J. D. Lipson, Elements of Algebra and Algebraic Computing, Addison-Wesley,
Reading, Massachusetts, 1981.

M. O. Rabin, "Digitalized Signatures and Public-Key Functions as Intractable as
Factorization", Technical Report MIT/LCS/TR-212, M.I.T., January 1979.

M. O. Rabin, "Probabilistic Algorithms in Finite Fields", SlAM Journal on Com-
puting, vol. 9 (1980), 273-280.

M. O. Rabin, "How to Exchange Secrets", unpublished manuscript, 1981.

M. Tompa and H. Woll, "Random Self-Reducibility and Zero Knowledge Interac-
tive Proofs of Possession of Information", ~8th Annual Symposium on Foundations
of Computer Science, Los Angeles, California, October 1987, 472-482.

H. Woll, "Reductions among Number Theoretic Problems", Information and Com-
putation, vol. ?2, no. 3 (March 1987), 167-179.

