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Abstract.  
Intelligent user assistance systems face challenges of 
incomplete, uncertain and multiple modality sensory 
observations, user’s changing internal state, and 
constraints in making decisions. We introduce a 
probabilistic framework to dynamically model user’s 
affective state with various visual cues in such systems. 
A systematic mechanism performs purposive and 
sufficing information integration to infer user’s 
affective state and provide correct assistance. We aim 
to actively infer the user’s status and engage in 
appropriate assistance in a timely and efficient manner.  

1. Introduction 
Intelligent assistance systems are an important 
application area of user modeling, especially with the 
rapid development of pervasive and ubiquitous 
computing. For example, in every year many people 
are injured in car accidents because drivers are in 
dangerous status including fatigue, nervousness, or 
confusion. If we could distinguish these dangerous 
states in a timely manner, and provide assistance in 
terms of appropriate alerts, we may prevent many 
accidents from happening. However such systems 
face several challenges: 1) sensory data are often 
incomplete, uncertain, and from sources of different 
modalities; 2) sensory data are often dynamic and 
evolving over time to reflect change in the user’s 
state; and 3) decisions about the user’s need and the 
assistance must be rendered appropriately and in a 
timely and efficient manner under various constraints 
on time and resources.  

We introduce a probabilistic framework based on the 
Dynamic Bayesian Networks (DBNs) and 
information theory to simultaneously address the 
above challenges. Firstly, a generic hierarchical 
probabilistic framework for user modeling is 
introduced to model the sensory observations, and the 
profile and contextual information related to the 
user’s mental state. Secondly, this framework 
dynamically evolves and grows to account for 
temporal change in sensory observations as a result 
of the change in user’s internal state. The DBNs 
allow the temporal information to be systematically 
incorporated via temporal causality. Thirdly, the 
proposed framework provides a mechanism that 
performs purposive and sufficing information 
integration in order to determine the user’s status. 

Specifically, instead of passively fusing the 
information that is available, this system first 
formulates an initial hypothesis about the user’s 
current internal state and then actively selects the 
most informative sensory/questioning strategy in 
order to quickly and economically confirm or refute 
the hypothesized internal state. All these methods 
help the system to actively infer the user’s need/state 
under uncertainty over time and engage appropriate 
assistance in a timely and efficient manner.  

2. Bayesian Networks in User Modeling 
Recently, there has been a significant surge in using 
BNs for plan recognition, user need inference, and 
affective state assessment. Plans encode a user’s 
intentions and desires. Huber et al (1994) provide a 
uniform procedure for converting plans represented 
in a flexible procedural language to probabilistic 
belief networks. Pynadath and Wellman (1995) 
present a Bayesian framework describing the context, 
the mental state and planning process of an agent, 
and the consequences of the agent's actions.  

Intelligent user assistance systems need the ability to 
adaptively accommodate user’s specific need. The 
READY system (Bohnenberger et al, 2002) uses 
DBNs in a dialog system to adjust the policy in 
providing instructions, based on the recognized time 
pressure and cognitive load from the user’s utterances, 
realized by a rule base that maps detected situations 
into actions. Microsoft’s Lumiere project (Horvitz et 
al, 1998) is intended to help computer users with 
interactive interfaces by identifying their needs. 
DeepListener and Receptionist (e.g., Horvitz & Paek, 
2000) augment the speech recognition in clarification 
dialogs by inferring user intentions associated with 
utterances. Costs and benefits can be calculated for 
different available actions and the action with the 
highest utility is executed. All such systems, however, 
do not distinguish actions and sensory tests and relies 
heavily on immersive interaction. 

Affective computing (Picard, 1997) uses pattern 
recognition and information retrieval technologies for 
affective state assessment. Existing techniques 
include, discriminant analysis, fuzzy rules, neural 
networks, Bayesian learning, HMM model, Bayesian 
networks, etc. One group of them uses sensory 



measures as predictor variables and applies 
classification algorithms without prior and context 
knowledge. The other group, represented by the 
Bayesian network and HMM models, represents the 
prior knowledge and expertise in graphic network 
form. They maintain the balance between the global 
and local representations and provide capabilities in 
handling the uncertainty and incompleteness in 
practical systems with the aid of the causal and 
uncertainty representation structure. Ball and Breese 
(2000) use a dynamic Bayesian network to assess the 
user’s affective state in terms of valence and arousal, 
using facial and speech information. Conati (2002) 
provides a dynamic Bayesian network model for 
assessing students’ emotion in educational games. 
The emotion states are modeled as consequences of 
how the current situation (action and help) fits with 
the student’s goals and preferences. Some body 
expressions and sensors are also used as evidence. 

