
Probabilistic Plan Recognition for Cognitive Apprenticeship

Cristina Conati and Kurt VanLehn
Intelligent Systems Program

University of Pittsburgh
Pittsburgh, PA, 15260

conati@pogo.isp.pitt.edu, vanlehn+@pitt.edu

Abstract

Interpreting the student’s actions and inferring the student’s
solution plan during problem solving is one of the main chal-
lenges of tutoring based on cognitive apprenticeship, especially
in domains with large solution spaces. We present a student
modeling framework that performs probabilistic plan recogni-
tion by integrating in a Bayesian network knowledge about the
available plans and their structure and knowledge about the
student’s actions and mental state. Besides predictions about
the most probable plan followed, the Bayesian network pro-
vides probabilistic knowledge tracing, that is assessment of the
student’s domain knowledge. We show how our student model
can be used to tailor scaffolding and fading in cognitive ap-
prenticeship. In particular, we describe how the information
in the student model and knowledge about the structure of the
available plans can be used to devise heuristics to generate
effective hinting strategies when the student needs help.

Introduction
The overall goal of our research is to develop a tutoring system
that teaches problem solving skills through cognitive appren-
ticeship [Collins et al., 1989]. In cognitive apprenticeship the
tutor models for the students how to solve problems, scaf-
folds students as they first try to solve problems on their own,
then gradually fades the scaffolding. Scaffolding takes many
forms. For instance, students can be led to solve the problem
by using an optimal solution and by explicitly performing all
the steps in the solution. When this kind of scaffolding has
faded out, students can solve problems as they please. In
addition, scaffolding requires the tutor to provide help and
unsolicited hints when the student is lost. Virtually every
pedagogical activity involved in scaffolding faces the difficult
problem of interpreting the student’s actions. For instance, in
order to respond to a student’s request for help or to provide
unsolicited hints, the coach must determine what line of rea-
soning the student has been following so that it can construct
an appropriate hint.

The problem of inferring from an agent’s actions the
plan or line of reasoning being followed is known in AI
as plan recognition [Kautz and Allen, 1986]. Plan recogni-
tion usually involves inherent uncertainty [Carberry, 1990,
Charniak and Goldman, 1993, Huber et al., 1994] and in cog-
nitive apprenticeship it is an especially hard problem
[Self, 1988], since cognitive apprenticeships teach intellectual
skills where most of the important activity is hidden from the
coaches’ view. In this paper we describe an evolving student
modeling framework, based on [Conati and Vanlehn, 1996,
Martin and VanLehn, 1995], that performs plan recognition

by integrating probabilistic reasoning and information on the
student’s mental state with knowledge of available plans.

Very little research has been devoted to plan recogni-
tion in student modeling, none of which includes prob-
abilistic plan recognition. Probabilistic reasoning has
been applied in student modeling only to perform knowl-
edge tracing [Anderson et al., 1995], that is to assess the
student’s domain knowledge and possible misconceptions
from problem solving performance [Corbett et al., 1995,
Martin and VanLehn, 1995, Mislevy, 1995, Petrushin, 1993].
Most of the attempts to apply plan recognition to intel-
ligent tutoring systems rely only on the library of the
available plans, without taking into consideration the stu-
dent’s degree of mastery in the target domain assessed by
knowledge tracing to help discriminate among alternative
interpretations of the students’ actions [Genesereth, 1982,
Kohen and Greer, 1993, Ross and Lewis, 1988]. The Ander-
sonian tutors [Anderson et al., 1995] perform both knowledge
tracing and model tracing, a very simple form of plan recog-
nition, but they do not integrate the two kinds of assessment.
Instead, they reduce the complexity of plan recognition by
restricting the number of acceptable solutions that the stu-
dent can follow and by asking the student when there is still
ambiguity among two or more solutions.

In the first part of the paper we describe how our stu-
dent model uses a compact, graph-based representation of
plans that encodes the plausible lines of reasoning for solv-
ing a problem in the target task domain (Newtonian physics
in this application) and how the graph and the student’s ac-
tions are used to dynamically generate a Bayesian network
[Pearl, 1988] that performs plan recognition and knowledge
tracing. In the second part of the paper we describe how a
tutoring system based on cognitive apprenticeship can use the
student model to tailor scaffolding and fading. In particular
we describe how we integrate probabilistic plan recognition,
knowledge tracing and hint selection rules to generate effec-
tive hints when a student needs help.

