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Abstract. In this paper, we present a study to evaluate the impact of adaptive 
feedback on the effectiveness of a pedagogical agent for an educational 
computer game. We compare a version of the game with no agent, and two 
versions with agents that differ only in the accuracy of the student model used 
to guide the agent’s interventions. We found no difference in student learning 
across the three conditions, and we report an analysis to understand the reasons 
of these results. 
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1  Introduction 

Educational computer games (edu-games) are an increasingly popular paradigm 
embedding pedagogical activities in highly engaging, game-like interactions. While 
edu-games usually increase student engagement and motivation, there is still limited 
evidence on their pedagogical potential (see [1] for an overview). One possible reason 
for these results is that most edu-games are designed based on a one-size-fits-all 
approach, rather than being able to respond to the specific needs of individual 
students. We aim to overcome this limitation with intelligent pedagogical agents that 
can provide individualized support to student learning during game playing [2].  
 Providing this support is challenging because it requires a careful trade-off between 
fostering learning and maintaining engagement. Our long-term goal is to enable our 
agents to achieve this trade-off by relying on models of both student learning and 
affect [2]. In this paper, however, we analyse the performance of an agent that acts 
only on the basis of a model of student learning. In particular, we describe a study to 
evaluate the effect of improving model accuracy on the agent’s pedagogical 
effectiveness.  

Although there is widespread interest in educational computer-games, adaptive 
versions of these learning tools are still relatively new, and empirical evaluations of 
the learning benefits of having adaptive game components are rare (see next section).  
The evaluation we discuss in this paper focuses on Prime Climb, an adaptive edu-game for 
number factorization. Our evaluation is novel because it is the first in adaptive edu-games 
research to combine an analytical evaluation of the accuracy of the game’s student model 
with an empirical evaluation of the effectiveness of adaptive interventions based on this 



model. Although our study shows no advantage in having an accurate student model, 
our methodology allows us to provide insights into the reasons for this null-result, 
representing a step towards understanding how to devise effective adaptive edu-games. 
In the rest of this paper, we first discuss related work. Next, we describe Prime Climb 
and the versions of its agent and student model that we evaluated. We then present the 
study and its results, and discuss implications for future work. 

2 Related work 

Because of the highly motivating nature of electronic games, there has been growing 
interest in investigating whether they could be utilized to assist learning, especially 
for those children who lost interest in math or other science courses [15,16]. Results 
on the effectiveness of these educational tools, however, are mixed. There is evidence 
that these games can increase student engagement and motivation (e.g., 17, 18), but 
the results on their pedagogical potential are limited (e.g., [1],[15],[19]), unless the 
interaction is led by teachers and integrated with other instructional activities [e.g., 
16]. There is also initial evidence that, for some students, educational games can be 
less engaging and motivating than more traditional e-learning tools [14].  
   One of the main reasons for these limitations of educational games is that learning 
how to play the game does not necessarily imply learning the target instructional 
domain. Learning happens when students actively build the connections between 
game moves and underlying knowledge. However, building these connections on one 
own is a form of exploratory or discovery learning, and there is extensive evidence 
that not all students are proficient in these activities , because they lack relevant meta-
cognitive skills such as self-explanation and self-monitoring) [10, 20]. These students 
tend to perform better in more structured pedagogical activities [10], thus they  may 
benefit from having some form of tutorial guidance when playing educational games.   
   In light of these findings, researchers have started investigating adaptive 
educational games, that is games that can autonomously tailor the interaction  to the 
specific needs of each individual player. Although adaptive techniques have been 
successfully applied to other types of computer-based instructional environments 
[12], research on adaptive educational games is still in its infancy, and there are very 
few formal evaluations that explicitly target the pedagogical impact of adding 
adaptive functionalities to educational games. Both [9] and [13] showed that it is 
possible to devise user models that can capture student learning in educational games. 
The work in [9] relates to the educational game targeted by this paper and described 
in the next section. The work in [13] describes a model of student learning for Zombie 
Division, an educational game designed to help elementary school students learn 
about division. None of these works, however, show that having an adaptive 
component built on their student models supports learning. KMQuest [3], an adaptive 
edu-game for business decision-making, was shown to significantly improve student 
learning, but was not compared with a non-adaptive version. The Tactical Language 
and Culture Training System (TLCTS) supports language learning by combining an 
ITS component (the Skill Builder) and two games  [4]. TLCTS is being actively used 
by the US military, and there is substantial evidence of its pedagogical effectiveness. 