Finally, another area of research that is related to the 
proposed active sensing is fault detection and 
troubleshooting (Langseth & Jensen, 2003). It 
focuses on globally seeking the best action sequence 
for a problem setting where the actions and questions 
are not repeated. Their definitions of efficiency, cost, 
and value of information are useful for our task to 
efficiently and accurately infer user state. 

In conclusion, the researchers have realized the 
benefits of DBNs and utility theory, and have begun 
to apply them to user assistance. Current research in 
these areas, however, is limited to passive inference, 
mostly affect-insensitive, and in a static domain. 
Compared with the Bayesian network systems 
discussed above, our system currently aims at two 

objectives. First, non-intrusive and active user state 
inference. Our target is to design silent agents that 
use the most reliable and non-intrusive evidences, to 
provide the user with accurate and active assistance 
in a pervasive and ubiquitous computing environment. 
Second, dynamic and active sensor selection. The 
selection of sensor or sensors in such a system should 
not be done once and then forgotten, but needs to be 
continually and dynamically reevaluated. We focus 
more on refining sensors/questions dynamically using 
a local optimal strategy. 

3. A Generic User Modeling Framework 
Our generic framework to apply Bayesian networks 
to user modeling is the “Context-Affective State-
Profile-Observation” model. It is used to infer the 
user’s affective state from their visual observations. 
As in Figure 1, such model captures the user’s 
profile, affective state, and the contextual information.  
• Contextual component. The represents information 

about the specific environmental factors that can 
influence the user's affective state.  

• Affective state component. This component 
represents the user’s emotional status. Typical 
affective states include fatigue, confused, 
frustration, fear, sad, and anger. 

• Profile component. This models user’s ability and 
competitiveness in finishing the operations. This 
provides the adaptation capability of the model to 
individual users.  

• Observation component. It is sensory observation 
of different modalities about user behaviors. 

The affective state of the user and hidden nodes of 
the user’s visual, audio and behavioral status in 
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Figure 1 “Context-Profile-State-Observation” model, where self-pointing arrows indicate temporal links. 



current time slice are influenced by the corresponding 
variables in the most recent time slice. The user 
profile could also have temporal links between time 
slices. However in this figure, we consider it 
unchangeable in a running session. This figure also 
outlines the causal relations between context, profile, 
state, and observation variables. The context and 
profile variables influence the user’s state. The user’s 
states lead to the evolvement of visual, audio, and 
behavioral expressions. 

4. Active Affective State Inference 
Since we are often constrained by the time and 
resource we could use, and the strict requirement on 
the accuracy of assistance, purposive and sufficing 
information collection and integration are needed to 
infer about the user’s affective state in a timely and 
economic manner. Figure 2 shows a general view of 
the active user state detection system. We are 
interested in how to dynamically control (select 
actions and make decisions) the system that has a 
repertoire of sensors such that the system operates in 
a purposive manner. We selectively collect the 
observations of sensory variables, or even further 
reduce the uncertainty by asking user questions. 

4.1 Active User State Inference 

Mathematically, the user affective state inference 
problem may be viewed as a hypothesis detection 
problem, with hypothesis, H={h1, h2,…,hn}, 
representing the possible user state. The sensory 
observations E={E1, E2,…,Em}, have m diverse 
sensors. The goal is to estimate a posterior 
probability that H=hi is true given E, i.e., P(H=hi|E). 
According to the Shannon’s measure of entropy, the 
entropy of a distribution over hypothesis Ht, given the 
hypothesis distribution in last time slice Ht-1 is: 

)|(log)|()( 11
1

−−∑
−

−= tttt
h

hhphhpHENT
t

 

The benefit of certain evidence can be measured by 
its potential to reduce the uncertainty with the 
hypothesis, called mutual information, i.e., the 

differential entropy between prior to and after the 
sensory action. Given sensor Ei with a set of states (e1, 
e2, …), this mutual information can be denoted as:   
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This formula is the fundamental equation for 
computing uncertainty reducing potential for H due 
to E. We could easily extend it to consider the case of 
multiple sensors, E={E1,…,En}⊆E. The probabilities 
in the above equation are readily available from the 
forward and backward inference propagation based 
on hypothesis beliefs for last time slice. For example, 
p(ht | ht-1, ei) is the posterior probability of hypothesis 
for current time slice given the a state combination on 
sensor variables. 

