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ABSTRACT 
Information Visualization systems have traditionally 
followed a one-size-fits-all model, typically ignoring an 
individual user’s needs, abilities and preferences. However, 
recent research has indicated that visualization performance 
could be improved by adapting aspects of the visualization 
to each individual user. To this end, this paper presents 
research aimed at supporting the design of novel user-
adaptive visualization systems. In particular, we discuss 
results on using information on user eye gaze patterns while 
interacting with a given visualization to predict the user’s 
visualization tasks, as well as user cognitive abilities 
including perceptual speed, visual working memory, and 
verbal working memory. We show that such predictions are 
significantly better than a baseline classifier even during the 
early stages of visualization usage. These findings are 
discussed in view of designing visualization systems that 
can adapt to each individual user in real-time. 
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INTRODUCTION 
Information Visualization is a thriving area of Human-
Computer Interaction that aims to help users in managing 
and understanding increasing amounts of information. 
While visualization systems have gained in terms of general 
usage and usability, they have traditionally been designed 
using a one-size-fits-all approach, typically ignoring an 
individual user’s needs, abilities and preferences. In order 
to better assist each individual user during visualization 
tasks, recent research has started to investigate novel user-
adaptive visualizations that can dynamically infer relevant 
user characteristics and provide appropriate interventions 
tailored to these characteristics. Initial research of user-

adaptive visualizations have already provided evidence for 
improved user performance (e.g. time on task, task 
accuracy), for instance by using click behavior to infer and 
adapt to suboptimal usage patterns [14], or by using a user’s 
visualization selections to infer and adapt to a user’s 
visualization expertise and preferences [15]. In terms of 
intervention mechanisms, these initial systems have 
typically investigated recommending visualizations that are 
most suitable for the current task and/or appropriate for a 
particular user’s preference and expertise. 

Our long-term goal is to extend such research on user-
adaptive visualization in a number of aspects. First of all, 
we aim to expand the set of adaptation characteristics 
towards general (low-level) visualization task types, task 
complexity, as well as users’ cognitive abilities (other than 
expertise) that have been shown to influence visualization 
performance. Secondly, while existing research has looked 
at improving visualization performance solely using 
information on a user’s direct interaction (e.g. mouse 
clicks), we aim to provide assistance using additional (and 
potentially complementary) non-interactive data sources 
(e.g. eye tracking). Thirdly, while existing work has 
focused on interventions that recommend alternative 
visualizations, we envision to also deliver interventions that 
can dynamically help the user with the current visualization 
(e.g. through highlighting relevant visualization elements). 

In this paper, we address the first two aspects by 
investigating to what extent a variety of visualization tasks 
and three different cognitive abilities (perceptual speed, 
visual working memory and verbal working memory) can 
be inferred from a user’s eye gaze behavior. We focus on 
gaze behavior because visual scanning and processing are 
fundamental components of working with any visualization 
(and the only components for non-interactive 
visualizations). Specifically, we ask the following two 
research questions: 

Q1. To what extent can a user’s current task and/or long-
term cognitive abilities be inferred from eye gaze data? 

Q2. Which gaze features are the most informative? 

The motivation of this particular work is two-fold. First of 
all, in order to provide appropriate adaptive support, an 
adaptive system needs to know about the user’s current 
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task. For example, if the system knows that the user is 
currently trying to “filter” based on a particular data series, 
the system could adaptively deemphasize non-relevant data 
to reduce the user’s cognitive load. Similarly, if a system 
knew a user’s cognitive abilities, appropriate interventions 
could be provided to better assist this user. For example, 
since low perceptual speed has already been shown to lead 
to lower performance (in terms of speed and accuracy) 
[3][31][29], such users would benefit most from adaptive 
interventions. 

Secondly, by analyzing which features are most 
informative, we may get an initial insight into what type of 
interventions would be most suitable. For example, as will 
be shown in the paper, different Areas of Interest (AOI) of a 
visualization provide considerable information about 
different task/user characteristics. Such results suggest that 
adaptations that are particularly tailored towards these AOIs 
may be most effective in order to support different tasks 
and/or user characteristics. 

The remainder of this paper is structured as follows. First, 
we provide an overview of related research in adaptive 
visualization, eye tracking, as well as the most recent 
findings on the impact of individual user differences in 
visualization. Next, we present the user study that provided 
the gaze data for our research.  This is followed by a series 
of classification experiments that we ran on this gaze data 
to answer the research questions outlined above. Finally, we 
conclude with a discussion of the overall findings and 
outline several directions for future work.  