A graph based model of the problem solving
process

In order to decide which line of reasoning underlies a stu-
dent’s action the system must have a set of lines of reasoning
that students may pursue. This set represents the solution
space of a problem and in domains like physics can be quite
large. The data structure that we use to represent the solution
space of a problem is the solution graph. The solution graph
is automatically built from a knowledge base of production

"SummWeight"

(Wa = total weight of boy and flour; Ma = total mass of boy and flour)
�

"SummMass"

Mb=75;
Wf = 40;
G = 9.8;
Wb = Mb*G;
Wa = Wf + Wb;
N = Wa;

Mb=75;
Wf = 40;
G = 9.8;
Mf = Wf/G;
Ma = Mf + Mb;
Wa = Ma*G;
N = Wa;

"BOY+FLOUR" PROBLEM
A boy having a mass of 75kg (Mb), holds in his hands
a bag of flour weighing 40N (Wf).
With what force N does the floor push up on the boy’s feet?

SOLUTION PLAN
�

SOLUTION PLAN
�

Figure 1: A simple problem and its correct solution plans

rules that contains the physics principles necessary to solve
Newtonian physics problems. It can compactly represent the
solution space for any given physics problem.

The solution graph contains three types of information,
which represent (1) all the plans to solve the problem that can
be derived by the rules in the physics knowledge base; (2)
all the algebraic solution paths that develop these plans; (3)
the reasoning behind each step in a plan. Let’s consider, for
example, the solution graph for the physics problem in Figure
1. There are two different plans for this problem: either find
the weight of the flour and add the weights or find the mass of
the boy, add the masses, then convert them to weight. Then
equate the total weight of the boy and the flour to the sought
normal force. These two plans are represented by the two sets
of primitive equations “SummWeight” and “SummMass” in
Figure 1. We define as primitive equations those equations
that are direct applications of physical laws or mathematical
principles, or quantities given in the problem statement.

The primitive equations for a plan can be generated and
combined in many different ways, generating a large number
of solution paths. Solution paths can be generated, for ex-
ample, by forward chaining, backward chaining, depth first,
breadth first or any combination of these strategies. Existing
tutoring systems that provide support during problem solving
reduce the number of the acceptable solution paths by forcing
the students to follow a particular problem solving strategy
[Anderson et al., 1995, Derry and Hawkes, 1993]. Our solu-
tion graph, on the other hand, provides a compact represen-
tation of all the possible solution paths that develop a given
plan and supports tutorial interaction that is more flexible and
similar to those generated by human physics tutors.

A simplified solution graph for the problem in Figure 1 is
represented in Figure 2A. It contains nodes representing prim-
itive equations and problem variables (ellipses and diamonds
respectively in Figure 2A). Primitive equations correspond
to the application of rules of the knowledge base that en-
code quantitative physics principles. When a rule is applied
an application node representing the corresponding primi-
tive equation is entered in the solution graph, along with its
parent nodes representing the known variables and its child
node representing the computed variable. Given the solu-
tion graph, each equation entered by the user is interpreted
by decomposing it into primitive equations and by marking

the corresponding application nodes in the solution graph, as
shown in Figure 2A.

Behind each application node stands a dependency net-
work that records the derivation of the corresponding primi-
tive equation. For instance, a simplified dependency network
for the equation ������� is shown in Figure 3. There is one
dependency network for each application node, but the depen-
dency networks of different nodes often share large sub-nets.
For simplicity, in the solution graph of Figure 2A the complete
dependency networks are represented by single physics rules,
the rectangles in the graph. The dependency networks are
needed in order to interpret actions that are not equations. For
instance, suppose the student initializes a force diagram for
the compound object consisting of the boy and the bag. This
action corresponds to the darkened node labelled “boy-bag is
an object” in Figure 3.

The solution graph allows the tutor to accept the student’s
actions in any order, as long as they belong to a known plan. In
fact any traversal of the graph that connects soughts to givens
represents a legal solution path within a specific plan, and vice
versa every correct solution path corresponds to a traversal of
the solution graph. The solution graph also allows to keep
track of the actions that the student’s has performed so far.

Bayesian interpretation of student actions
After a student’s action has been mapped on the solution
graph, the system uses the mapping and the structural infor-
mation encoded in the solution graph to update a Bayesian
network in charge of plan recognition. A Bayesian network
[Pearl, 1988] is a directed acyclic graph where nodes repre-
sent random variables and arcs represent probabilistic depen-
dencies among the variables. In our Bayesian network, the
random variables represent pieces of domain knowledge, pos-
sible plans to solve a problem, the student’s actions and the
possible inferences that might have generated the actions.

