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ABSTRACT 
In this research, we outline a user modeling framework 
that uses both unsupervised and supervised machine 
learning in order to reduce development costs of building 
user models, and facilitate transferability. We apply the 
framework to model student learning during interaction 
with the Adaptive Coach for Exploration (ACE) learning 
environment (using both interface and eye-tracking data). 
In addition to demonstrating framework effectiveness, we 
also compare results from previous research on applying 
the framework to a different learning environment and 
data type. Our results also confirm previous research on 
the value of using eye-tracking data to assess student 
learning.  
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I6.5 [Simulation and Modeling]: Model Development.-
Modeling methodologies 
K3.1 [Computers and Education]: Computer Uses in 
Education.-Computer-assisted instruction 

General terms: Human Factors, Experimentation  

Keywords: User modeling, unsupervised and supervised 
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INTRODUCTION 
In this research, we propose a user modeling framework 
that uses both unsupervised and supervised machine 
learning to address two of the most cited difficulties of 
developing user models for computer-based learning 
environments (e.g., [3, 11, 19]): laborious effort required 
by application designers to construct models, and limited 

model transferability across applications. The user model 
is a fundamental component of an intelligent learning 
environment (ILE), i.e., a computer-based system that can 
provides adaptive support for students. The user model 
guides the adaptation process by providing the ILE with 
an abstract representation of the learner in terms of 
relevant traits such as knowledge, meta-cognitive ability, 
and learning behaviors [3, 19]. 

Unfortunately, although the benefits of individualized 
computer-based instruction are well-recognized, so are 
the development costs, of which a considerable part is 
devoted to the user model [3]. This is especially true for 
knowledge-based user models, because they require 
eliciting the relevant domain and pedagogical knowledge 
from experts, a process that is often hard and time 
consuming. Furthermore, pure knowledge-based 
approaches can typically recognize and interpret only 
expected student behaviors, and are unable to handle 
unanticipated ones. Thus, they tend to be suboptimal for 
novel applications for which real experts do not exist yet. 

To circumvent the drawbacks of knowledge-based student 
models, some researchers have turned to the field of 
machine learning (e.g., [2, 9]) to approximate functions 
that map observable student behaviors to classes such as 
the correctness of student answers. These functions can 
then predict the outcome of future student behaviors and 
inform adaptive facilities. However, this approach 
typically necessitates labeled data. When labels (e.g., 
student answers) are not readily available from the 
system, domain experts must resort back to manual 
labeling to supply them, which is again time-consuming 
and error prone. 

The user modeling framework we propose addresses the 
issue of cost-intensiveness by integrating supervised and 
unsupervised machine learning. The framework is a 
generalization of the statistical pattern recognition 
approach [13] we used in [1] to automatically create a 
user model for an intelligent learning environment to 
teach AI algorithms. The general procedure for statistical 
pattern recognition is: data acquisition, processing, 
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learning, and then testing [13]. Our framework defines 
this process specifically in the context of user modeling. It 
uses unsupervised learning to automatically identify 
common learning behaviors and then applies supervised 
machine learning to these behaviors to train a classifier 
user model that can inform an adaptive ILE component. 

A key distinction between our modeling approach and 
knowledge-based or supervised approaches with hand-
labeled data is that human intervention is delayed until 
after unsupervised machine learning automatically 
identifies behavioral patterns. That is, instead of having to 
observe individual student interactions in search of 
meaningful patterns to model (e.g., student errors or 
misconceptions as in [5]) or to input to a supervised 
classifier (e.g., actions indicating motivation [9], instances 
of student’s misusing an existing ILE [2]) the developer is 
presented with an unbiased picture of common behavioral 
patterns that can then be analyzed in terms of learning 
effects. Expert effort is further reduced by using 
supervised learning to actually build the user model from 
the identified patterns. 

In addition to reducing developer workload, our approach 
also facilitates transfer across different applications and 
data types. In [1], we showed the effectiveness of the 
approach  applied to logged student interface actions in an 
environment for teaching an AI algorithm, the CIspace 
CSP (Constraint Satisfaction Problem) Applet. Here, we 
demonstrate transferability by applying it to (i) a different 
learning environment, the Adaptive Coach for 
Exploration (ACE) for mathematical functions; (ii) data 
beyond interface actions, namely eye-tracking data. This 
data is higher dimensional than what we experimented 
with in [1] and so we extend our framework  to include 
automatic feature selection to reduce data  dimensionality.   

Both the CIspace CSP applet and ACE are exploratory 
learning environments (ELEs), i.e. are designed to support 
learning via free, student-led exploration of the target 
domain. We chose ELEs as testbeds for our framework 
because previous research has shown the value of 
providing adaptive support for student exploration [18], 
but these environments are especially hard for traditional 
user modeling approaches. Because ELEs are a relatively 
novel learning paradigm, little practical knowledge exists 
about optimal learning strategies within these systems, 
increasing the difficulties of applying knowledge-based 
modeling approaches. Furthermore, because the space of 
possible interaction behaviors within ELEs can be very 
large, observing distinct behaviors and interpreting them 
in terms of learning effects is especially difficult. This 
makes supervised machine learning techniques that 
require manually labeled data also unappealing.  