RELATED WORK 
Adaptation and personalization have long been established 
as effective techniques to support individual users in a 
variety of tasks and applications, including personalized 
search [27], adaptive hypermedia [27], desktop assistance 
[19], as well as e-learning [19]. By contrast, information 
visualization research has traditionally maintained a static, 
one-size-fits-all approach by ignoring an individual user’s 
needs, abilities and preferences. In particular, early 
automatic visualization systems have focused only on 
adapting the visualization to task or data properties that are 
known a priori [2][22], rather than dynamically inferring 
individual properties during visualization usage. An 
exception to this non-adaptive paradigm is presented in 
[15], where users’ visualization expertise and preferences 
are dynamically inferred through monitoring visualization 
selections (e.g. how long it takes a user to decide on which 
visualization to choose). Using this inferred level of user 
expertise and preferences, the system then attempts to 
recommend the most suitable visualizations for subsequent 
tasks. Results from the user studies in [15] show that the 
recommendations indeed lead to better user performance in 
terms of task effectiveness (i.e. accuracy), as well as user 
efficiency (i.e. time on task). However, this work does not 
actively monitor a user during a task, and thus cannot adapt 
in real-time to help the user with the current task. In 

contrast, the system developed by Gotz and Wen [14] 
actively monitors real-time user behavior during 
visualization usage in order to infer needs for intervention. 
In their work, interaction data (i.e. mouse clicks) are 
constantly tracked in order to detect suboptimal usage 
patterns, i.e. activities of users that are of a repetitive (hence 
inefficient) nature. Each of these sub-optimal patterns 
indicates that an alternative visualization may be more 
suitable to the current user activity. The patterns used in 
their paper include scanning (i.e. a user is iteratively 
inspecting over similar visual objects), flipping (iteratively 
changing filter constraints), swapping (repeatedly re-
arranging the order of data dimensions) and drilling 
(repeatedly filtering down along orthogonal dimensions). 
Once these patterns are detected, the system triggers 
adaptation interventions similar to those in  [15], namely 
they recommend alternative visualizations that may be 
more suitable for the current activity (for example, the 
location of a set of hotels may be best viewed using a map 
visualization, rather than a user having to repeatedly drill 
down to this information for each result). However, there 
are a number of shortcomings of this work. First of all, the 
usage patterns, as well as the respective visualization 
recommendations are determined by experts a priori, rather 
than being based on experimental findings. Secondly, their 
system is only able to provide adaptations for visualizations 
that allow users to interact directly with the visualizations, 
either through mouse clicks or other forms of direct user 
input. This approach therefore does not work if a user is 
simply “looking” at a visualization without manipulating its 
controls/data. Thirdly, the patterns do not try to infer 
general (low-level) visualization tasks (e.g. filter, compute 
derived value). Lastly, their approach does not attempt to 
adapt to any individual user characteristics. 

As mentioned before, since visual scanning and processing 
are fundamental components of working with any 
visualization (they are in fact the only components for non-
interactive visualizations), it is important to consider eye-
tracking as a source of real-time information on user 
behavior. Although such technology is currently confined to 
research environments (mostly due to the high cost of eye 
tracking devices), the rapid development in affordable, 
mainstream eye tracking solutions (e.g. using standard 
webcams) will enable the widespread application of such 
techniques in the near future [25]. In the field of cognitive 
and perceptual psychology, the use of eye tracking has long 
been established as a suitable means for analyzing user 
attention patterns in information processing tasks [21]. 
Similarly, research in this field has investigated the impact 
of individual user differences on basic reading and search 
tasks [24]. More recently, the fields of human-computer 
interaction and information visualization have also started 
to use eye-tracking technology to investigate trends and 
differences in user attention patterns and cognitive/decision 
processing. Such research has typically focused on either 
identifying pattern differences for different visualizations 



[13] or task types (e.g. reading vs. mathematical reasoning) 
[18], or on explaining differences in user accuracy between 
alternative interfaces [23]. However, such studies have 
generally only attempted to gain insights into differences in 
gaze behaviors for different tasks and/or interfaces, rather 
than providing a means for directly driving adaptive 
systems. In particular, such analyses have typically 
consisted of offline processes that require further human 
analysis (e.g. manually analyzing eye gaze coordinate plots 
[18]). In terms of actually using raw eye tracking data for 
real-time prediction, most research has so far focused on 
identifying cognitive processes while performing non-
visualization activities, for example during exploratory e-
learning [20][4], quizzes [5], simple puzzle games [7], or 
information search tasks (e.g. word search) [26]. By 
contrast, our gaze-based work focuses on information 
visualization, where a user’s main activity is to perform 
simple visualization lookup and comparison tasks. 

It is also important to note that none of the above 
approaches have attempted to adapt to user differences 
other than expertise. However, recent research has shown 
that other user traits can in fact significantly influence task 
performance, especially in the field of information 
visualization.  For example, Ziemkiewicz et al. [32], as well 
as Green and Fisher [16] have looked at the influence of a 
user’s personality traits, showing that locus of control 
(internal vs. external) can impact visualization performance. 
Similarly, cognitive measures such as perceptual speed and 
visual working memory have been shown to influence a 
user’s ability to complete a task effectively [3][31]. For 
example, it has been shown that users with high perceptual 
speed had significantly faster completion times and 
accuracy on certain tasks. These results have been 
confirmed and extended in a recent study by Toker et al. 
[29], where perceptual speed, working memory, and user 
expertise were shown to influence not only a user’s task 
performance, but also satisfaction regarding different 
visualization types. More specifically, they showed that 
depending on the respective cognitive abilities, users 
performed differently and preferred different visualizations. 
Most recently, it was also found that such individual user 
differences have an impact on different user eye gaze 
measures [28], which directly serves as the motivation for 
the work in this paper on using gaze data to dynamically 
identify and adapt to user cognitive abilities. 