Acquiring information incurs cost. The cost may 
include the cost of information retrieval, the time to 
include the information from source into the fusion 
system, computation time for sensory data processing, 
and hardware execution time. We consider the sensor 
cost C of selecting Ei, where all costs are assumed to 
be incorporated into the same equivalence, using the 
following formula: 
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where Ci is the cost to acquire the information from 
sensor i. Combining uncertainty reducing potential 
and information acquisition cost, we form the 
expected utility given sensor Ei as: 
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where α is the balance coefficient between the two 
terms. The optimal sensor action can be found by 
using the following decision rule: 
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Figure 2 Active state assessment system overview. 



4.2 Some Issues in Active Inference 

Here we discuss some complicated situations in 
sensor selection: inference degradation, selection of 
multiple sensors, and multiple hypotheses. 

One problem we encounter is inference degradation. 
The “degradation” here is defined as the compromise 
on inference ability when a small set of sensors are 
repeatedly selected. Due to the mutual information 
definition, a sensor tends to yield a higher value in 
calculation, if its conditional probability table has 
very uneven entries for configurations of parent states. 
It is also observed from the implementation. This is 
reasonable since our principal objective in active 
fusion is to seek the sensor which could most 
effectively distinguish various affects of the subject. 
However, on the other hand, the situation that one or 
a very small set of sensors dominate the selection 
depresses the advantage of fusing multimodal 
information for better accuracy and robustness. 
Furthermore, such superiority of these sensors in 
mutual information comes partially from using the 
expected potential. In such calculation, all possible 
states of sensor are inspected and the whole network 
structure impacts the result. But later on, only one 
state is instantiated for the selected sensor. In this 
sense, such criterion has bias in selection process. To 
reduce inference degradation, mutual information 
should not be the only factor in determining sensor’s 
benefit. An obvious solution is to force more sensors 
into engagement. In our study we use a taboo list to 
exclude most recently selected sensors from current 
selection decision, taking the history information in 
consideration. A list length of 1 means this list 
contains the sensor selected most recently. 

The second issue is efficient multiple sensor selection 
when more than one sensors could be opened 
together. We have to consider the mutual information 
for every possible combination of sensors in seeking 
the optimal configuration. This is a typical NP-hard 
problem, demanding intense computation with the 
increase of sensors. Seeking an affordable search 
algorithm for this case is a challenge for future 
research. In our research, we use a greedy or myopia 
strategy that calculates the utility for each sensor and 
ranks them accordingly. Then we choose the number 
of sensors needed from the top. 

We also consider the case where several interesting 
affects exist in one model. There are different views 
with regard to whether different affective states could 
coexist. Here we use multiple binary affect nodes 
since this approach could accommodate exclusive 
affects too. A constraint could be put on these nodes 
to keep the relation of the positive states among them. 
Let I(Hj,Ei) be the mutual information of Ei to 

hypothesis j. We rewrite the sensor’s mutual 
information. 
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where wj is the weight to distinguish the importance 
of affects. In our experimentation, we set this weight 
as the current belief for the hypothesis’s positive state, 
i.e., wj = p(Hj=positive). This means we give the 
suspicious hypothesis more importance. 

5. Decision on Assistance 
There are two key questions to answer: when we 
should provide the help and what help we should 
provide. The first question normally requires control 
thresholds on the probability distribution for state 
variables. We calculate a State Level (SL) on the 
probability distribution of affective states: 
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where w(ht) is the weight for the ith state of an affect, 
indicating this state’s seriousness level. For example, 
this weight could be set as zero for the negative state 
of a dangerous affect such as fatigue. Then we could 
set an Engaging Threshold (ET) on SL. If SL is 
greater than ET, we provide assistance for users. 
Moreover, we may want to use a set of state levels 
when there are different affective state variables that 
are not exclusive with each other. In practice, a SL 
smoothed over time is more appropriate as a reliable 
indicator. In our experimentation, the SLs are 
smoothed over three time slices. 

What assistance to provide depends on user’s current 
state and the utility of assistance. The utility of 
assistance represents the optimal trade-off between 
its benefits and its cost. The benefits focus on the 
beneficial consequence of the assistance. One 
measure of the benefit could be the assistance’s 
potential to return the user from an anomaly state to 
his/her nominal state. The benefit could be calculated 
by assessing the cross product of the situations and 
these assistances, through psychological experiments 
on a population of users, or some assessment tools 
like using unidimensional or multidimensional 
scaling. The cost includes the computational cost, the 
potential of annoying the user, the physical cost, and 
the cost of not providing or delaying the assistance.  