For instance, ACE’s original student model [4], built via a 
fairly laborious knowledge-based approach, specified 
which components of the target domain (mathematical 
functions) should be explored for effective learning. 

However, due to lack of knowledge, it did not model how 
these components should be explored, leading to 
suboptimal model performance. A later version of the 
model [7] partially addressed this problem by using 
supervised learning to recognize effective exploration 
patterns from both interface actions and eye tracking data. 
But the relevant patterns had to be hand-labeled using an 
extremely laborious protocol analysis [7] and for this 
reason were limited to a subset of the available data. In 
this paper, we show that when applied to ACE, our 
framework can automatically identify more complex 
behavioral patterns than those identified by experts in [7]. 
An additional contribution is that fwe extend the results 
presented in [7] on the value of using eye-tracking data in 
modeling user reasoning processes. 

In the rest of the paper, we first discuss related work. 
Next, we outline our user modeling framework. Then, we 
review previous results on applying our framework to the 
CSP Applet. Finally, we describe ACE and present the 
results of applying our framework to it. We conclude with 
a summary and suggestions for future work. 

RELATED WORK 
Unsupervised machine learning for user modeling has 
been mostly used in non-educational applications. For 
example, collaborative filtering (CF) systems employ 
unsupervised learning techniques to model user 
preferences and make item recommendations based on 
user similarities (e.g., [16]). Other research has 
demonstrated the use of unsupervised learning on (i) 
words in a document to model and automatically manage 
email activities [14]; (ii)  frequencies of web pages access 
to automatically adapt web sites [17]. In contrast, research 
in using unsupervised machine learning for user modeling 
in educational systems remains rare [19]. A notable 
exception is MEDD [20] which uses unsupervised 
learning to discover novel classes of student errors and 
automatically build error libraries (for Prolog 
programming). Our approach differs from this in that we 
are modeling student interaction behaviors in unstructured 
learning environments instead of static student solutions 
and errors. [12] and [21] are also related to our work 
because, although they do not actually build user models, 
they also use pattern recognition approaches to discover 
patterns of student behaviors. DIAGNOSER [12], like 
MEDD, uses unsupervised learning to discover errors in 
static student solutions to physics questions. More similar 
to what we do, [21] uses clustering on interface action 
frequencies, to detect behavioral patterns in an 
environment for collaborative learning. Our work differs 
in that we use higher dimensional data including action 
latency, measures of variance and gaze information. In 
both [12] and [21] the resulting patterns are given to 
instructors who can then use them to tailor instruction, 
whereas we take this process one step further to 
automatically build a user model. Our research is also 
broader because we show transfer of our approach across 
applications and data types. 
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MODELING FRAMEWORK 
Figure 1 shows the architecture of our proposed modeling 
framework, which divides the user modeling process in 
two main phases: Offline Identification and Online 
Recognition. In the offline phase, raw, unlabelled data 
from student interaction with the target environment is 
first collected and then preprocessed. The result of 
preprocessing is a set of feature vectors representing 
individual students in terms of their interaction behavior. 
These vectors are used as input to an unsupervised 
learning (clustering) algorithm that groups them 
according to their similarity. These groups (clusters) 
represent students who interact similarly with the 
environment and are analyzed by the model developer to 
identify interaction behaviors as effective or detrimental 
for learning. In the online phase, the clusters identified in 
the offline phase are used directly in a classifier user 
model for learner classification. The online classifications 
and the learning behaviors identified by cluster analysis 
can then be used to inform an adaptive component that 
can encourage effective learning behaviors and prevent 
detrimental ones. In the rest of this section we describe 
the steps in each of the two phases, along with the 
algorithms we chose to complete these steps in the work 
presented here. 

Offline Identification 

 
Figure 1: User modeling framework. Dotted lines 
represent optional input. Grayed out elements are 
outside of the framework. 

Data Collection. The first step in the offline phase is to log 
data from students interacting with the target learning 
environment. Here, the developer requires knowledge (or 
a catalog) of all possible primitive interaction events that 
can occur in the environment so that they can be logged 
(see in Figure 1 the solid arrow from ‘Developer’ to ‘Data 
Collection’). In addition to interface actions, logged data 
can include events from any other data source that may 
help reveal meaningful behavioral patterns (e.g., an eye-
tracker).  

An optional, but highly desirable additional form of data 
are tests on student domain knowledge before and after 
using the learning environment, to measure student 
learning with the system (see the dotted arrow in Figure 1 
from ‘Tests’ to ‘Data Collection’). These can then be used 
in cluster analysis, as we will see below. 

Preprocessing. Clustering operates on data points in a 
feature space, where features can be any measurable 
property of the data. So in order to find clusters of 
students who interact with a learning environment in 
similar ways, each student must be represented by a 
(multidimensional) feature vector. The second step in the 
offline phase is to generate these vectors by computing 
low level features from the data collected. We suggest 
features including (a) the frequency of each interface 
action, and (b) the mean and standard deviation of the 
latency between actions. The latency dimensions are 
intended to measure the average time a student spends 
reflecting on action results, as well as the general 
tendency for reflection (e.g., consistently rushing through 
actions vs. showing selective attention). In the current 
research we also include features extracted from eye-
tracking data (i.e., eye gaze movements).  