USER STUDY 
To reiterate, this paper is part of our ongoing work on 
designing user-adaptive information visualizations. In 
particular, our research studies both the effect that different 
user characteristics have on visualization performance, as 
well as the real-time detection of task and user 
characteristics in order to be able provide appropriate 
interventions (note that this paper only focuses on the latter 
part). For these purposes, we designed and ran a user eye 
tracking study with two basic visualization techniques, 

namely bar graphs (Figure 1, top) and radar graphs 
(bottom). By choosing two different types of visualizations, 
we aimed to investigate the generalizability of our results. 

 

 
Figure 1. Sample bar (top) and radar graph (bottom) 

Bar graphs were chosen because they are one of the most 
popular and effective visualization techniques. We chose 
radar graphs because, although they are often considered 
inferior to bar graphs on common information seeking tasks 
[10], they are widely used for multivariate data. 
Furthermore, there are indications that radar graphs may be 
just as effective as bar graphs for more complex tasks [29].  

Study Tasks 
As part of the study design, we developed a set of tasks that 
varied both in task type and task complexity. In terms of 
different task types, we based our questions on a set of 
general visualization tasks that had been identified by Amar 
et al. to be “representative of the kinds of specific questions 
that a person may ask when working with a data set” [1]. In 
particular, out of this taxonomy we chose the following five 
types: retrieve value (RV), filter (FI), compute derived 
value (CDV), find extremum (FE), and sort (SO).  Each of 
the tasks required users to evaluate student performance 
values in eight different academic courses (using an 
artificial data set). The tasks were chosen so that each of 
our two target visualizations would be suitable to support 
them. In order to vary the task complexity, we 
differentiated between single and double tasks. Single tasks 
required participants to compare one student’s performance 
with the class average for 8 academic courses (e.g., "In how 
many courses is Maria below the class average?"), whereas 
double tasks required participants to compare the 
performance of two students with the class average (e.g., 
"Find the courses in which Andrea is below the class 
average and Diana is above it?"). In total, our study 
comprised 5 single tasks, one for each task type (i.e. RV1, 
FI1, CDV1, FE1, SO1), and 4 double tasks (RV2, CDV2, 
FI2a, FI2b), meaning that the most fine-grained task 
type/complexity classification could consist of 9 classes 
(see classification experiments). 



Cognitive Abilities 
The long-term user traits that we investigated in this study 
consisted of the following three cognitive abilities: 
perceptual speed (a measure of speed when performing 
simple perceptual tasks), verbal working memory (a 
measure of storage and manipulation capacity of verbal 
information), and visual working memory (a measure of 
storage and manipulation capacity of visual and spatial 
information). Perceptual speed and visual working memory 
were selected because they were among the perceptual 
abilities explored by Velez et al. [31], as well as among the 
set that Conati and Maclaren [3] found to impact user 
performance with radar graphs and a Multiscale Dimension 
Visualizer (MDV). We also chose verbal working memory 
because we hypothesized that it may affect a user’s 
performance with a visualization in terms of how the user 
processes its textual components (e.g., legends). 

Study Procedure 
Thirty-five subjects (18 female) participated in the 
experiment, ranging in age from 19 to 35. Participants were 
recruited via advertising at our university, with the aim of 
collecting a heterogeneous pool with suitable variability in 
their cognitive abilities. Ten participants were CS students, 
while the rest came from a variety of backgrounds, 
including microbiology, economics, classical archaeology, 
and film production. The experiment was designed and 
pilot-tested to fit in a single session lasting at most one 
hour. Participants began by completing tests for three 
cognitive measures1:  a computer-based OSPAN test for 
Verbal Working Memory [30] (lasting between 7 and 12 
minutes), a computer-based test for Visual Working 
Memory [11] (10 minutes long), and a paper-based P-3 test 
for Perceptual Speed [8] (3 minutes long). The experiment 
was conducted on a Pentium 4, 3.2GHz, with 2GB of RAM 
and a Tobii T120 eye-tracker as the main display. Tobii 
T120 is a remote eye-tracker embedded in a 17” display, 
providing unobtrusive eye-tracking. After undergoing a 
calibration phase for the eye-tracker, participants performed 
14 tasks per visualization (2x5 single and 1x4 double). The 
presentation order with respect to visualization type was 
fully counterbalanced across subjects. For each task, users 
were presented with a radar/bar graph displaying the 
relevant data, along with a textual question. Participants 
would then select their answer from a drop-down list and 
click OK to advance to the next task. The experimental 
software was fully automated and coded in Python. 

Eye tracking measures & features 
An eye-tracker captures gaze information through fixations 
(i.e., maintaining gaze at one point on the screen) and 
saccades (i.e., a quick movement of gaze from one fixation 
                                                             
1 Note that these tests measure long-term cognitive traits, as 
opposed to short-term cognitive load. Therefore these tests 
do not have to be run during/in between tasks. 

point to another), which can be analyzed to derive a 
viewer’s attention patterns. For our experiments we 
generated a large set of eye-tracking features by calculating 
statistics upon basic eye-tracking measures (see Table 1). 