Figure 2B shows the state of the Bayesian network after it
has been incrementally updated with the two equations ���
��� and 	�
�� 40 �� . The nodes at the bottom of the
network, called action nodes, represent the entered equations.
For each action node, there is a derivation node for any way
found in the graph to derive the equation (nodes der1 and der2
in Figure 2B) and an additional derivation node that represents
any other way in which the action could have been derived, for
example by guessing or by copying from a previous problem
(nodes other1 and other2 in Figure 2B). The two equations in
our example can be derived in only one way, therefore only
one derivation node (besides the other node) is inserted for
each of them. If the student typed the equation ����� 775
the system would find in the graph two ways to generate it,
and two derivation nodes would be inserted in the network.
Both action and derivation nodes have values TRUE/FALSE
representing the probability that the actions or the derivations
have (or have not) been performed.

An action node is linked to the corresponding derivation
nodes via an OR link matrix, which defines the conditional
probability distribution of the action node given the probabil-
ity distribution of its parents as a logical OR. That is, an action
node is TRUE if at least one of its parent derivation nodes is
TRUE and FALSE otherwise. Each derivation node is linked
through an AND link matrix to its parent nodes, correspond-

A8

F6

summ−masses

summ−weights

given1 given2

Wf = 40
�

G = 9.8 Mb = 75
�

W=M*G

Wf
�

= Mf*G

Mf = 4.1

Ma = 79.1
� Wa = Wb+Wf

�

Wa = 775
�

N = Wa

SOLUTION GRAPH

Wb=Mb*G

N = Wa

STUDENT’S
�
 INPUT

Mf = 40/G

given3

G = 9.8
�Wf = 40

�

Na = 775

Wb = 735
�

Mb = 75

A
�

B

Ma=Mf+Mb

Wa = Ma*G
� Newton’s Second

 Law

given1

SummMass
�

SummWeight
�

Wf=40
�

W=M*G
�Wf=Mf*G
�

N=Wa

N=Wa

der1 other1 der2 other2

Mf=40/G

W=M*G
�Newton’s Second

 Law

Redundancy
SW
�
SM
�
both

W=M*G
�

Figure 2: Example of solution graph and Bayesian network for the problem in Figure 1

ing to the application nodes marked in the solution graph as
generating the derivation. In Figure 2B, for example, the
parent application nodes of the derivation node der2 are the
application nodes labeled ��
!� 40 and ��
"�#	�
%$&� . The
AND link matrix between derivation and application nodes
represent the fact that a derivation occurs if and only if all the
necessary rules and givens have been applied.

Each application node is linked to a node that represents
the corresponding rule and to a node representing the plan
to which the rule application belongs. The solution graph
indicates to which plan each application node belongs and
the corresponding links are inserted in the Bayesian network.
The probability of the TRUE value for a plan node represents
the probability that the student is following that plan. The
probability of the TRUE value for a rule node represents the
probability that the student knows that rule. The link matrix
between an application node and its parents is a leaky-AND,

to represent the fact that when a student generates a rule
application she almost always knows the parent rule and is
following the parent plan, although there is a small probability
that she generated the application without actually knowing
the rule or without having that plan in mind.

All the plan nodes in the Bayesian network are linked to a
common ancestor, the node labeled as redundancy in figure
figure 2B. The values of this node allows to explicitly rep-
resent the probability that the student is following only one
of the available plans (values '(� and '(in figure 2B) or
more then one plan at a time (value)+*-,/. in figure 2B).

The action nodes at the bottom of the network represent ev-
idence coming from the student, therefore their TRUE value
is clamped to 1 and that evidence is propagated upward in
the network via a Bayesian update algorithm (we use the
Lauritzen-Spiegelhalter algorithm [Pearl, 1988]). In Figure
2B the higher probability of the “SummMass” node reflects

N acts on
boy−bag

floor supports
boy−bag boy−bag

is massive
boy−bag is
near earth

boy−bag
is an
object

all forces
 boy−bag

boy−bag
0
is at rest

N = Wa
1

weight
exists

normal force
exists

Newton’s Second
 Law

forces(boy−bag)
 = { N, Wa}

Normal Force
 rule

Gravitational Force
 rule

Wa acts on
boy−bag

Figure 3: Dependency network for the application node
“N=Wa”

P1 P3 P4 P5 P6 P7

W
2

N

5 = 2*a

F1

F1

A block of mass m = 2kg
slides on a frictionless table
pulled by a horizontal force
 F1 of 5N.
Find the acceleration of the block.