In high-dimensional feature spaces, natural groupings of 
the data are often obscured by irrelevant features. 
Therefore, determining the most salient features and 
removing irrelevant ones (called feature selection) can 
significantly improve results of the subsequent machine 
learning algorithm. We suggest using an entropy-based 
unsupervised algorithm [8] for feature selection. First, we 
rank each of the candidate features according to the 
entropy (disorder) induced by the removal of that feature 
from the entire set of data points. Next, we run forward 
selection on the ranked features. This evaluates 
incrementally larger feature subsets in terms of their 
performance in clustering and chooses the subset that 
maximizes cluster quality, defined as having maximum 
between-cluster variance and minimum within-cluster 
variance. Note that feature selection must execute 
clustering on each candidate subset in order to assess 
cluster quality, and returns both a reduced feature set and 
the resultant clusters. Thus, clustering need not be 
performed again when using this automatic feature 
selection technique. When no feature selection is 
performed then clustering must still be carried out to 
determine behavioral patterns, as described next. 



 

Clustering. Clustering works by grouping feature vectors 
by their similarity, where here we define similarity as the 
Euclidean distance between data points in the normalized 
feature space [10]. For both the work presented in this 
paper and that reported in [1], we chose a popular 
partition-based algorithm for clustering called k-means 
[10]. K-means takes as input feature vectors and a user-
specified k value specifying the number of clusters that 
should be returned. Initially, k data points are randomly 
selected to be the cluster centroids. The remaining data 
points are then assigned to the cluster whose current 
centroid minimizes the Euclidean point-to-centroid 
distance. After all data points are assigned to a cluster, 
new cluster centroids are computed from these groupings. 
The process then repeats for a given number of iterations 
or until there are little or no changes in the clusters. K-
means can often converge at local optima depending on 
the selection of the initial cluster centroids. Thus, several 
trials are typically executed to find high quality clusters.  

While k-means is efficient for large data sets, and so may 
be favorable for online educational technologies that have 
the potential to log large amounts of data, it does have 
limitations. First, k-means assumes the clusters are 
elliptical, and would be unsuccessful at identifying more 
complex cluster shapes. In this case, a more 
computationally expensive hierarchical algorithm may be 
best [10]. K-means also produces hard assignments of 
data points to clusters, whereas it may be beneficial for an 
adaptive ELE to know the uncertainty in the assignments. 
Here, a probabilistic version of k-means called 
Expectation Maximization [10] may be more appropriate. 
So the choice of clustering algorithm should be informed 
by properties of the data or the application being studied. 
Although we use k-means as proof of concept throughout 
this research, we expect that other clustering algorithms 
can be substituted for k-means in our framework. 

Cluster Analysis. If the clusters detected by clustering are 
to be used in a user model for an ILE, the clusters must be 
analyzed and interpreted to determine which patterns of 
behaviors are effective or ineffective for learning. This is 
best done by using objective information about learning 
gains from application use, e.g., improvements from pre 
to post tests, to identify which clusters of students were 
successful learners and which were not (see dotted arrow 
marked ‘Test Results’ between ‘Data Collection’ and 
‘Cluster Analysis’ in Figure 1). If learning gains are 
unknown, then expert evaluation is required to interpret 
the cluster characteristics in terms of learning (illustrated 
in Figure 1 by the dotted arrow from ‘Developer’ to 
‘Cluster Analysis’). In this case, human workload is still 
reduced because they avoid the time-consuming process 
of having to observe individual student interactions and 
then look for meaningful patterns. 

An additional step in cluster analysis is to evaluate 
clusters for similarities and dissimilarities along each of 
the feature dimensions in order to characterize the 

different learning behaviors. While this step is not strictly 
necessary for on-line recognition based on supervised 
learner classification, it can be useful to help developers 
gain insights on the relevant learning behaviors and 
devise accurate adaptive interventions targeting them. 

In this research, we use formal tests to compare clusters in 
terms of learning and distinctive interaction behaviors. To 
compare the clusters obtained with k=2, we use Welch’s t-
tests (Student’s t-test corrected for unequal sample 
variances) to determine the statistical significance of the 
differences (throughout the paper, we use .05 for 
significance and .1 for marginal significance). We also 
measure effect sizes (the magnitude of the differences), 
using Cohen’s d [6], to determine the practical 
significance of the differences. We consider a large effect 
(d > .8) to be significant and a medium effect (.8 > d > .5) 
to be marginally significant as per Cohen’s standard. 
When k>2, we use one-way analysis of variances 
(ANOVAs) with Tukey HSD adjustments for post-hoc 
pairwise comparisons to determine statistical significance. 

Online Recognition 
Supervised Classification. The second phase supported by 
our modeling framework (lower left of Figure 1) uses an 
online supervised classification algorithm to recognize 
effective and ineffective learners by classifying a new 
student into the distinct learner groups found by offline 
clustering. This is done via an online k-means classifier 
that incrementally updates the classification of a new 
student into one of these groups as the student interacts 
with the learning environment. As actions occur, the 
feature vector representing the student’s behavior thus far 
is updated to reflect the new observation. Next, the 
student’s classification is computed by simply 
recalculating the distances between the updated vector 
and each cluster centroid and then assigning the feature 
vector to the cluster with the nearest centroid. 