Basic gaze 
measures 

Description 

Fixation rate Rate of eye fixations per milliseconds 
Number of 
Fixations 

Number of eye fixations detected during 
an interval of interest 

Fixation Duration Time duration of an individual fixation 
Saccade Length Distance between the two fixations 

delimiting the saccade (d in Fig. 2) 
Relative Saccade 
Angles 

The angle between the two consecutive 
saccades (e.g., angle y in Fig. 2) 

Absolute Saccade 
Angles 

The angle between a saccade and the 
horizontal  (e.g., angle x in Fig. 2) 

Table 1. Description of basic eye tracking measures. 

Of these basic measures, Fixation rate, Number of 
Fixations and Fixation Duration are widely used in eye 
tracking studies. In addition, we included Saccade Length 
(e.g., distance d in Fig. 2.), Relative Saccades Angle (e.g., 
angle y in Fig. 2) and Absolute Saccade Angle (e.g., angle x 
in Fig. 2.), as suggested in [12], because these measures are 
potentially useful for summarizing trends in user attention 
patterns within a specific interaction window, e.g., if the 
user’s gaze follows a planned sequence (as opposed to 
being scattered). 

 
Fig. 2. Saccade based eye measures 

In order to extract individual eye tracking features, the raw 
gaze data from the Tobii eye tracker was processed using 
customized scripts2 written in the Python programming 
language. The scripts compute statistics such as sum, 
average and standard deviation over the eye tracking 
measures with respect to: (i) each overall task in the study, 
to get a sense of the complete interaction with the task 
(task-level measures from now on) and (ii) specific areas of 
interest (AOI), identifying parts of the interface relevant for 
understanding a user’s attention processes during each task 
(AOI-level measures from now on). A total of five AOIs 
were defined for each of the two visualizations. 

These regions were selected in order to capture the 
distinctive and typical components of the two visualizations 
used in the study. Figures 3 and 4 show how these AOI map 
onto bar and radar graph components respectively. 

                                                             
2   These scripts are currently being generalized and will 
soon be released as an open-source toolkit named EMDAT 
(Eye Movement Data Analysis Toolkit). 



 
Figure 3: The five AOI regions defined over a bar graph 

  
Figure 4: The five AOI regions defined over a radar graph 

High Area: covers the upper half of the data elements of 
each visualization. This area is the graphical portion of an 
Infovis that contains the relevant data values. On the bar 
graph, it corresponds to a rectangle over the top half of the 
vertical bars (see Figure 3); for the radar graph, it 
corresponds to the combined area of the 8 trapezoidal 
regions covering the data points (see Figure 4). 
Low Area: covers the lower half of the data elements for 
each visualization. 
Labels: covers all the data labels in each graph. 
Question Text: covers the text describing the task to be 
performed. 
Legend: covers the legend showing the mapping between 
each student and the color of the visualization elements that 
represent her performance. 

The selection of these five AOIs is the result of a trade-off 
between having detailed information on user attention over 
areas that are salient for task execution, and keeping the 
number of AOIs manageable for real-time computation. 
Overall, a total of 79 features were calculated from the gaze 
data (see Table 2). For experimental purposes, we 
differentiated between a feature set that contained all 
features, including task-level and AOI features (called the 
Full set from now on), and one that did not contain features 
relating to AOIs (called the No AOI set), i.e. only 
containing the task-level features. This differentiation was 
chosen in order to evaluate the relative information gain 
attained when AOI features are available to the system. 

Table 2. Eye Tracking Features 

CLASSIFICATION EXPERIMENTS 
The classification experiments described in this section use 
the above-mentioned features to infer a number of task and 
user characteristics. In particular, we investigate the extent 
to which these characteristics can be inferred from gaze 
data (Q1), as well as what gaze features are most important 
for classification (Q2). 

First, we provide a quick overview of the experimental 
process used for classification. This is followed by a 
detailed analysis of each of the classification results, which 
includes classification accuracy for task type (at different 
granularities) and task complexity, as well as accuracy on 
classifying the three user cognitive abilities of perceptual 
speed, visual working memory and verbal working memory. 
In addition, we ran a classification experiment for 
predicting the currently active visualization type (i.e. bar 
graph vs. radar graph), to evaluate the extent to which this 
information can be inferred when it is not available to the 
system (i.e., if the visualization system and the eye tracking 
component are independent). We conclude with a summary 
of the overall results, as well as a discussion regarding the 
extent to which these results could be used for providing 
adaptive visualizations. 

Experimental process 
Given the gaze features described in the previous section, 
we generated a number of datasets to simulate partial 
observation of gaze data during each task, e.g., only the first 
10%, 20%, 30%, etc. These datasets were generated to 
simulate classification accuracies while a user is still 
interacting with (i.e., looking at) the visualization. The goal 
of this analysis is to investigate the feasibility of real-time 
interventions when integrating the classification component 
into a live user-adaptive visualization system. 