However, in TLCTS the adaptive behaviors reside primarily in the ITS component, and 
the only results on how the games contribute to system effectiveness relate to 
increasing student motivation [5]. The Elektra project [6] is a large research initiative 
aiming at defining a general methodology and tools to devise  effective educational 
games. The proposed methodology includes having cognitive and motivational 
student models to allow  a  game to react adequately to the individual learner’s 
cognitive and motivational needs.  One of the games built as part of the project for 
teaching the physics of optics was evaluated and the study results showed positive 
trends in students perceived effectiveness of the game’s adaptive interventions. The 
results, however, failed to provide results on actual learning gains [6]. McQuiggan et 
al. [7] evaluate the impact of rich narrative in a narrative-based adventure game for 
teaching microbiology, but there is no adaptive component in this system. 

3  The Prime Climb game, its agent and student model 

 
Figure1: The Prime Climb Interface  

 

In Prime Climb, students in 6th and 7th grade practice number factorization by pairing up 
to climb a series of mountains. Each mountain is divided into numbered sectors (see 
Figure 1), and players must try to move to numbers that do not share common factors 
with their partner’s number, otherwise they fall. To help students, Prime Climb includes 
the Magnifying Glass, a tool that allows players to view the factorization for any number 
on a mountain in the PDA device displayed at the top-right corner on the game interface 
(see Figure 1). Each student also has a pedagogical agent (Figure 1) that provides 
individualized support, both on demand and unsolicited, when the student does not seem 



to be learning from the game. In the next subsections, we describe two versions of the 
agent, built through an iterative cycle of design and evaluation. 

3.1 First Version of the Prime Climb Agent 

To provide appropriate interventions, the agent must understand when incorrect moves 
are due to a lack of factorization knowledge vs. distraction errors, and when good moves 
reflect knowledge vs. lucky guesses or playing only based on game heuristics. Thus, 
Prime Climb includes a student model, based on Dynamic Bayesian networks, that 
assesses the student’s factorization knowledge for each of the numbers involved in a 
Prime Climb session (factorization skills from now on) based on the student’s game 
actions [8]. A first version of the agent gave hints at incremental levels of detail based on 
this model, as is commonly done in several ITS [21], with the goal of triggering student 
reasoning about number factorization as they play.  

• The first (focus) level aims to channel the student’s attention on the skill that 
requires help. For instance, the agent says “Think about how to factorize the 
number you clicked on” if the student model predicts that the student doesn’t 
know how to factorize that number;  

• the second (tool) level is a hint that encourages the student to use the magnifying 
glass to see relevant factorizations.  

• The third (bottom-out) level gives either the factorization of a number or which 
factors are in common between two numbers [8].  

Students can choose to progress through the various levels by asking for further help. 
Otherwise, the agent goes through the progression when it needs to intervene on the 
same skill more than once. Hints are provided regardless of the correctness of the 
student’s move, if the student model assesses that the student needs help with the 
relevant number factorization skills. 

Table 1: Sample revised hinting sequence triggered by a student not knowing 
the factorization of a number 

Focus Think carefully how to factorize the number you clicked on.  
Definition 1 Factors are numbers that divide evenly into the number. Here’s an 

example. 
Definition 2 Factors are numbers that multiply to give the number. Look at this 

example. 
Tool You can use the magnifying glass to see the factors of the number 

you clicked on. 
Bottom-out You fell because x and y share z as a common factor.  

x can be factorized as x1*x2*...*xn. y can be factorized as 
y1*yn*...*ym. 

 
An empirical study showed that this first version of the Prime Climb agent generated 

better student learning than the game with no agent [8]. A follow-up analysis of the 
student model used in this study showed limited accuracy (50.8%), due to various 



limitations of the model, discussed in [9]. The fact that an agent based on this model 
could still trigger learning indicates that even hints based on an almost random model are 
better than no hints at all. However, there was still room for improvement in the post-
tests of the agent-condition (the post-test average was 77%), suggesting that a more 
accurate student model may yield even more substantial learning gains.  