PREVIOUS RESULTS ON USING THE FRAMEWORK 
WITH THE CSP APPLET 
In [1], we applied our framework to model student 
interactions with the CIspace CSP Applet, an ELE to 
support learning of an AI algorithm for constraint 
satisfaction problems (CSP). The CSP applet uses 
visualizations to dynamically demonstrate the workings of 
the algorithm. Students are free to explore these 
visualizations using any of seven different functions 
embedded in the interface. Thus, our data set consisted of 
21-dimentional feature vectors representing action 
frequencies of these seven functions as well as the means 
and standard deviations of the latency between actions. In 
that work we showed how the unsupervised component of 
our modeling framework was able to identify student 
clusters (for k=2 and k=3) characterized by significantly 
different interaction behaviors (as well as significantly 
different learning outcomes), and several of these 
behaviors would have been difficult to recognize and 
label by hand. The model developed, with k=2, through 
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the supervised learning component achieved a good 
overall predictive accuracy of 88.3% on new student 
behaviors, although the accuracy was higher for 
ineffective behaviors than for effective behaviors because 
of the limited data available for the latter. In contrast, the 
overall predictive accuracy of the model developed with 
k=3 was only 66.2%. This is likely attributable to the 
smaller cluster sizes resulting from the larger k value in 
this case. Like with the model built with k=2, the accuracy 
for the model developed with k=3 was highest for the 
largest cluster which was again characterized by 
ineffective learning behaviors. We now discuss the results 
of applying the framework to a different system, the ACE 
ELE for mathematical functions, and to a broader set of 
data types including both interface actions and eye-
tracking information. 

ADAPTIVE COACH FOR EXPLORATION (ACE) 
ACE [4] is an intelligent ELE that provides tools to 
support student-led exploration of mathematical functions 
while an adaptive Coach provides tailored suggestions on 
how to improve student exploration. ACE is comprised of 
three units, each designed to present concepts pertaining 
to mathematical functions in a distinct manner. In this 
research we focus on the Plot Unit (Figure 2) because it 
offers the widest range of exploratory activities, making it 
an ideal candidate to evaluate our modeling framework. 

 
Figure 2: The ACE Plot Unit. 

ACE’s Plot Unit provides three types of functions, or 
exercises for the student to explore: constant, linear and 
power functions. Each function has an associated set of 
exploration cases that together illustrate the full range of 
function attributes. For example, linear functions are 
defined by two parameters specifying the function slope 
and the y-intercept. In order to gain a broad understanding 
of linear functions, the student should study the relevant 
exploration cases, including positive and negative 
intercepts, and positive, negative and zero slopes. 

The Plot Unit interface (Figure 2) is divided into three 
components. Function exploration occurs within the top-
left panel, which visually demonstrates the relationship 
between mathematical equations and their corresponding 
plots in a Cartesian plane. The component at the right 
contains hypertext help pages about ACE’s interface and 
the functions that can be explored. The lower left panel is 
where ACE’s Coach displays tailored, on-demand hints to 
guide the student’s exploration. In addition, the Coach 
intervenes (via a dialog box) if the student tries to move 
to a new exercise before sufficiently exploring the current 
one. In this situation the Coach tries to encourage the 
student to continue exploring the current exercise by 
offering them a hint if they stay. However, in keeping 
with the theme of student-controlled exploration, the 
student ultimately decides whether or not to move on. 

To explore mathematical functions, ACE allows students 
to take the following 13 interface actions:  

• Plot Move (PM) – Dragging the function plot around 
the screen. The parameters of the function’s equation 
(directly below the Cartesian plane in Figure 2) are 
automatically adjusted to reflect the transformation.  

• Equation Change (EC) – Editing the function equation. 
ACE transforms the function plot accordingly. 

• Reset – Resetting the function to its initial parameters.  
• Next Exercise (NE) – Stepping sequentially forward to 

the next exercise in the pre-defined curriculum by 
clicking on the NE button (top right of plot). 

• Step Forward (SF) – Same as NE action, but done by 
clicking on the forward arrow on the toolbar at the top 
right of the plot. 

• Step Back (SB) – Stepping backwards to the previous 
exercise. 

• Lesson Browser (LB) – Opening the LB tool which 
outlines the curriculum and allows the student to jump 
to any exercise within the curriculum.  

• Exploration Assistant (EA) – Opening the EA tool 
which displays the exploration cases already examined 
by the student and remaining to be examined.  

• Get Hint – Requesting a hint from the Coach. 
• Stay - Adhering to the Coach’s advice to continue 

exploring the current exercise. 
• Move On (MO) – Ignoring the Coach’s advice to stay 

on the current exercise and moving on to another one. 
• Help – Using the hypertext help pages. 
• Zoom – Zooming into or out of the graph region. 

The Coach’s interventions are guided by a knowledge-
based user model [4]. The model is a hand-constructed 
Dynamic Bayesian Network that includes nodes to 
represent all possible exploration cases, nodes to represent 
student’s understanding of related mathematical concepts 



 

and  links representing how exploration of relevant cases 
relate to concept understanding. To assess whether a case 
has been explored effectively, the network includes 
information on both student actions (only the PM and EC 
actions described above) and time elapsed between these 
actions. The latter is used as an estimate of student’s 
active reasoning on each exploration case. The network 
parameters (i.e., multi-valued conditional probability 
tables for each node) were manually defined using prior 
knowledge or estimations. 

