The Simplex Algorithm for LP, and an Open Problem
Linear Programming: General Formulation

\[
\begin{align*}
\text{max } & \quad c^T x \\
\text{subject to } & \quad Ax \leq b \\
& \quad x \geq 0
\end{align*}
\]

- Inputs: real-valued $m \times n$ matrix A, and vectors c in \mathbb{R}^n and b in \mathbb{R}^m
- Output: n-dimensional vector x
- There is one constraint per row of A, m constraints in total
The Simplex Algorithm

let v be any vertex of the feasible region
while v is not optimal
 find neighbor v' of v with a better objective value
 (or determine that the feasible region is unbounded)
 set v = v'
output v

• *Vertex*: a point at the intersection of n or more facets, i.e., (n-1)-dimensional hyperplanes
• *Edge*: the intersection of (n-1) facets
• *Neighbours*: a pair of vertices connected by an edge
The Simplex Algorithm
The Simplex Algorithm

Algorithmic implementation issues:

• How do we find an initial feasible \(v \)? (Or determine that the feasible region is empty)

• How do we determine whether \(v \) is optimal?

• How do we find a neighbor \(v' \) of \(v \) with better objective value?
The Simplex Algorithm

Algorithmic implementation issues:
• How do we find an initial feasible \(v \)? (Or determine that the feasible region is empty)
• How do we determine whether \(v \) is optimal?
• How do we find a neighbor \(v' \) of \(v \) with better objective value?

We'll start with simplifying assumptions:
• Our feasible \(v \) is at the origin
• Also, \(v \) is not degenerate: it is the intersection of exactly \(n \) facets
Algorithmic implementation issues:

• How do we find an initial feasible \(v \)? (Or determine that the feasible region is empty)

• How do we determine whether \(v \) is optimal?

• How do we find a neighbor \(v' \) of \(v \) with better objective value?

Now let’s remove our assumptions:

• \(v \) is not at the origin

• \(v \) is degenerate
The Simplex Algorithm

If \(v \) is not at the origin, we simply shift our coordinate system!

For each of the \(n \) linearly independent facets defining \(v \), let \(y_i = b_i - a_i x \)

- Describe all of the constraints and objective function in terms of the \(y_i \)'s rather than the \(x_i \)'s
- The constraint "\(a_i x \leq b_i \)" becomes "\(y_i \geq 0 \)"; as a result \(v \) shifts to 0
What if v is degenerate?

- Pick any n of the facets. Then apply the algorithm just as before. That is, relax one of the current n facets, identify a new facet that blocks improvement, and replace the relaxed one with this new blocking one. Perhaps surprisingly, we will not run into an infinite loop! (Proof omitted)
An Open Problem: Stochastic Games

• Generalization of Markov Decision Processes

• Applications in economics, evolutionary biology, computer networks
Stochastic Games

• Consider a directed graph with Decision, Random, and Sink nodes as before, but also now with Adversary nodes.
• This models a zero sum game involving two players: Decider and Adversary.
• A policy D of the Decider is simply a choice of one edge from each decision node, and a policy A of the Adversary is one edge from each Adversary node.
Stochastic Games

• Decider wins if the “win” sink node n is reached, otherwise Adversary wins, i.e. when the “lose” sink node n-1 is reached

• Again assume that any run of the process halts with probability 1, for any policies of the players

• We want to find a policy D that maximizes Decider's chance of winning, assuming that Adversary uses a policy A that minimizes Decider's chance of winning
Stochastic Games

Let $w_{D,A}(i)$ be the probability that Decider wins if policies D and A are used and the game starts at node i

- A min-max theorem holds for stochastic games: for any node i,

$$\max_D \min_A w_{D,A}(i) = \min_A \max_D w_{D,A}(i)$$

- "Mixed" policies that assign probabilities to edges from Decision and Adversary nodes are no better than the “pure” policies we've defined
Stochastic Games

• Optimal policies are independent of the starting node: there are policies D* and A* such that for all nodes i,

\[w_{D^*,A^*}(i) = \max_D \min_A w_{D,A}(i) = \min_A \max_D w_{D,A}(i) \]

• With these optimal policies, value \(w_{D^*,A^*}(i) \) of node i is
 – the \textit{max} of its children’s values if i is a Decision node
 – the \textit{min} of its children’s values if i is an Adversary node
 – the \textit{average} of its children’s values if i is a Random node
 – 0 if i is the “lose” sink node n-1 and 1 if i is the “win” sink node n
Exercise: For a \textit{fixed} policy A of the Adversary, how can we find an optimal policy D of the Decider in polynomial time?

Exercise: For a fixed policy D of the Decider, how can we find an optimal policy A of the Adversary in polynomial time?
Exercise: How to find optimal policies of both players (not necessarily in polynomial time)?
Exercise: How to find optimal policies of both players (not necessarily in polynomial time)?

- **Exhaustive search**, using min-max theorem:
 \[
 \max_D \min_A w_{D,A}(i) = \min_A \max_D w_{A,D}(i)
 \]

- For each fixed D, find the optimal A, i.e. the A that minimizes \(\min_A w_{D,A}(i) \) for all i. Choose the D* that maximizes these quantities.
Exercise: How to find optimal policies of both players (not necessarily in polynomial time)?

Extended Policy iteration:
- Starting with an arbitrary policy D, find the optimal A
- Then switch the decision of D at a node if it improves the winning probabilities
- Repeat until no further improvement is possible
- Once again, this "local search" approach yields globally optimal policies
Stochastic Games

No polynomial time algorithm is known to find optimal policies of stochastic games

Consider the decision problem: Does Decider win with probability at least 1/2 from a given start node?

The decision problem is in NP (why?)

AND... the complement of the decision problem is in NP!

Thus the problem is in NP intersection co-NP, and thus unlikely to be NP-complete
LP Wrap-up

• Linear Programming algorithms are useful for solving a broad array of optimization problems, with many available solvers that use interior point methods or simplex