Stable Matching Continued

Hardness of Max Cardinality WSMTI
(Weakly Stable Matching with Ties and Incomplete Preferences)
Outline for today

• SMI: Stable Matching with Incomplete (Partial) Preferences: proof of correctness of Gale-Shapley (GS) algorithm (using slides from previous lecture)
• A new variant with ties: Max Cardinality WSMTI
• NP-completeness: a quick review
• Proof that Max Cardinality WSMTI is NP-complete

• Yet other variants of stable matching
Stable Matching with Ties and Incomplete Preferences (SMTI)

- In this variant of the problem, professors and students may have ties in their preference lists.

- Example: p1: \{s2, s4\}, s3, \{s1, s5\} means that p1 is indifferent between s2 and s4, but prefers both to s3; moreover p1 prefers s3 to both s1 and s5, but is indifferent between s1 and s5.
Stable Matching with Ties and Incomplete Preferences (STMI)

With respect to a matching \(M \), pair \((p,s) \) is weakly blocking if the following are all true.

(i) Pair \((p,s) \) acceptable and is not in \(M \).
(ii) Either \(s \) is unassigned, or \(s \) prefers \(p \) to \(M(s) \).
(iii) Either \(M(p) < c(p) \), or \(p \) prefers \(s \) to at least one member of \(M(p) \).

A matching \(M \) is weakly stable if \(M \) has no weakly blocking pairs.
Stable Matching with Ties and Incomplete Preferences (STMI)

Goal: given a SMTI instance, find a weakly stable matching
NP-Completeness
NP-Completeness

• Helps identify which problems are unlikely to have efficient, i.e., polynomial-time, algorithms

• It's convenient to work with decision problems, which have yes or no answers
Max Cardinality SMI (stable matching with incomplete preferences)
An instance consists of

• a list of preference orders for profs
• a list of preference orders for students
• a positive integer \(k \)

The preference orders may incomplete.
Does the instance have a stable matching of size at least \(k \)?

(We saw in the last class that there is an efficient algorithm for this problem.)
NP-Completeness: Decision Problem Examples

Max Cardinality WSMTI (*weak* SM with *ties* and *incomplete Prefs*)
An instance consists of
• a list of preference orders for profs
• a list of preference orders for students
• a positive integer k

The preference orders may incomplete and have ties
Does the instance have a *weakly* stable matching of size at least k?

(This problem is our main focus today.)
Graph Colouring

Instance: An undirected graph $G = (V,E)$ and a positive integer k

Can the nodes of G be coloured with at most k colours, so that no two adjacent nodes have the same colour?

(This is one of the best known “NP-complete” problems.)
NP-Completeness: Decision Problem Examples

Maximum Bipartite Matching

Instance: A bipartite graph $G = (U,V,E)$ and a positive integer k

Does the maximum matching of G have size at least k?

(There is an efficient algorithm for this problem, which we’ll study in the next class.)
Exact Maximal Bipartite Matching

Instance: A bipartite graph $G = (U,V,E)$, where $|U| = |V|$, and a positive integer k

Does G have a maximal matching of size exactly k?

A matching is *maximal* if no edges can be added to the matching
NP-Completeness

We can group decision problems into classes (sets)

P: class of problems with polynomial time algorithms

Examples of problems in P:
- SMI: Stable Matching with Incomplete (Partial) Preferences
- Maximum Bipartite Matching (upcoming lecture)
NP-Completeness

NP: class of problems with polynomial time verifier algorithms

A verifier V for a decision problem D takes both an instance I of D and a witness W, such that:

- If I is a yes-instance, then for some W, $V(I,W) = \text{yes}$
- If I is a no-instance, then for all W, $V(I,W) = \text{no}$
NP-Completeness

Known examples of problems in \textbf{NP}:

• Graph Colouring
• Maximal Bipartite Matching
NP-Completeness

Known examples of problems in \textbf{NP}:

• Graph Colouring
• Maximal Bipartite Matching

\textit{Important point}: problems in P are also in NP!

• Max Cardinality SMI
• Maximum Bipartite Matching
A decision problem D' is *NP-complete* if

- D' is in NP, and
- For all D in NP, there is a *polynomial-time reduction* from D to D'. (We write D \(\leq_p D' \))

The reduction maps instances I of D to instances I' of D' such that I is in D if and only if I' is in D'.

Examples of NP-complete problems:

- Graph Colouring
- Exact Maximal Bipartite Matching
A decision problem D' is \textit{NP-complete} if

- D' is in NP, and
- For all D in NP, there is a \textit{polynomial-time reduction} from D to D'. (We write $D \leq_p D'$)
A decision problem D' is *NP-complete* if

- D' is in NP, and
- For all D in NP, there is a *polynomial-time reduction* from D to D'. (We write $D \leq_p D'$)

If a problem D' is NP-complete, this is strong evidence that D' does not have a polynomial time algorithm: if it did, *all* problems in NP would have polynomial time algorithms.
A decision problem D' is *NP-complete* if

- D' is in NP, and
- For all D in NP, there is a *polynomial-time reduction* from D to D'. (We write $D \leq_p D'$)
A decision problem D' is NP-complete if
- D' is in NP, and
- For all D in NP, there is a \textit{polynomial-time reduction} from D to D'. (We write $D \leq_p D'$)

Claim: If D is in NP, D' is NP-complete, and $D' \leq_p D$, then D is also NP-complete.
The proof follows easily by transitivity of polynomial time reductions (\leq_p).

This claim enables us to show that new problems of interest to us are NP-complete.