USING THE FRAMEWORK WITH ACE 
Data Collection 
The data we apply our modeling framework to was 
obtained from a previous user study involving the ACE 
Plot Unit [7]. The goal of the study was to analyze if and 
how eye-tracking data on gaze patterns helps assess 
student reasoning on individual exploration cases and 
consequent effectiveness of student exploration (student 
reasoning was assessed solely from latency between 
actions in the original ACE model). 36 students 
participated in the user study. They first took a pre-test on 
mathematical functions, and then interacted with ACE for 
as long as they needed. While using ACE, the students 
were asked to verbalize all of their thoughts. Student gaze 
was tracked by a head-mounted eye-tracker. In addition, 
all student interactions with ACE were logged and 
synchronized with data from the eye tracker. Finally, the 
students took a post-test similar to the pre-test. For the 
research presented here, we obtained 3783 interface 
actions over 673.7 minutes from the study log files, along 
with the accompanying gaze data from the eye-tracker.  

Data from this study was also used in [7] to build a new 
version of ACE student model using supervised machine 
learning. This new model uses gaze information, in 
addition to latency between actions, to assess 
effectiveness of student exploration. The use of gaze 
information is limited to gaze shifts between the plot and 
equation area after a plot move or equation change, which  
intuitively should indicate student’s reflection after these 
actions. Although gaze pattern information may also be 
relevant in relation to other interface actions, this work 
was limited to equation and plot changes because of the 
effort required to generate the hand labeled data necessary 
to train the model. Two researchers (to assure coding 
reliability) categorized student verbalizations after 
equation and plot changes as instances of student 
reflection vs. speech not conducive to learning. Then, 
they mapped them onto presence/absence of gaze shifts 
and latency until the next action. This new model showed 
better performance in assessing effectiveness of student 
exploration than models using only action occurrences or 
action occurrences plus latency information, showing the 
value of eye-tracking data for this type of assessment. In 
the following two sections, we compare the results of 
applying our framework to the data described above, with 
the results obtained by the supervised approach in [7]. 

Preprocessing and Unsupervised Clustering 
We extracted two different sets of features from the ACE 
study data. The first set (FeatureSet1) consisted only of 
interface features, i.e. frequencies of each of the 13 
possible interface actions and the mean and standard 
deviation of the latency between actions. This feature set 
is analogous to the one used in [1], so as to  evaluate how 
our modeling framework transfers across different 
applications using the same type of input data.  

The second set (FeatureSet2) included features distilled 
from the eye-tracking data in addition to the above 
interface features. We chose this set for two reasons. First, 
we wanted to evaluate how our approach works on a 
range of different data sources. Second, we wanted to see 
if we could reproduce results in [7], showing that eye-
tracking information improves assessment of the 
effectiveness of student exploration. In particular, we 
hypothesized that eye-tracking data would improve the 
performance of clustering in identifying groups of 
students with distinct learning proficiency. We focused on 
the two gaze shift patterns used in [7]: direct and indirect 
gaze shifts. A direct gaze shift happens when a student’s 
gaze moves directly between the function equation and its 
plot, while in an indirect gaze shift, gaze moves to non-
salient regions in between. Although in [7] the authors 
only considered these gaze shifts after plot moves and 
equation changes, they may be relevant after most ACE 
interface actions. For example, after a next exercise action 
a new function appears on the screen requiring attention 
to both the plot and equation regions in order to 
understand the connection between the new function 
equation and its plot. Since, contrary to the supervised 
approach in [7], considering more actions in our approach 
does not involve much extra work, we included gaze shift 
information for all the 13 interface actions in FeatureSet2, 
by computing the mean and the standard deviation of the 
number of indirect and direct gaze shifts as additional 
features.  

FeatureSet1 and FeatureSet2 included respectively 39 and 
91 possibly influential features. With only 36 feature 
vectors corresponding to the 36 study participants, these 
high-dimensional feature spaces can result in data 
sparseness and may degrade the performance of 
clustering. Therefore, as outlined in our modeling 
framework, we performed entropy-based feature selection 
on each set. We used k set to 2, 3 and 4 for the k-means 
clustering executed during forward selection. We chose 
these values because our data set was relatively small and 
so we only expected to find a few clear groups with 
distinct learning outcomes.  

Because of space limitation, here we only discuss results 
from feature selection on FeatureSet2 with k=2, the only 
case in which we found significant differences in student 
learning outcomes of the obtained clusters. 36 of the 91 
original features in FeatureSet2 were selected as 
important (listed in Table 1). All action frequencies are 
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selected as important, except in the case of a Stay action. 
Gaze shift dimensions are only identified as important in 
the presence of the corresponding latency dimensions (see 
EC and NE entries in Table 1 for example). Conversely, 
latency was found to be relevant independently of gaze 
shift features, for instance in relation to using the ACE 
help pages (see help entries in Table 1). This agrees with 
the findings in [7] that gaze shifts may be important 
mostly in discriminating between time spent reflecting on 
an action’s results and idle time.  