3.2 Second version of the Prime Climb Agent 

Following the results of the evaluation of the first version of the Prime Climb agent, 
we devised a new version of its student model that addressed the limitations uncovered 
by the study and that achieved an accuracy of 78% in assessing student factorization 
knowledge [9]. We also changed the agent’s hinting strategy. We added a fourth hinting 
level (definition), to provide reteaching of the factorization and common factor 
concepts via definitions and examples. The original set of hints did not include an 
explanation of these concepts, thus students who still needed to understand them 
could only do so via some form of discovery learning during game playing. There is 
ample evidence, however, that for many students discovery or inquiry based learning 
is less effective than more structured instruction in the early stages of learning [10]. 
This effect may be more prominent with edu-games, when students are too busy 
playing to engage in non-spontaneous learning processes. Table 1 shows a sample 
revised hinting sequence.  

 

 

Figure 2: Sample example that the agent presents to accompany Definition 1 
in table 1 

As the table shows, we provide two different factorization definitions, because 
there is no common unifying definition for this concept. The agent alternates which 
definition to give first, and gives the second the next time it needs to provide an 
unsolicited hint on the same skill. Figure 2 shows a screenshot of an example that 
accompanies Definition 1 in Table 1. The examples at this level are general (i.e., do 
not relate to the number targeted by the current hint) and serve both to solidify the 



student’s understanding of the definition and as a template for finding the factors of 
other numbers that the student sees on the mountain. Definition hints are given before 
the tool hint the first time the student goes through the hinting sequence, as shown in 
Table 1. Subsequently, they are given after the tool hint, because at this stage the 
student may just need a trigger to put together the definitions and examples seen 
earlier in order to find the answer by herself. All hints and examples were designed 
based on the experience of the second author, a former elementary school teacher 
(and award-winning university teaching assistant ), and then extensively pilot-tested.  

In the rest of the paper, we describe a study that we ran to test if and how the more 
accurate model we developed for Prime Climb impacts the effectiveness of the Prime 
Climb agent with this new hinting strategy. 

4 Study design 

The study was run in two local elementary schools with sixth grade students, with 
the constraint that each study session had to be held during a class period (40 minutes) 
to avoid disrupting regular class schedule. The students were randomly assigned to 
one of three conditions: No Agent: game with no agent nor any other form of adaptive 
support (13 students); Old-model: game with the pedagogical agent and the original 
version of the student model (14 students). New-model: game with the pedagogical 
agent and the new, more accurate, version of the student model (17 students).  

The morning of the study, all students wrote a pre-test in class, designed to assess 
the students’ factorization knowledge of various numbers involved in the Prime 
Climb game. The rest of the study was conducted with pairs of students in a separate 
room, due to constraints on computer availability. The two students were excused 
from the class for that period and joined the experimenters in a room provided by the 
school for the experiment. Following the set-up that had been successfully adopted in 
[8], each session was designed to last at most 30 minutes so that there would be 
sufficient time for students to get to the study room and return to their class for the 
next period. Students were told that they would be playing a computer game, and 
received a demo of Prime Climb. They were told that the game contained a computer-
based agent that was trying to understand their needs and help them play the game 
better. Next, students played with one of the three versions of Prime Climb for 
approximately 10 minutes. We had to limit playing time to 10’ to allow for sufficient 
time for post-tests and post-questionnaires, because they could not be taken during 
regular class hours. It should be noted that, although these were relatively short 
sessions, sessions of the same length in the study on the older version of the Prime 
Climb agent [8] were sufficient to show learning effects. Each student played with an 
experimenter as her partner, to avoid confounding factors due to playing with partners 
with different knowledge and playing behaviors. Experimenters made sure that 
students obtained help only from the pedagogical agent. After game play, all students 
wrote a post-test equivalent to the pre-test, and students in the old-model and new-
model conditions filled out a questionnaire on their impressions of the agent.  