The utility of assistance is also impacted by the user’s 
current status, including the affective state, the 
current task goal, the cause, and the user’s tolerance 
to assistance, shown in Figure 3. “Task” shows the 
user’s current interest, such as choosing some icon or 
button. “Cause” is the explanation of reasons for the 
subject’s state. “Tolerance” is like a switch control 
variable determining the intervention degree the user 



would agree on. A utility form considering all these 
factors needs much more research effort. In this paper, 
we just give the simplest utility calculation based on 
the beliefs of the user’s affective state. 
 

State Task Cause Tolerance 

Assistance 

Utility 

 
Figure 3 Active assistance model. 

Let Aj represent the jth assistance in consideration; let 
GB(Aj, hi) and GC(Aj,hi) represent the benefit and cost 
for assistance j respectively, given user’s current state 
hi . Then the expected utility of assistance Aj may be 
defined as: 
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And then the best assistance is determined via: 
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6. Evaluation Model 
We use subjective parameters and simulated data to 
evaluate this framework. The task is to detect 
whether a computer operator is among “fatigue,” 
“nervousness” and “confusion” mental affects, using 
visual cues about facial expression, eyelid, gaze, and 
“query.” The implementation is in MATLAB using 
the BNT toolkit. The inference algorithm uses the 
junction tree engine. Description of these discrete 
variables is in Table 1. We use three separate nodes 
for the mental affects because we do not stipulate that 
these states are exclusive from each other. 
Explanation for these visual cues and “query” is 
given in Table 2. 

The network parameters include prior probabilities 
for “context” and “profile” nodes, and conditional 
probabilities for the links. In our experimentation, the 
prior probabilities are all set even, 0.5 for each state 
since the root nodes are all binary.  

The conditional probabilities of mental affects 
between two consecutive time slices are also called 
“transitional” probabilities. Normally this probability 
between same states, e.g., “positive” to “positive”, is 
high, if we consider a user’s mental state remain 
relatively stable. Transient affects such as 
“confusion” may come and go more quickly, with 
lower such probability. Transitional probability 

between opposite states, e.g., “positive” to 
“negative,” is much lower correspondingly. In 
experimentation, the transitional probability between 
the same states of “fatigue” is 0.9, while 0.85 for two 
other affects. 

Table 1 Variables used in the evaluation model. 

Component Variables States 
Context Context complex/simple 

Physical 
condition 

strong/weak 
Profile 

Skill strong/weak 
Fatigue negative/positive 
Nervousness negative/positive Mental 

state Confusion negative/positive 
Facial 
expression 

neutral, happiness, 
sadness, anger, surprise, 
disgust, fear 

Eyelid 
PERCLOS 

high/normal/low 

Eyelid AECS fast/normal/slow 
Gaze spatial 
distribution 

high/even/low 

Gaze fixation 
ratio 

high/even/low 

Sensory 
observation 

Query fatigued/confused/no 
 

Table 2 Explanation of visual cues and “query”. 

Facial 
expression 

Expressions from the FACS 
system.(11) 

Eyelid 
PERCLOS 

Percentage of eyelid closure over the 
pupil over time. (12) 

Eyelid AECS Average eye closure/open speed over 
time. (13) 

Gaze spatial 
distribution 

The ratio of gaze staying outside the 
computer screen in the overall time. 
(14) 

Gaze fixation 
ratio 

The ratio of gaze fixation over time. 
(15) 

Query Answers to direct questioning in the 
form “are you __?” among “fatigued, 
confused, comfortable.” (16) 

 
Other conditional probability values are from a 
survey. We focus more on the working mechanism 
than a fidelity model. However we have too many 
conditional probabilities in terms of all combinations 
of states in parent and child nodes. Instead in our 
survey we first investigate the conditional probability 
on a single parent, e.g., the probability of gaze 
fixation ratio being high given the subject is fatigued. 
Noisy-or assumption or the extensions have been 
used to reduce the number of probabilities to estimate 
from these one-on-one probabilities. While such 
extension could deal with arbitrary input and output 
nodes, the physical meaning behind the nary 
variables and the output function are very opaque to 
represent and interpret. Thus we approximate the 



combinatorial conditional probabilities as:  

∏≈
i

in ACPAACp )|(),...,|( 1
 

where Ai,…, An are parents of C. The assumption is 
that these affect function independently to raise the 
external expressions in visual sensory channels. 