Feature Description HL 
average 

LL 
average p D 

PM freq. .024 .034 .116 .418 
EC freq. .015 .019 .203 .305 
EC latency avg. 21.8 16.1 .047* .677 
EC latency sd. 10.4 6.08 .073 .636 
EC indirect avg. 1.21 .440 .012* 1.02* 
EC indirect sd. 1.12 .556 .022* .886* 
Reset freq. 0 .001 .008* .735 
Reset latency sd. 0 .051 .082 .406 
NE freq. .005 .009 .005* .827* 
NE latency avg. 18.7 13.2 .003* 1.07* 
NE latency sd. 10.3 7.44 .059 .594 
NE indirect avg. 1.74 .625 1e-5* 2.18* 
NE indirect sd.  2.09 .715 1e-4* 1.97* 
NE direct avg.   1.30 .201 .003* 1.41* 
NE direct sd.   1.79 .362 .006* 1.25* 
SF freq. .008 .011 .034* .621 
SF latency avg. 7.65 4.65 .008* 1.03* 
SF latency sd. 9.96 5.83 .014* .858* 
SB freq. 0 2e-4 .122 .338 
SB latency avg. 0 .400 .053 .475 
SB indirect avg. 0 .040 .164 .283 
LB freq. 0 6e-4 .037* .528 
EA freq. 2e-4 .001 .018* .640 
EA latency avg. 5.27 5.65 .472 .027 
Get hint freq. 3e-4 5e-4 .312 .155 
Stay latency avg. 6.55 2.54 .032* .775 
Stay indirect avg. .152 .100 .350 .136 
MO freq. .003 .005 .014* .744 
MO latency avg. 2.23 232 .163 .283 
MO latency sd. 2.76 400 .163 .283 
Help freq. .002 .001 .234 .288 
Help latency avg. 2.45 7.28 .030* .587 
Zoom freq. 4e-4 .021 .008* .741 
Zoom latency avg. .374 1.98 .003* .961* 
Zoom latency sd. .700 2.70 .017* .785 
Zoom direct sd. 0 .101 .012* .683 

* Significant at p<.05 or d>.8 (feature description in bold) 

Table 1. Pairwise comparisons between HL 
and LL clusters along the features selected 
from FeatuteSet2  

Interestingly, neither latency nor gaze shifts were found to 
be relevant after a plot move (see PM table entry). Given 
that both plot moves and equation changes are 
exploratory actions requiring student reflection, this result 
appears unintuitive, especially considering that latency 
and gaze shifts were found to be important after equation 
changes. This could be an artifact of forward selection, 
which may prematurely rule out certain features that are 
important only in combination with features not yet 
included in the subset (i.e. lower ranked features). 
However, since clustering was in fact able to find distinct 
learner groups using only the features returned by feature 
selection, these findings could challenge our previous 
beliefs about the utility of plot move actions for learning. 

Cluster Analysis 
As dictated by our framework, in this phase we first 
compare the clusters returned by feature selection on 
FeatureSet1 and FeatureSet2 in terms of student learning 
gains (derived from the pre and post-test scores available 
from the user study described earlier). When significantly 
different learning gains were found, we then compared 
the clusters in terms of differences in behavioral patterns. 

Cluster Analysis for FeatureSet1. With FeatureSet1, 
for all values of k we found no significant differences in 
learning gains amongst clusters and so we cannot use the 
clusters as the basis for the on-line modeling phase. 
Interestingly, in [1] we were able to  find distinct learner 
groups by using only interface actions on a data set 
comparable in size to the data set we are using here. We 
hypothesize that this discrepancy is due to differences in 
the nature of the domains and interfaces of the two 
learning environments. The AI algorithm that the CSP 
Applet is designed to demonstrate is more complex 
compared to the relationship between mathematical 
functions and their graphs that the ACE Plot Unit 
demonstrates. As a result, the CSP Applet interface 
includes several functions that allow the student to 
visualize and reflect on the workings of the AI algorithm, 
whereas ACE only provides two such functions: plot 
moves and equation changes. Thus with the CSP Applet, 
interface actions alone may capture student reflection 
during exploration better than interface actions alone in 
ACE. This hypothesis is consistent with the results in [7] 
showing that gaze patterns, together with action latency, 
predict student reflection and learning better than sheer 
number of actions or action latency alone. Additional data 
may be necessary [13] to detect distinct learner groups 
using only this feature set. 

Cluster Analysis for FeatureSet2. With FeatureSet2 
and k=2 we found a marginally significant difference in 
learning gains between the two clusters returned 
(t(17.85)=1.55, p=.069, d=.571). Furthermore, several of 
the clusters’ distinctive behaviors involved gaze patterns, 
as we discuss next. This shows that incorporating eye-
tracking data into feature vectors improves the 
performance of clustering in identifying groups of 



 

students with distinct learning proficiency, as compared to 
using interface actions and latency information alone. 

Hereafter we refer to the group with high and low average 
learning gains as the ‘HL’ and ‘LL’ groups respectively. 
In order to characterize these two learner groups in terms 
of interaction behaviors, we did a pair-wise analysis 
between the clusters on each of the 36 feature dimensions. 
Table 1 presents the results of this analysis. Here we 
discuss some of the most interesting findings. 