5 Results 

5.1 Impact on learning 

We measure learning gains as the difference between post-test score and pre-test 
score. The study hypotheses are the following:  
  H1: Students in the new-model condition will learn significantly more than students 
in the old-model condition. 
  H2: Students in conditions with the agent will learn more than students in the no-
agent condition. 

Table 2 shows the results by condition. An ANOVA using learning as the 
dependent variable, condition as main factor, and pre-test scores as covariate (to 
control for student incoming knowledge) shows no significant differences between 
the three conditions.  

Table 2: Pre-test, post-test and learning gain results by condition (maximum 
test score is 30) 

 Average score (st. dev) 

No-Agent Old-Model New-model 

Pre-test 20.62 (2.83) 25.53 (1.81) 25.77 (1.72) 

Post-test    19.39 (3.41) 25.40 (1.88) 25.35 (1.84) 

Learning -1.23 (1.33)    -0.13 (0.42) -0.41 (0.64) 

Thus, we have not been able to prove either of our two hypotheses. The fact that 
we did not manage to reproduce the results in [8], i.e., to show that having a 
pedagogical agent is better than not having one (H2 above), is especially surprising, 
given that, compared to the agent in [8], the new agent used in the study had a more 
accurate model and an improved set of hints, carefully designed by an experienced 
teacher. Students in the current study did have a higher level of knowledge than 
students in [8], scoring an average of 83% on the pre-test compared to 60% in [8], so 
it was indeed harder to see an effect of pedagogical interventions with this student 
population. But there were still several occasions in which agent interventions could 
have triggered learning (as we will discuss in the next sub-section). We investigate 
two possible reasons for the null effect of the improvements we made to both the 
agent and its model: (1) in this study, the new model was not more accurate than the 
old model; (2) elements of the new hinting strategy obstructed learning. 

5.1 Comparison of Models’ Accuracy 

The accuracy of the old and new model reported in previous sections referred to 
model assessment of student factorization skills at the end of the interaction, 



compared with student post-test performance [9]. A measure that is more informative 
for understanding model impact on learning (or lack thereof) is accuracy during game 
playing, influenced by how quickly the model stabilizes its assessment of student 
knowledge. We can’t determine this accuracy on all the target factorization skills, 
because we do not have a ground-truth assessment of how the related knowledge 
evolves during game playing. We can, however, restrict the analysis to skills for 
which the student’s answer did not change from pre-test to post-test, i.e., the related 
knowledge was constant throughout the interaction. Since there was little learning in 
the study (see Table 2), this selection covers a substantial fraction of our data points.  

 

Table 3: Confusion matrices (# of raw data points) for the accuracy of the old 
model (left) and new model (right) 

    Old Model New Model 

  Test assessment Test assessment 

Model Assessment Known Unknown Total Known Unknown Total 

Known 369 84 453 354 27 381 

Unknown 19 4 23 54 76 130 

Total 388 88 476 408 103 511 

 

Table 4: Confusion matrices (percentages) for the accuracy of the old model 
(left) and new model (right) 

 
    Old Model New Model 

  Test assessment Test assessment 

Model Assessment Known Unknown Total Known Unknown Total 

Known 77.5% 17.6% 95.1% 69.3% 5.3% 74.6% 

Unknown 4% 0.9% 4.9% 10.5% 14.9% 25.4% 

Total 81.5% 18.5% 100% 79.8% 20.2% 100% 
 
 

The logs files from the old-model and new-model conditions included, for each 
student action, the model’s assessment of the student factorization knowledge after 
that action. We searched these log  files for all episodes in which a student 
encountered a number with the same pre-test and post-test results (known vs. 
unknown), and compared these results with the model’s assessment for that number at 



that point (also expressed in terms of known vs, unknown). Table 3 and Table 4 show 
the confusion matrices (with raw data and percentages, respectively) for the two 
models across students and all relevant episodes. We calculate from these matrices 
two standard measures of accuracy: recall (fraction of all unknown data points that the 
model classifies as such) and precision (fraction of all data points that the model 
classifies as unknown and that are actually unknown). Recall and precision are 
important from the pedagogical point of view, because they define, respectively, how 
good the model is at detecting situations in which the student’s knowledge is low, and 
how good the model is at generating interventions that are justified. 