Table 3 Six settings in evaluation experimentation. 

Setting Notes 
Passive I Randomly select 1 sensor. 
Active I Actively select 1 sensor. 
Active II Actively select 1 sensor with Taboo List. 
Passive II Randomly select two sensors. 
Active III Actively select two sensors. 
Assistance Provide assistance in active fusion III. 

 
Different sensor activation and assistance strategies 
are listed in Table 3. In assistance setting, all ETs are 
set to 0.8. “Query” provides more accurate measure 
of the user’s mental state. But it is very intrusive to 
the subject. We demonstrate the function of query by 
only turning on it once as the last confirmation before 
any assistance. In all active fusion settings, the sensor 
costs are all set as zero, i.e., α is 1. 

Different scenarios are used, including three 
“affective” scenarios (“fatigue,” “nervousness,” 
“confusion”), and “normal” scenario. At the 
beginning of each scenario, the beliefs for positive 
and negative states of each affect variable are all set 
as 0.5. In each scenario, the selected sensor is 
instantiated using the corresponding sensor state for 
the current time slice. In determining these sensor 
states in these scenarios, we first do a forward 
propagation using the same Bayesian network, setting 
probabilities for the affect variables. For example, in 
the scenario where the subject is fatigued, the 
probability for the positive state of “fatigue” variable 
is set as 99%, while the probabilities of the positive 
states of other two affective state variables are set as 
1%. After propagation, each sensor has a probability 
distribution associated with its states. Each sensor 
turns out the state with the highest probability. In the 
sense of reliability, such sensory channel could 
always catch the observation from the subject that is 
the most indicative signal for the underlying affect. 

7. Experimental Result Analysis  
The posterior probability for the positive state of each 
affect variable is recorded in each time slice, as well 
as the calculated SLs. Thereafter we call this 
probability the belief of the corresponding affect, e.g., 
the belief of “fatigue.” This belief is the measure to 
summarize the results about comparison of active 
fusion with passive fusion, sensor sequences, usage 

of taboo list, and assistance process. 

7.1 Active Inference versus Passive Inference 

We first examine the “normal” scenario since we 
focus on “affective” scenarios in the rest of the 
section. Figure 3 shows the belief curves in passive 
and active fusions respectively. As the curves show, 
active fusion settings (on the right) detect the 
underlying status of the subject more quickly. In 
“normal” scenario, all three probabilities drop below 
0.5. Although the corresponding passive fusion 
settings could detect the same trends in these beliefs, 
they are not as efficient as active fusion. 

 
Figure 4 The beliefs for passive and active inference. 

Now we examine the belief difference between 
passive and active fusions in each time slice. In three 
“affective” scenarios, we focus only on the difference 
for the underlying affect, i.e., fatigue for “fatigue” 
scenario, and so forth. Ignoring other affects, we plot 
this difference against time slice for the settings using 
one and two sensors respectively, shown in Figure 5. 
In the graphs, the belief of active setting subtracting 
that of passive setting produces a set of points for 
each scenario. Most points lie above the X-axis, 
meaning that in most time slices, the uncertainty 
reduction for the underlying affect of each scenario is 
more significant in active fusion than in passive 
fusion. However, we notice there are some 



exceptions though only occurring in a minority of all 
cases, such as in the “fatigue” scenario using one 
sensor. In these cases, the points lie below the X-axis, 
meaning the passive fusion gives higher beliefs for 
the underlying affect. And finally, the superiority of 
active setting to passive setting is more evident at the 
beginning time slices. Although in the late stage, 
passive settings likely have higher certainty in some 
cases. This is the possible what we call “inference 
degradation.” 

 
Figure 5 The belief difference (P_Active - P_Passive) 
of the underlying affect, using one and two sensors. 

Table 4 The number of time slices needed to reach 
the target threshold on SL for three “affective” 
scenarios, where “n/a” indicates the threshold is 
never reached during the 25 time slices. 