Some of these findings are consistent with results in [7], 
as we were hoping. First, there were no statistically 
significant differences in the frequency of plot moves or 
equation changes between the HL and LL groups, 
consistent with finding in [7] that sheer number of 
exploratory actions is not a good predictor of learning in 
this environment. Second, after an equation change, the 
LL group would pause for a significantly shorter duration 
than the HL group on average (see ‘EC pause avg.’ in 
Table 1). In [7], the authors determined 16 seconds to be 
an optimal threshold between occurrences of effective 
reflection on exploration cases and other verbalizations 
not conducive to learning. Consistent with this result, 
Figure 3 shows that the average latency by the students in 
the HL group were mostly above this threshold, whereas 
with the LL group the latency averages were centered 
about the threshold.  

HL

LL

0 5 10 15 20 25 30  
Figure 3: Boxplot of avg. latency after Equation 
changes between HL (gray) and LL (white) 
clusters. 

Because with clustering we are able to incorporate all 
interface actions and associated gaze data simply by 
including them in the multi-dimensional feature vectors, 
we also found patterns additional to the ones found in [7]. 
For example, the students in the HL group were more 
varied in how often they would indirectly gaze shift after 
an equation change (see ‘EC indirect sd.’ in Table 1). 
This selective behavior suggests that students need not 
reflect on the results of every exploratory action in order 
to learn well so long as they do not consistently refrain 
from reflection. In addition, the LL group paused less and 
made significantly fewer indirect gaze shifts after an 
equation change than the HL group (see ‘EC indirect 
avg.’ in Table 1). These results are consistent with less 
reflection by the LL group compared to the HL group and 
may account for some of the difference in learning gains. 
It should be noted that in [7], individual gaze shifts, not 
multiple gaze shifts, were found to predict student 
reasoning. In that research, gaze behavior was studied 
only in the context of plot moves and equation changes 
because of the effort of labeling data. The fact that we are 
using all interface actions and accompanying gaze data 

may account for this discrepancy in using multiple gaze 
shifts. We found similar differences in the latency and 
gaze shifting behaviors of the two groups when a new 
function appeared on the screen after a next exercise 
action (see NE latency and gaze entries in Table 1). 

When the Coach suggested that the student spend more 
time exploring the current exercise, LL students chose to 
ignore the suggestion and move on to another exercise 
significantly more frequently than HL students (see ‘MO 
freq.’ in Table 1). This result is intuitive since the Coach’s 
suggestions are intended to promote effective learning [4]  
and so ignoring them would be expected to adversely 
affect students. The frequency of Stay actions were not 
found to be relevant by feature selection, however when 
they did occur, HL students paused for significantly 
longer than LL students (see ‘Stay latency avg.’ in Table 
1). This is another intuitively good behavior, possible 
showing that the HL students followed the Coach’s advice 
more carefully by spending additional time pondering 
over the current exercise before taking additional actions.  

While the above patterns are quite intuitive, this approach 
was also able to identify additional patterns that do not 
have an obvious relation to learning. For example, the LL 
students advanced sequentially through the curriculum 
using the next exercise and step forward buttons 
significantly more frequently than the HL group (see ‘NE 
freq.’ and ‘SF freq.’ in Table 1). Considering that every 
student examined all three available exercises, intuition 
would suggest that there should be no differences between 
the clusters along these dimensions. However, further 
examination of the clusters reveals that the LL students 
also made use of both the step back feature and the 
Lesson Browser tool to navigate through the curriculum, 
whereas none of the HL students performed these actions. 
Since the LL students showed lower learning gains after 
interacting with ACE, it is probable that these students 
were moving impulsively back and forth through the 
curriculum. This hypothesis is substantiated by the fact 
that the Coach’s suggestion to continue exploring the 
current exercise (computed by combining the frequencies 
of move on and Stay actions) appeared more frequently 
(t(25.66)=1.57, p=.063, d=.536) to the LL students than to 
the HL students. As this pattern involved several interface 
features (i.e., NE, SF, SB, LB, MO and Stay) it may have 
been difficult to observe, even by application experts. 

Similarly, there were unintuitive differences in the use of 
the zooming features between the two groups (see ‘zoom’ 
features in Table 1). The LL students zoomed into or out 
of the plot region significantly more frequently than the 
HL students. The HL group students paused for a 
consistently shorter duration after zooming than the LL 
students on average. Although zooming may not have 
clear pedagogical benefits, this behavior may suggest 
confusion on the part of the LL students resulting in the 
need for more detailed inspection of the plot. This is 
consistent with the finding related to help page 
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exploration. Here, LL students paused for significantly 
longer after navigating to a help page then the HL 
students (see ‘Help latency avg.’ in Table 1) indicating 
that these students may have felt confused about how to 
use ACE or about the domain concepts and so required 
more help than the HL students. 

Supervised Classification 
In this section we first describe the method we used to 
evaluate our k-means-based online classifier. Next, we 
present the results on the performance of the model at 
recognizing students interacting with ACE as belonging 
to the LL or HL clusters identified in the offline phase.  

Time restrictions prevented us from running additional 
user studies to collect test data for our model. Therefore, 
we performed a 36 fold leave-one-out cross validation 
(LOOCV) evaluation to make use of the available data 
and provide initial evidence of the online classifier’s 
accuracy. In each fold, one student’s data was removed 
from the training set, and the reduced set was re-clustered 
by k-means. Then, the removed student’s data was fed 
into a classifier model trained on the reduced data set, and 
online predictions were made for the incoming actions as 
explained in the Online Recognition section of our 
framework description. Model accuracy is evaluated as 
student actions are observed (over time), where accuracy 
is measured as the percentage of students correctly 
classified into the clusters to which they were assigned in 
the offline phase.  