We used the WEKA data mining toolkit [17] for model 
learning, as well as evaluation.   For model learning, we 
tried a number of different classifier types (Decision Tree 
based, Support Vector Machine, Multilayer Perceptron, and 
Logistic Regression) with feature-selection and 10-fold 

TASK-LEVEL FEATURES 
Fixations:  Total Number of Fixations, Fixation rate 
Fixation Durations: Sum, Mean, Std. deviation 
Saccade Length: Sum, Mean, Std. deviation 
Relative Saccade Angles: Sum, Mean, Std. deviation 
Absolute Saccade Angles: Sum, Mean, Std. deviation 
AOI-LEVEL FEATURES (for each AOI) 
Total number of fixations in AOI 
Sum & Mean of fixation durations in AOI 
Time to first fixation in AOI 
Time to last fixation in AOI 
Longest fixation in AOI 
Proportion of Total Number of Fixations in AOI 
Proportion of Total Fixation Durations in AOI 
Prop. number of Transitions From this AOI to every other AOI 
(5 separate measures) 



cross-validation for model evaluation. In all our 
experiments, Logistic Regression (LR from now on) was 
the classifier with the highest accuracy. In the following 
sections, the performance of this classifier is evaluated on 
both the Full and No AOI data sets. As a baseline for 
comparison, we use a classifier that always selects the most 
likely class (thus failing in all cases of the other classes), 
e.g., for task complexity, the baseline classifier would 
always predict a task to be single, since there are more 
single tasks overall (thus failing in all cases of double 
tasks). Results are generated using the WEKA experiment 
API with the default 10(repetition) * 10(cross-validation) 
setting, and statistical significance is tested using t-tests 
with Bonferroni adjustment on pairwise comparisons 
between the different classifiers. All reported results are 
statistically significant (at p<0.05), unless mentioned 
otherwise. In cases of two-class classifications, we also 
present the strongest features generated by feature selection.  
For simplicity, in the case of multiclass classifications we 
do not present the results of feature selection in detail. 
Instead, we discuss the impact of features only with respect 
to the performance of the Full vs. No AOI datasets. 

Classification results for task characteristics 
As explained in the study procedure section, users 
performed tasks of varying type and complexity. In this 
section we present classification results when tasks are 
defined at different levels of granularity. 

Task type – 9 tasks 
The most fine-grained analysis splits tasks into 9 different 
classes, one for each separate question type-complexity 
combination used in the study, e.g. single retrieve value 
(RV1), double retrieve value (RV2), etc. Because of the high 
number of classes, this case represents a difficult multiclass 
classification challenge, with a baseline classification 
accuracy of only 15.45%.  Nonetheless, the LR classifier 
using the full feature data set (LR-Full from now on), 
reaches a classification accuracy of 56.60% after seeing all 
the available data (see Figure 5), and starts having 
significantly higher accuracy than the baseline after seeing 
only 10% of the data.  

 
Figure 5. Task type – classification accuracy (9 different tasks) 

Moreover, classification accuracy grows continuously as 
more gaze data becomes available, going over 50% after 
seeing 60% of the data (as shown in Figure 5).  The average 
classification accuracy over time for LR-Full is 44.81%. 
Results are not as good for the LR classifier using the No-
AOI dataset (LR-NoAOI from now on). The average 
accuracy over time for this classifier is 23.80% and its 
maximum accuracy after seeing all the data is 30.61%, both 
statistically significantly lower than the corresponding 
accuracies for LR-Full.  Moreover, the accuracy of LR-
NoAOI classifier is not statistically significantly better than 
the baseline until after seeing 60% of the data. These 
differences in performance for the Full vs. No AOI data sets 
indicate that AOI-related features have a strong impact on 
classification accuracy for task type at this granularity.  

Task type- 5 tasks 
In addition to the fine-grained task analysis involving 9 
different tasks, we also investigated classifying task type 
from gaze data when type is defined at a coarser level of 
granularity that ignores the complexity difference between 
single and double tasks, e.g., ignoring the difference 
between retrieve value when one student is involved (RV1) 
as opposed to when two students are involved (RV2). 
Ignoring this difference leaves us with 5 different classes, 
corresponding to 5 different task types from Amar’s 
taxonomy (i.e., retrieve value (RV), filter (FI), compute 
derived value (CDV), find extremum (FE), and sort (SO)). 
From the point of view of inferring task type with the goal 
of providing adaptive interventions specific to tasks types, 
this 5-class classification task is very meaningful, because 
the classes represent general tasks types recognized as 
being common in information visualization. 

 
Figure 6. Task type – classification accuracy (5 tasks) 

For this experiment, LR-Full reaches an average accuracy 
of 53.18% over time, an accuracy of 55.84% after seeing 
50% of the data, and a maximum accuracy of 63.32% after 
seeing all the data. LR-Full statistically significantly 
outperforms the baseline’s accuracy (27.863%) from the 
start.  As was the case with 9 tasks, removing AOI-related 
features statistically significantly reduces accuracy, as 
shown by the performance of LR-NoAOI in Figure 6. This 
classifier reaches an average accuracy of 36.61% over time, 
an accuracy of 36.34% after seeing 50% of the data, and a 



maximum accuracy of 42.25% after seeing 80% of the data. 
Moreover, this classifier only starts to be statistically 
significantly better than baseline after seeing 40%. 