Figure 4: Example of ambiguous student’s action

the fact that, although the equation ������� belongs to both
solutions, the equation 	�
3� 40 �� provides clear evidence
for the plan “SummMass”. In addition, the propagation of
evidence to rule nodes in the network provides assessment on
the student’s knowledge of the corresponding physics prin-
ciples. After the student has finished with the problem, the
probabilities of the rule nodes and the dependencies between
rules are read out of the Bayesian network and become the
updated student model [Martin and VanLehn, 1995] that will
be used to aid plan recognition in future interactions with the
student, as we will see in the next section.

Using the student model to tailor the scaffolding
One form of scaffolding in cognitive apprenticeship consists
of forcing the student to explicitly perform all the steps in
a solution, for example to draw all the forces involved in
a physics problem before entering equations. This kind of
scaffolding, called reification, is usually applied to novice
students and faded when the students become more skilled
in the target domain. Fading makes the interpretation of the
student’s actions more difficult, because more of the student
reasoning is hidden from the tutor. Our student model allows
the system to handle the increased ambiguity generated by

fading and to make more flexible decisions about when to
fade the scaffolding, instead of relying on fixed rules such
as “fade reification after the student has solved 5 problems
correctly”. Let’s suppose, for example, that after solving the
problem in the previous section with reification turned on our
student starts solving the problem in the upper left window in
Figure 4. The student types the equation in the right window
in Figure 4, without drawing forces in the bottom left window.
Should the tutor keep reification turned on and ask the student
to draw the forces? The tutor uses the probabilities in the
Bayesian network generated after the student’s action to make
the decision.

The equation that the student typed can be generated either
by the correct version of Newton’s Second Law, 4��65"� , in
which 4 is the sum of all the three forces acting on the body
(shown by the vectors in the bottom left window) or by an
incorrect version in which 4 is any force applied to the body.
If this incorrect version of Newton’s Second Law is included
in the system’s knowledge base, a corresponding incorrect
plan will be included in the problem’s solution graph and the
Bayesian network generated after the equation 5 � 2 $%� will
be the one in Figure 5. If the only information available to
the system was the entered equation, then propagation of this
evidence in the network would assign equal probability to the
two possible derivations and to the two possible plans and the
only way for the tutor to understand if the student followed the
correct or the incorrect plan would be to force the student to
draw the forces in the free body diagram. However, since the
student model generated by the previous interaction with the
student reports a high probability that the student knows all
the pieces of knowledge required to correctly apply Newton’s
Second Law (the rule nodes in Figure 3), then the Bayesian
network assigns a high probability to the correct derivation
and to the correct plan and the tutor can avoid imposing the
reification of forces.

Another fundamental component of scaffolding is the capa-
bility to provide help. Providing help during problem solving
is a delicate pedagogical problem. A request for help in-
dicates that the student reached an impasse in the problem
solving process. The impasse can be turned into a learning
episode if the tutor helps the student generate the inferences
necessary to fill the knowledge gap that created the impasse.
Hinting is one of the strategies often used by human tutors
to provide constructive help [Hume et al., 1996]. Of course,
the necessary condition to provide useful hints is that the tu-
tor understands why the impasse happened. Sometimes the
student can articulate for the tutor what her problem is, but
often the student is too confused to be able to tell why she is
unable to continue and the tutor must use alternative criteria
to decide what is the best way to help the student solving the
impasse.

The structural information in the solution graph and the
probabilities generated by the Bayesian network can be used
to devise strategies for selecting what to hint for (i.e the hint
target). The Bayesian network generates predictions about
what plan the student is following. Given the plan, a hint
generation module determines from the solution graph what
steps have already been performed along this plan and what
steps are left. The steps left to be performed become the
hinting set within which the hint generator chooses the target