The old model has very poor performance in both recall (4.5%), and precision 
(17.4%). With 73.7% recall and 58.5% precision, the new model clearly outperforms 
the old model. We conclude that we can reject lack of difference in model accuracy as 
a reason for the null result with respect to H1 (more learning in the new-model 
condition than in the old-model condition). We now explore the second reason, i.e., 
that elements of the agent’s hinting behavior obstructed learning. 

5.2 Effects of the agent’s hinting behavior  

One factor that may disrupt learning is how often the agent intervenes, influenced 
by the student model. The last row of each confusion matrix in Table 4 shows that the 
breakdown of known and unknown data points is approximately 80%:20% for both 
conditions, indicating that the underlying student knowledge is the same in both 
groups (confirmed by a lack of significant differences in their pre-test scores). 
However, the last column in Table 4 shows that the old model judges factorization 
skills to be unknown 4.9% of the time, compared to 25.4% for the new model. Thus, 
the new model causes the agent to intervene much more often. In fact, there is a 
significant difference (p < 0.001, as per a two-tail t-test) between the average number 
of hints each student received in the old-model condition (mean 7.6, st. dev. 3.6) and 
in the new-model condition (mean 16.3, st. dev. 5.5). This difference is mostly due to 
the model’s assessment, given that students in both agent conditions rarely asked for 
hints (The requested hints were only 3.4% of all given hints. [8] reports similar results 
with respect to student hints requests).  

The fact that students in the old-model condition received very few justified hints 
explains why they did not learn from the interaction with Prime Climb. It should be 
noted that while the study in [8] used the same model as the old-model condition, in 
that study students likely learned because they had less factorization knowledge to 
start with, thus there were more occasions to generate learning, even for a model with 
limited recall/precision. As for the more frequent hints generated by the new model, 
although more of these are justified (58.4%) than the old model’s hints (14.4%), 
students may not like to have their game playing interrupted by didactic interventions, 
especially when about  40% of these interruptions are not justified. This may have 
caused students to stop paying attention to the hints. To verify this conjecture, we 
looked at whether students in the new-model condition are taking the time to read the 
hints and accompanying examples.  

Our log files do not contain the action of closing a hint, so we can’t use the time 
between the appearance of a hint and its closure as an estimate for reading time. We 



use instead the difference between the average time taken to make a move after 
getting a hint (12.82 sec., st. dev. 4.22), and the average time taken to make a move 
when there is no hint (9.14 sec., st. dev. 3.02). We obtain 3.42 seconds (st. dev. 2.62) 
as an estimate of the average amount of time each student spent reading a hint. The 
average adult reader can read 3.4 words per second [11]. With hints that were 22.5 
words on average, an adult would take 6.62 seconds on average to read the hints. 
Thus, it is conceivable that students were not taking time to read the hints thoroughly 
and think about their meaning. This conclusion is supported by the fact that there are 
no significant correlations between the estimated time spent reading hints, or the 
number of hints received, and learning. As further evidence of lack of attention to 
hints, we compare the times between receiving a hint and performing an action for the 
Focus and Definition hints, the first time they are presented (see Table 5). The second 
row reports the number of hint words, not including the words in the accompanying 
examples.  

Table 5: Average (and st.dev.) time (in seconds) between receiving a hint for 
the first time and acting  

Hint Type Focus Definition 1 Definition 2 

Words 19 26      27 

Avg. time (st.dev.) 12.03 (4.53) 13.57 (4.41) 13.00 (3.75) 
 
As expected, students spend more time between receiving a hint and performing an 

action with hints that involve examples (Definition  1 and Definition  2) than with the 
focus hint. However, the additional time spent does not account for their higher 
number of words in Definition hints. For instance, Definition 1 hint is 7 words longer 
than the focus hints, thus we would expect an average (adult) reader to spend 
approximately 2 seconds longer to read it, plus time to examine the example. Table 5 
shows that students are not taking the time, and thus are probably not reading the 
hints thoroughly. If students are not finding the hints generated by the agent in the 
new-model condition useful, this should affect their perception of the agent. To see if 
this is the case, we look at the students’ post-questionnaire answers. 