When analyzing sources of errors in the confusion matrix, 
we found two pairs of tasks that are most often confused 
with each other. The first pair involves the tasks compute 
derived value (CDV) and filter (FI). For example, in 57% of 
the cases where CDV was misclassified, the predicted class 
was FI. This result is not surprising, since both of these 
tasks essentially involve applying a filter to all data values 
(e.g. finding values above a given threshold), with the 
difference being that CDV requires an additional 
computation (e.g. “in how many courses is student x above 
the class average”). Thus, FI can be regarded as a subtask 
of CDV for the questions used in our study. In fact, as noted 
by Amar et al., the filter task “… is used as a subtask in 
many other questions”. Adaptations that particularly 
support this filter task may therefore also be of use to CDV 
tasks if they contain such a subcomponent. The second pair 
of tasks often confused with each other involves find 
extremum (FE) and sort (SO). For example, in 38% of the 
cases where FE was misclassified, the predicted class was 
SO. This result is again not surprising given the nature of 
these two tasks. FE involves going through all values to 
find the highest value(s) from a set of values, whereas SO 
involves sorting all values from highest to lowest. Thus, FE 
essentially involves a subpart of the steps necessary to 
perform an SO task. This finding confirms the observation 
in the Amar et al.’s taxonomy that “sorting is generally a 
substrate for extreme value finding” [1]. 

The aforementioned relations between the two pairs of 
frequently confused tasks suggest that combining each pair 
into one new task type, and building a classifier that can 
recognize this combined type is still valuable for 
adaptation, since adaptations could be provided to support 
the common subtask. Thus, in the next section we evaluate 
the accuracy of a classifier for task type that involves three 
classes: FI-CDV (combined), SO-FE (combined) and 
retrieve value (RV). 

Task type - 3 tasks 
When considering only 3 different task types, LR-Full 
reaches an average accuracy of 68.42% over time, an 
accuracy of 70.55% after seeing 50% of the data, and a 
maximum accuracy of 76.24% after seeing all the data. LR-
Full statistically significantly outperforms the baseline’s 
accuracy (48.14%) from the start.   

As was the case with 9 and 5 tasks, removing AOI-related 
features statistically significantly reduces accuracy, as 
shown by the performance of LR-NoAOI in Figure 7. This 
classifier only reaches an average accuracy of 50.71% over 
time, an accuracy of 51.20% after seeing 50% of the data, 
and a maximum accuracy of 54.12 after seeing 70% of the 
data. Moreover, this classifier is only statistically 
significantly better than baseline between 50-70% of the 
data observations. 

 
Figure 7. Task type – classification accuracy (3 tasks) 

Task types – summary of results  
In summary, we found that, across all task type 
granularities, LR with the full data set outperformed both 
the baseline and LR with the No AOI data set, showing the 
importance of having AOI-related features for task-type 
classification.  Figure 8 summarizes the results in terms of 
average accuracy over time. As expected, accuracy for all 
the classifiers increases as task granularity gets coarser. 
Although only the classification of three tasks with the LR-
Full classifier reaches accuracies that may be suitable for 
providing reliable task-based interventions, we see these 
results as being very important, for two reasons. First, as we 
argued earlier, suitable interventions can be provided even 
if task type is recognized at this coarser level. Second, our 
results have been obtained by using relatively simple eye-
gaze features that do not capture gaze patterns beyond 
simple transitions between two AOIs. Using more complex 
gaze patterns or additional sources of information to guide 
classification (see discussion section), it is likely that we 
can increase accuracy on all our classification tasks.  

 
Figure 8. Task type – average classification accuracy over time 

for different task granularities 

Task complexity 
The classifier in this experiment predicts if the user is 
attending to a task of the single or double scenario. As 
discussed in the user study section, this distinction provides 
a measure for task complexity. LR-Full is still the most 
accurate classifier, with statistically significantly higher 
average accuracy (80.39%) over time than both the baseline 
classifier (72.69%) and LR-NoAOI (74.76%). It should be 
noted that, at 72.69%, the baseline accuracy is relatively 
high in this experiment, since users performed more than 



twice as many single tasks than double ones. Nevertheless, 
both LR classifiers performed higher, with accuracies 
reaching up to 84.45% for the full data set (see Figure 9). 
Accuracy again improved with more data being observed, 
and each of the feature sets outperformed the baseline after 
relatively low amounts of observed data (LR-Full is 
statistically significantly higher from the outset; LR-NoAOI 
after 40% of the data has been observed).  

 
Figure 9. Task complexity – classification accuracy 

Since task complexity consists of a simple two-class 
classification, it is also interesting to look into the more 
detailed feature selections and coefficients in order to 
analyze which exact features were contributing most to the 
classification (note that for multiclass logistic regression 
involving n classes, this analysis would involve analyzing 
n-1 feature selection results). Due to space limitations, we 
will only discuss the strongest features for LR-Full. With 
increased task complexity, we found that the use of the 
graph legend increased considerably, both in terms of 
proportionate amount of time spent (compared to all other 
AOIs), as well as in terms of transitions (i.e. there were 
more transitions to and from the legend). This result shows 
that an increase in data series has an effect on how much 
users may need to refer back to the legend during a 
visualization task, as to be expected. Nevertheless, it is an 
interesting finding that such an increase in complexity can 
be captured in real-time using simple eye gaze measures, 
which will in turn allow a user-adaptive system to provide 
adaptations for more complex tasks (e.g. provide support 
for better legend access and processing). 

Classification results for Cognitive Abilities 
In this section, we discuss classification results relating to 
inferring a user’s level of visual working memory, verbal 
working memory, and perceptual speed. The specific task 
of each of the three classifiers is to infer if a user belongs to 
either the High or Low category for that measure (based on 
a median split). In addition to reporting the classification 
accuracy, we will also discuss the gaze features that have 
the highest impact on classification. 