One sensor 
(threshold = 0.8) 

Two sensors 
(threshold = 0.9) Scenario 

Passive Active Passive Active 
“Fatigue” 7 5 7 3 

“Nervousness” n/a 14 n/a 6 
“Confusion” 16 6 11 4 

 
We could also compare the uncertainty reduction 
abilities by setting a target threshold on the 
underlying affect belief, and compare in different 
settings the number of time slices used to first reach 
this threshold. This is a good measure since in 

practice we could regard this threshold as the control 
threshold for assistance engagement. Moreover we 
would like to use the individual SL to be the 
substitute of affect belief because it provides a more 
reliable estimator. Here we set such target threshold 
as 0.8 for one sensor and 0.9 for two sensors in each 
scenario. We draw similar conclusion from Table 4. 

7.2 Sensor Sequences in Active Fusion 

We want to examine the sensor sequence selected in 
active fusion. Active fusion selects the sensors with 
the highest utility in each time slice. This utility may 
change along with time even in the same scenario. 
Table 5 shows the sensor sequences for different 
scenarios without sensor costs. Because the way we 
assign the initial beliefs, the first sensor selected for 
all scenarios are all the same, “AECS.” Then with the 
change of affective hypothesis beliefs, different 
sensors may be selected, based on the merit of mutual 
information and sensor cost. However, we notice that 
not all sensors are selected. More specifically only 
sensors 12 (PERCLOS), 13 (AECS) and 15 (gaze 
fixation ratio), are ever selected in all scenarios. Also 
in the late time slices, the sensor sequence is fixed, 
with certain sensors repeated. 

Table 5 Sensor sequences in each scenario in active 
fusion setting where one sensor is selected in each 
time slice. 

Time Fatigued  Nervous Confused  Normal  
1 13 13 13 13 
2 13 13 12 12 
3 13 13 12 15 

… … … … … 
13 13 13 12 15 
14 13 13 12 12 
… … … … … 

7.3 Usage of Taboo List 

When we recall the “inference degradation” in 
comparing passive and active fusion performances, 
now we see repetition of sensors in active fusion in 
sensor sequence analysis. We use the taboo list in 
active fusion to force more sensors into selection to 
try to counter this problem. In Figure 6, we compare 
the active fusion setting using taboo list of length 1 
with the previous setting without the taboo list, 
opening one sensor in each time slice. Similarly, we 
plot the belief difference between the two settings of 
the underlying affect variable for the three “affective” 
scenarios. From the produced points, we observe that 
such taboo list improves the performance of “fatigue” 
and “nervousness” scenarios in late time slices. 
However, it lowers the hypothesis beliefs for 
“confusion” scenario from the beginning. Thus, 



rather than we conclude the effect of such a way 
using utilization history of sensors, an advice of 
delicate deployment is more important for this 
method to alleviate the inference degradation. 

 
Figure 6 The belief difference of the underlying 

affect in each “affective” scenario, for active fusions 
with and without taboo list used, opening one sensor. 

7.4 Assistance Process 

The SLs and corresponding utilities for different 
assistances when the assistance is engaged in are 
given in Table 6. Although the individual SL for the 
underlying affect in each “affective” scenario reaches 
the ET (0.8 here) very fast, the assistance is available 
after the fifth time slice since we want to accumulate 
evidence for enough time. For each scenario, we 
calculate the utility for each assistance and choose 
the assistance with the highest utility. In our case, the 
assistance is appropriate in all scenarios, i.e., warning 
for “fatigue” scenario, emphasis for “nervousness” 
scenario for the subject to focus, and simplification of 
unrelated information for “confusion” scenario. 
While the assistance soothes the danger of one affect, 
it may aggravate other affects, e.g., the warning may 
intensify “confusion.” This tells us the importance of 
accurately detecting the subject’s status in order to 
provide appropriate assistance. 

Table 6 SLs and assistance utilities in “affective” 
scenarios, with ET = 0.8 and opening two sensors. 

SL Utility Scenario F N C W E S 
F 0.87 0.53 0.19 0.60 0.23 -0.61 
N 0.10 0.85 0.75 -0.38 0.68 -0.13 
C 0.07 0.12 0.81 -0.43 0.09 0.52 

*F-fatigued, N-nervous, C-confused, E-emphasis, W-
warning, S-simplification 

8. Conclusion 
This research makes contributions in dynamically 
and systematically modeling the user affective state, 

and performing active information fusion so that the 
user’s state and need can be determined and met in a 
timely and efficient manner. The active inference 
strategy provides better performance in evaluation 
experimentation. We also notice that such an 
affective state detection system alone could not fully 
fulfill very accurate assistance. Further research is 
ongoing in our lab to integrate multiple and 
heterogeneous models in such task.  
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