5.3 Student’s perception of the Prime Climb agent 

The post-questionnaires on agent perception included six questions rated on a Likert 
scale from 1 (strongly disagree) to 5 (strongly agree). The average score (and 
standard deviation) for each question in the two agent conditions are shown in Table 
6. We see that all the questions are in favor of the old-model condition, although the 
only difference that is statistically significantly is Q1: the agent in the old-model 
condition is rated as more helpful than the other agent (p = 0.017). This result is 
consistent with the picture that emerged from the previous sections: more students in 
the new-model condition received a hint, but they tended not read it, so the hint was 
not helpful to them. It is not surprising that more of these students rated the agent as 
”unhelpful”, and that it received a quite high score for “intervening too often”. 



Interestingly, the agent in the old-model condition also scored quite poorly on this 
item, despite the fact that it intervenes much less than the other agent. This may be 
due to a general student dislike of any interruption of their game playing. 

Table 6: Average responses (and st. dev.) in the post-questionnaire 

Question Old-model New-model 

Q1: the agent is helpful 3.60 (0.22) 2.56 (0.34) 

Q2: the agent understands my 
needs 

3.00 (1.05) 2.67 (1.41) 

Q3: the agent helps me play better 2.80 (0.92) 2.44 (1.13) 

Q4: the agent helped me learn 
factorization 

3.20 (0.92) 2.56 (1.13) 

Q5: the agent intervenes too often 3.20 (1.48) 3.89 (1.05) 

Q6: I liked the agent 3.60 (1.07) 3.11 (1.36)
 

6 Discussion, Conclusions and Future Work 

We have presented a study to evaluate the impact of adaptive feedback on the 
effectiveness of a pedagogical agent for an educational computer game. We compared 
a version of the game with no agent, and two versions with agents that differ only in 
the accuracy of the student model used to guide their interventions. We found no 
difference on student learning across the three conditions, so we combined an analysis 
of model accuracy during game playing with an analysis of log data on student 
relevant behaviors to understand the reasons for these results. We eliminated lack of 
difference in model accuracy as a possible cause for the null results, because the 
student model that was known to be more accurate in assessing student knowledge at 
the end of the interaction (new model) was also more accurate in assessing student 
knowledge during game playing. This model generated significantly more justified 
hints than the other model (old model). However, over 40% of the hints it generated 
addressed skills that students already had. This is likely one of the reasons why 
students seem to not pay attention to the hints, and thus failed to learn from the game.  

Ironically, the old, less accurate model with simpler hints used by the first version 
of the Prime Climb agent (described in section 3), did generate more learning than the 
game with no agent [8]. This result is likely due to the combination of two factors. 
The study participants had low factorization knowledge, and thus there were more 
occasions for the few justified system interventions to have an effect than in the study 
presented here, where students scored 83% in the pre-test, on average. Because the 
system did not interrupt game playing often and because the hinting sequence was 



shorter and simpler, students did not perceive it as intrusive, paid more attention to 
the hints and sometime they learned.  

An obvious direction to improve the effectiveness of the adaptive hints’ is to 
improve model precision, so that more of the agent’s interventions are justified. 
However, students may resent being interrupted often during game play even when 
most interruptions are justified. Our results suggest a simple solution: some learning 
can be achieved with an inaccurate model, by favoring unobtrusiveness over 
intervening when it seems necessary. In Prime Climb, we could achieve this by 
lowering the probability threshold that dictates when a skill is considered known in 
the student model. A more interesting, although more challenging solution is to 
endow the model with the ability to reason about the expected effects of its 
interventions on both student learning and affect, to achieve a trade-off between 
maintaining engagement and promoting maximum learning. A decision-theoretic 
approach that combines a model of student learning with a model of student affect is 
one way around this issue [2]. We plan to explore both solutions, to determine their 
relative impact on game effectiveness. For the latter, we plan to combine the model of 
student learning described here with the model of affect we have been developing in 
parallel [21,22].  Another direction of investigation relates to the form of the agent’s 
hints, i.e. how to devise pedagogical hints that can be perceived as less didactic and 
intrusive [e.g., 23, 24] and can thus be more acceptable for students during game 
playing. 
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