In general, we found similar results across the three 
classification experiments. First of all, we found that LR-
Full statistically significantly outperformed both the 

baseline and LR-NoAOI, with average accuracies for LR-
Full ranging between 56-60%. While these average 
accuracies were rather low, it has to be noted again that 
these experiments are solely based on simple eye tracking 
measures, which may be improved using additional sources 
of information (see overall result discussion). 

Several interesting observations were made when analyzing 
the accuracies at different data cut-off points. In particular, 
for each of the experiments, the peak accuracy of LR-Full 
was actually found after 20-40% of the data had been 
observed, as opposed to after all the data had been observed 
(as found in previous experiments). This pattern suggests 
that a user’s cognitive abilities most strongly affect a user’s 
gaze patterns during the initial phase of a visualization task 
(clearly presented in Figures 10, 11, 12), and that these 
patterns are increasingly “diluted” by other factors (e.g. task 
type) as the task goes on. 

For visual working memory, the peak accuracy of 58.92% 
occurred after 40% of the data had been observed (see 
Figure 10). When analyzing the features that received the 
highest coefficient during feature selection for LR-Full, we 
found that the time to first fixation for text, label and high 
AOIs played an important role in classifying users. We 
found that high visual working memory users had lower 
times to first fixation (indicated by a negative coefficient), 
meaning that they were very quick at scanning the various 
AOIs of the visualization. 

 
Figure 10. Visual Working Memory – classification accuracy 

Similarly, for verbal working memory, the highest 
classification accuracy for both LR-Full (63.86%) and LR-
NoAOI (61.09%) was found after observing only 20% of 
the data (see Figure 11). When analyzing the feature 
selection results for LR-Full, we found that features related 
to the text and label AOI most strongly contributed to the 
classification accuracy. In particular, high verbal working 
memory users spent less time in the text AOI, both overall 
and in proportion to other AOIs. Since users are most likely 
to read the question text at the beginning of each task, it 
therefore seems intuitive that the highest accuracies were 
found after only 20% of the data had been observed.  



 
Figure 11. Verbal Working Memory – classification accuracy 

A similar pattern was observed for the perceptual speed 
classification experiment, where the highest accuracy for 
LR-Full (59.84%) was found after only 20% of data had 
been observed (see Figure 12). When analyzing the feature 
selection results, we found that features related to the label 
and legend AOIs had the strongest coefficients. In 
particular, we found that high perceptual speed users had a 
lower number of fixations in the legend. This finding may 
indicate that low perceptual speed users would benefit from 
adaptations relating to this particular AOI (e.g. through 
highlighting, facilitating easier access, etc.). In addition, 
high perceptual speed users had a shorter longest fixation 
and a higher fixation rate. 

 
Figure 12. Perceptual Speed – classification accuracy 

Visualization type 
As shown in the classification results above, the inclusion 
of AOI-related features is critical towards generating 
predictions for both task types and cognitive measures. 
Having such AOI-related features requires knowing which 
visualization is currently active. While there are scenarios 
in which this information is indeed available to an adaptive 
component (i.e. if the adaptation component is part of the 
visualization system), this is not always the case. For 
example, if an adaptive component were to run as a 
standalone system in parallel to a separate visualization 
system (e.g., in the context of an information retrieval task 
when the user gets back a visualization, or in case the 
adaptive component acts as a complement to statistical 
analysis tools, etc.), it would be first necessary to infer the 
currently active visualization type in order to utilize the 
right AOIs for accurate task/user classifications. Thus, in 

this section we present results on whether visualization type 
can be inferred from gaze data. Since AOI information 
would not be available for this task, LR-Full is not 
applicable in a realistic scenario. For the LR-NoAOI 
classifier, the average accuracy is 64.56%, which is 
statistically significantly higher than the baseline (52.69%). 
As shown in Figure 13 (note that LR-Full is included for 
completeness), the accuracy of LR-NoAOI continuously 
grows as more gaze data is observed, reaching 66.34% after 
50% of the data has been observed, and a maximum of 
70.26% after all data has been observed. All accuracies are 
statistically significantly higher than baseline after only 
20% of the data has been observed. While these results are 
encouraging, further research needs to be conducted in 
terms of improving accuracies in order to employ such 
techniques in a live system (see discussion). 

 
Figure 13. Visualization type – classification accuracy 

Regarding the feature selection for this NoAOI classifier, 
we found that users have different viewing patterns in terms 
of path angles. Specifically, users have more horizontal 
viewing patterns in the bar graph (lower mean absolute 
path angles) and more “erratic” saccades (higher standard 
deviation of absolute path angles), whereas in the radar 
graph users follow a circular trajectory to view the various 
data points (indicated by a higher mean of absolute path 
angles), and have more uniform saccades due to the 
proximity of the labels to the respective data points 
(indicated by a lower std. dev. of absolute path angles). 

Summary of Results & Discussion 
As outlined in the introduction, the specific goals of our 
experiments were to investigate the extent to which a user’s 
current visualization task and/or long-term cognitive 
abilities could be inferred solely based on eye gaze data 
(Q1), as well as which gaze features would be the most 
informative (Q2). By running a number of classification 
experiments and analyzing in detail the effects of different 
feature sets, we have found several interesting findings 
regarding these research questions. 