 Any Force
 =
 Mass * Accel

Student’s action
7

5 = 2 * a
8

Correct
derivation

Normal Force
 Rule

Normal Force N
from table on block

Gravitational Force W
from earth on block M = 2

Correct
solution

Incorrect
solution

Incorrect
Derivation Other

9

Gravitational
Force Rule

F1 = M*aApplied force F1 of
:
 5 N on blockF1 + N + W = M*a

Newton’s Second
 Law

Redundancy

both

IS
CS

Figure 5: Bayesian network built after the student’s action in Figure 3

of the next hint. Let’s suppose, for example, that the student
asks for help after typing the two equations in Figure 2A. At
this point SummMass is the most probable plan, as shown in
the network in Figure 2B, and the hinting set consists of the
following primitive equations:; ��� 9 < 8, 	�)=� 75, 	��>��	�)(?@	�
 , ���>�#	��A$B�DC
Several heuristics can be used to select among equations in the
hinting set. One heuristic gives minimal priority to hints that
simply remind the student of values that are problem givens.
In our example this heuristic would rule out using the steps
��� 9 < 8 and 	�)"� 75 as hints. Two different heuristics
can be based on the probabilistic assessment of the student’s
knowledge of physics rules. The reminding heuristic selects
steps related to physics knowledge that has high probabil-
ity of being mastered. The hints generated by this heuristic
are analogous to those categorized in [Hume et al., 1996] as
pointing hints, that is hints pointing to well-known informa-
tion that the student doesn’t realize is relevant in the current
situation. In our example this heuristic would select the step
���>��	��%$E� , since it is related to the rule �F��	�$E� (see
solution graph Figure 2A) which has reached a high probabil-
ity of being known (see Bayesian network in Figure 2B) after
the student typed 	�
!� 40 �� .

The second heuristic, the low knowledge heuristic, selects
for hinting a step related to physics knowledge that is not ev-
idently known by the student. This heuristic generates hints
analogous to those classified in [Hume et al., 1996] as con-
veying information hints, that suggest information prompting
the student to infer an answer or the next step of a solution.
In our example, this heuristic would select for hinting the step
	��G�#	�)(?@	�
 , since there is no direct evidence from the

student’s actions that the student knows the related rule “the
total mass of a system is the sum of the masses of the system’s
components”.

A third heuristic that can be combined with either of the
two above is the adjacency heuristic. It selects a step adjacent
in the solution graph to the last step performed by the student.
In our example, the only step adjacent to the last performed,
	�
H� 40 I� , is 	��J�K	�)%?6	�
 . How to combine these
heuristics and how to set their priorities when they provide
conflicting suggestions is an open research issue, since not
many results are available about how human tutors select
their hints and how effective they are [Hume et al., 1996].
One of our hypotheses is that the adjacency heuristic should
have high priority since it is important that the content of the
hint preserves a discernible connection with what the student
is trying to do. A second hypothesis is that the reminding
heuristic should be used with care, to avoid suggesting to the
student something that she already knows how to perform. To
this regard, a variation of the reminding heuristic would be to
consider whether the high probability of the target knowledge
derives from recent student actions (as in our example) or from
actions that the student has performed in previous problems.
If the target knowledge has been used recently, it is less likely
that the student needs to be reminded of it. For instance, in
our example the student has just applied the rule �L��	�$(�
to generate 	�
M� 40 I� , therefore it is not very plausible
that now she is having problems in applying the rule to find
��� . Given this variation the reminding heuristic all the
three heuristics listed above point to the selection of 	��N�
	�
G?6	�) as the hint target. We are planning to test these
and additional/alternative hypotheses and heuristics by using

them to implement different hint selection strategies and by
testing these strategies with real students.

Conclusions
In this paper we have described a student modeling framework
that performs knowledge tracing and plan recognition while
students solve problems in Newtonian physics. Our approach
to plan recognition is innovative in that we use a Bayesian
Network to integrate in a principled way knowledge about the
student’s behavior and mental state with knowledge about the
available plans. The available plans are encoded in a graph-
based representation that compactly represents all the different
orders in which each plan can be implemented and allows
maximum flexibility when accepting the students’ solutions.
We have presented examples of how our student model can
be used to tailor cognitive apprenticeship, in particular to
generate effective hints when the student needs help.

We have started to evaluate the accuracy of the predic-
tions generated by our model on the solutions generated by
three students solving the problem presented in this paper and
on the solutions generated by two students solving a more
complex problem involving 4 different solution plans and 18
primitive equations. The predictions generated by the model
after each step of the 5 solutions have been consistent with
the plan that each student actually followed. We plan to per-
form a more extensive evaluation after we have formalized
the hinting rules and reimplemented a more efficient C++
version of the update algorithm for the Bayesian network,
currently implemented in Lisp. The results of the evaluation
will decide whether we will need to switch to approximate up-
date algorithms[Cousins et al., 1993] to maintain acceptable
performances on more complex problems.

Acknowledgements
This research is supported by ONR’s Cognitive Science Divi-
sion under grants N00014-96-1-0260 and N00014-95-1-0950,
and by DARPA’s Computer Aided Education and Training
Initiative under grant N66001-95-C-8367.