It should be noted, however, that by using a LOOCV 
strategy, we run the risk of altering our initial cluster 
characterizations derived in the offline phase using the 
entire data set. Therefore, we should not expect to achieve 
100% accuracy even after seeing all the actions performed 
by a student, because we are classifying incoming data 
using the clusters found by the reduced data set given by 
LOOCV. This issue is known as hypothesis stability [15]. 
Thus, prior to assessing predictive accuracy of our online 
classifier, we estimate the stability cost, or the difference 
between the clusters produced by LOOCV and the 
original clusters, as in [15]. Low stability cost helps to 
ensure that our model is essentially predicting what we 
would like it to predict, i.e., the membership of the 
removed student’s behavioral patterns in one of the 
learning groups in the offline phase. The estimated 
stability cost for our k-means classifier model was 0.062 
(where 0 is considered perfect stability and 1 is 
considered maximum instability [15]). This means that 
the characteristic behaviors of the two clusters identified 
in the offline phase are reasonably preserved during our 
LOOCV evaluation. 

Figure 4 shows the percentage of correct predictions as a 
function of the percentage of student actions seen by the 
k-means online classifier model over time. The accuracy 
of the model converges to 97.2% after seeing all of the 
students’ actions. Averaged over time, the accuracy is 

86.3%. The figure also shows the model’s performance 
over both the HL and LL groups. The accuracy for the LL 
group remains relatively stable over time, whereas the 
performance for the HL group is initially poor but 
increases to over 80% after seeing about 45% of the 
actions.  
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Figure 4: K-means classifier performance over 
time. 

The LL and HL group accuracies effectively measure the 
sensitivity (i.e., the ability to detect suboptimal learning 
behaviors when student learning gains are poor) and 
specificity (i.e., the ability to detect effective learning 
behaviors when student learning gains are indeed high) of 
the classifier respectively. Table 2 shows these accuracies 
averaged over time (i.e., by taking the average of all of 
classification accuracies computed while students 
interacted with ACE over time). 

 ACE CSP 
(k=2) 

CSP 
(k=3) 

Accuracy 86.3% 88.3% 66.2% 
Sensitivity (True Positive Rate) 94.2% 93.5% 66.1% 
Specificity (True Negative Rate) 68.3% 62.4% 63.3% 

Table 2. Classification accuracies averaged 
over time.  

For comparison with previous framework application, 
Table 2 shows the similar results we obtained for k=2, and 
the results we obtained for k=3, by applying our 
framework to the CIspace CSP Applet data. The high 
sensitivity rates obtained for k=2 in both framework 
applications mean that these models would be useful for 
recognizing when a student behaves in ways ineffective 
for learning, essential for providing adaptive support for 
students who do not learn well with a learning 
environment. The sensitivity rate reported in the table for 
k=3 on the CIspace CSP Applet data was computed by 
combining the accuracy results for the two groups that 
showed ineffective learning behaviors in this case. The 
individual accuracies for these two groups were 80.9% 
and 44.9% averaged over time. Therefore, this model 



 

would be most useful for recognizing students behaving 
in the ineffective ways characterized by the first (larger) 
group, but not by the second (smaller) group. Within an 
exploratory setting where student control is key, the low 
specificity rates for all of the models may cause an 
adaptive support system to interfere with an HL student’s 
natural learning behavior if it is sometimes suboptimal. 
This imbalance is likely due to the distribution of the 
sample data [22] in all cases. For ACE, the HL group had 
fewer data points than the LL group (11 compared to 25), 
and similarly for the CSP Applet dataset for k=2. For k=3 
on the CSP Applet dataset, the largest group (of 
ineffective learners) showed the highest accuracy, 
whereas the two smaller groups (one other group of 
ineffective learners and one group of effective learners) 
showed lower accuracies. This is a common phenomenon 
observed in classifier learning. Collecting more training 
data to correct for this imbalance, even if the cluster sizes 
are representative of the natural population distributions, 
may help increase the specificity rates of the models [22].  

CONCLUSION AND FUTURE WORK 
In this research, we presented a user modeling framework 
that makes use of both unsupervised and supervised 
machine learning in order to reduce the development costs 
typically associated with knowledge-based approaches to 
user modeling and supervised approaches that require 
hand-labeled data. Results of applying the framework to 
the ACE ELE confirm results in [7] on the value of eye-
tracking data in revealing student reflection. And perhaps 
more interestingly, our approach was able to identify 
more complex patterns than was found through 
observation in [7]. In addition, we have demonstrated 
framework transferability across applications by 
comparing results with previous results on the CIspace 
CSP Applet ELE in [1].  

Our next step is to collect more training data to see if this 
would help reveal clusters using only interface actions, as 
with the CIspace CSP Applet data, and testing data to 
better evaluate our user model. We also intend to build an 
adaptive component for ACE that uses the model built via 
our modeling process. The effectiveness of an adaptive 
ACE that uses our model could then be evaluated in a real 
world setting.  
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