We found that a user’s eye gaze behavior provides evidence 
about each of the visualization tasks and cognitive abilities. 
In particular, we show that for each classification task, 
gaze-behavior-based predictions outperform a baseline 
classifier (Q1). Moreover, we show that for most of the 



predictions, the classification accuracy is statistically 
significantly higher even after only partial data 
observations. We have shown that for some experiments, 
accuracy is actually highest at the beginning of each task, 
indicating that a user’s eye gaze at this time may contain 
the most relevant information regarding the target 
characteristics. These results provide very encouraging 
evidence that user eye gaze behavior could indeed be used 
for driving adaptive systems, particularly given that the 
experiments used a relatively simple set of features. 

It may be argued that from a practical point of view, the 
accuracies are not yet high enough to be exploited in a live 
system. In particular, the accuracies relating to the cognitive 
abilities yielded results that were only in the 55-60% range. 
However, depending on the nature of the intervention/ 
guidance that is being provided, it can be envisioned that if 
the system is unsure about the user's classification, some 
minimal adjustments can be done, followed by continued 
tracking to see if performance improves. Nevertheless, 
further research should be conducted in order to improve 
the presented accuracies. On the one hand, we envision that 
the addition of sequence features (e.g. scan path patterns) 
could provide even more information about the various task 
and user characteristics. On the other hand, eye tracking 
data could be integrated with other sources, for example 
interaction data if such information is available. Similarly, 
there are further sources of information that could 
potentially be added to such a system, for example it may 
be possible to infer the user’s task through automatic graph 
analysis (e.g. based on computer vision techniques [9]) or 
natural language processing (e.g. by processing a 
visualization’s caption). 

We obtained very interesting results regarding the more 
fine-grained details of each classification experiment. In 
particular, we found that depending on the goal of the 
classification, different features are most informative for 
different task/user characteristics (Q2). For example, we 
found that the label usage increases for more complex tasks, 
suggesting that users could benefit from interventions 
relating to this particular AOI. Similarly, we found that for 
low perceptual speed, users spend more time in the legend, 
suggesting such users may benefit from interventions that 
particularly relate to this AOI (e.g. giving such elements 
more emphasis or providing easier access). Such detailed 
analyses thereby not only provide evidence to what extent 
different characteristics can be inferred, but also how a 
system may adapt to individual differences.   

In terms of general trends regarding the most informative 
features, we found that for each of the classification runs, 
AOI-related features were crucial towards more accurate 
predictions. It may therefore be argued that in order to build 
effective adaptive visualizations, a system needs to be 
aware of the currently active visualization.  We therefore 
also showed that, even in the case of the system not 
knowing this information a priori (e.g. if the adaptive 

component is not directly attached to the visualization), it is 
possible to infer this visualization type solely based on a 
user’s eye gaze with 70% accuracy. Again, this accuracy 
may potentially be improved with additional, more 
sophisticated features such as sequential scan paths. 

While our experiments have only investigated two simple 
visualization techniques, there are many results that may be 
generalized to a wider array of visualization designs. In 
particular, we have shown that many of the important 
features are actually based on generic AOIs that are 
common to most types of visualizations, such as a graph’s 
labels or legend. Similarly, while the study only focused on 
an artificial data set involving student grades, the actual 
tasks were derived from an established set of general, low-
level analysis tasks for information visualization [1] and 
may therefore be generalized to other application domains. 

Lastly, while our experiments have shown results regarding 
the classification of different task and user characteristics, 
i.e. what to adapt to, and to a certain extent how to adapt, 
more work needs to be carried out in terms of predicting 
when adaptive assistance is required. In particular, further 
research is necessary relating to the identification of 
potential user confusion or cognitive overload, which is 
related to the detection of “sub-optimal usage patterns” that 
was discussed in related work by Gotz and Wen [14]. 
Similarly, if a system were able to detect “how well” a user 
is currently doing (i.e. if the system could infer user 
performance), adaptive assistance could be provided in 
cases of “bad” eye gaze patterns. 

CONCLUSIONS & FUTURE WORK 
In conclusion, we have presented research results showing 
that a user’s eye gaze is a valuable source to infer a number 
of task and user characteristics. In particular, we have 
shown encouraging results using simple machine learning 
techniques on simple eye tracking metrics, even after only 
partial data has been observed. The study has therefore 
provided a first step towards our long-term goal of 
designing user-adaptive information visualizations. 

The next step of this research is to design user studies that 
focus on the effect of different adaptive interventions (e.g. 
highlighting, drawing reference lines, recommending 
alternative visualizations) on a user’s performance, both in 
general, and in relation to different tasks and individual user 
differences. These studies will also need to focus on 
different degrees of intervention intrusiveness, for example 
comparing fully-adaptive vs. mixed-initiative approaches. 
Following this investigation, we hope to develop a fully 
integrated adaptive information visualization system, which 
is able to dynamically provide adaptive interventions that 
are informed by real-time user behavior data. Lastly, we 
will investigate the detection of user performance and/or 
confusion, and we will investigate the usage of more 
complex features such as sequential scan paths to improve 
on the results presented in this paper. 
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