References
[Anderson et al., 1995] Anderson, J., Corbett, A., Koedinger,

K., and Pelletier, R. (1995). Cognitive tutors: Lessons
learned. The Journal of the Learning Sciences, 4(2):167–
207.

[Carberry, 1990] Carberry, S. (1990). Incorporating default
inferences into plan recognition. In Proceedings of AAAI-
90, pages 471–478.

[Charniak and Goldman, 1993] Charniak, E. and Goldman,
R. (1993). A bayesian model of plan recognition. Artificial
Intelligence, 64(1):53–79.

[Collins et al., 1989] Collins, A., Brown, J. S., and Newman,
S. E. (1989). Cognitive apprenticeship: Teaching the craft
of reading, writing and mathematics. In Resnick, L. B.,
editor, Knowing, learning and instruction: Essays in honor
of Robert Glaser, pages 543–494. LEA, Hillsdale, NJ.

[Conati and Vanlehn, 1996] Conati, C. and Vanlehn, K.
(1996). Pola: a student modeling framework for probabilis-
tic on-line assessment of problem solving performance. In
Proc. of UM-96, 5th International Conference on User
Modeling.

[Corbett et al., 1995] Corbett, A. T., Anderson, J. R., and
O’Brien, A. T. (1995). Student modeling in the ACT pro-
gramming tutor. In Nichols, P. D., Chipman, S. F., and
Brennan, R. L., editors, Cognitively Diagnostic Assess-
ment, pages 19–42. LEA, Hillsdale, NJ.

[Cousins et al., 1993] Cousins, S., Chen, W., and Frisse, M.
(1993). A tutorial introduction to stochastic simulation
algorithms for belief networks. Artificial Intelligence in
Medicine, 5:315–340.

[Derry and Hawkes, 1993] Derry, J. S. and Hawkes, L. W.
(1993). Local cognitive modeling of problem-solving be-
havior: An application of fuzzy theory. In Lajoie, S. and
Derry, S., editors, Computers as Cognitive Tools. Lawrence
Erlbaum, Hillsdale, NJ.

[Genesereth, 1982] Genesereth, M. (1982). The role of plans
in intelligent teaching systems. In Sleeman, D., editor, In-
telligent tutoring systems, pages 137–156. Academic Press,
New York.

[Huber et al., 1994] Huber, M., Durfee, E., and Wellman, M.
(1994). The automated mapping of plans for plan recogni-
tion. In Proceedings of the tenth conference on Uncertainty
in Artificial Intelligence, pages 344–351.

[Hume et al., 1996] Hume, G., Michael, J., and Evens, M.
(1996). Hinting as a tactic in one-to-one tutoring. The
Journal of Learning Sciences, 5(1):23–47.

[Kautz and Allen, 1986] Kautz, H. and Allen, J. (1986). Gen-
eralized plan recognition. In Proceedings of AAAI-86,
pages 32–37.

[Kohen and Greer, 1993] Kohen, G. and Greer, J. (1993).
Recognizing plans in instructional systems using granu-
larity. In Proceedings of the 4th International Conference
on User Modeling, pages 133–138.

[Martin and VanLehn, 1995] Martin, J. and VanLehn, K.
(1995). A bayesian approach to cognitive assessment. In
Nichols, P., Chipman, S., and Brennan, R. L., editors, Cog-
nitively diagnostic assessment. LEA, Hillsdale, NJ.

[Mislevy, 1995] Mislevy, R. J. (1995). Probability-based in-
ference in cognitive diagnosis. In Nichols, P., Chipman,
S., and Brennan, R., L., editors, Cognitively diagnostic
assessment. LEA, Hillsdale, NJ.

[Pearl, 1988] Pearl, J. (1988). Probabilistic Reasoning in In-
telligent Systems: Networks of Plausible inference. Mor-
gan Kaufmann, Los Altos, CA.

[Petrushin, 1993] Petrushin, V. A.and Sinitsa, K. M. (1993).
Using probabilistic reasoning techniques for learner mod-
eling. In Proceedings of the 1993 World Conference on AI
and Education, pages 426–432.

[Ross and Lewis, 1988] Ross, P. and Lewis, J. (1988). Plan
recognition for intelligent tutoring systems. In Ercoli, P.
and Lewis, R., editors, Artificial Intelligence tools in Edu-
cation, pages 29–37. Elsevier Science Publishers.

[Self, 1988] Self, J. (1988). Bypassing the intractable prob-
lem of student modeling. In Proc. of ITS-88, pages 18–24,
Montreal, Canada.

