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Abstract

Oneof the mostimportantproblemsfor anintelligent
tutoringsystemis decidinghow to respondvhenastu-
dentasksfor help. Respondingooperatiely requires
an understandingf both what solution path the stu-
dentis pursuing,andthe students currentlevel of do-
mainknowledge.Andes anintelligenttutoringsystem
for Newtonianphysics refersto a probabilisticstudent
modelto make decisionsaboutrespondingo helpre-
quests. Andes’ studentmodel usesa Bayesiannet-
work thatcomputesa probabilisticassessmerf three
kinds of information: (1) the students generalknowl-
edgeaboutphysics,(2) the students specificknowl-
edgeaboutthe currentproblem, and (3) the abstract
plansthat the studentmay be pursuingto solve the
problem. Using this model, Andesprovidesfeedback
andhintstailoredto thestudent knowvledgeandgoals.

I ntroduction

Many differentkinds of computemprogramshave to decide
how to respondwhen their usersask for help, and some
mustevendecidewhenhelpis neededBoth of thesetasks
involve a greatdeal of uncertainty especiallyin the case
of Intelligent Tutoring Systems(ITS), wherethereis un-
certaintyaboutboth the students intentionsand what the
studentknows aboutthetaskdomain.

The problemwe addressn this paperis how to decide
whatto saywhena studentneedshelp solving a problem,
given obsenationsof what the studenthasdone already
Our solution usesa probabilistic model of the students
knowledgeand goalsto decidebetweenalternatves. We
have developeda procedurdghatsearchethesolutionspace
of the problemthe studentis working on to find a proposi-
tion thatis bothpartof the solutionpaththestudenis prob-
ably pursuing andthatthestudenis unlikely to know. This
propositionwill bethe subjectof the help givento the stu-
dent. Furthermoreye usea theoryof hinting to modelthe
effect of the helpthathasbeengivenonthe students men-
tal state.This framework for respondingo helprequestss
implementedn Andes,anITS for Newtonianphysics.
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Andes’ tutor usescoaded problem solving (VanLehn
1996), a methodof teachingcognitive skills in which the
tutor and the studentcollaborateto solve problems. In
coachedproblemsolving, theinitiative in the student-tutor
interactionchangesaccordingto the progressbeingmade.
Aslongasthestudeniproceedslongacorrectsolution,the
tutor merelyindicatesagreementvith eachstep.Whenthe
studentstumbleson partof the problem,thetutor helpsthe
studentovercomethe impasseby providing hintsthatlead
thestudentbackto a correctsolutionpath. In this setting,a
critical problemfor thetutoris to interpretthe students ac-
tionsandtheline of reasoninghatthe studentis following
sothatit canconformits hintsto thatline of reasoning.

This paperfirst describeshow Andes’ probabilisticstu-
dentmodelis createdandhow it representsariousaspects
of the students mentalstatewhile solving a problem. We
then demonstratehow Andes usesthis studentmodel to
generatéhintsthatarebothrelevantandappropriateo the
students understandingf thedomain.

The Andes Tutoring System

Andeshasa modulararchitecture,as shovn in Figure 1.
Theleft sideof Figurel shovsthe authoringervironment.
Priorto runtime, a problemauthorcreatesoththe graphi-
caldescriptiorof theproblem,andthecorrespondingoded
problemdefinition. Andes’ problemsolver useshis defini-
tion to automaticallygenerate modelof the problemsolu-
tion spacecalledthe solutiongraph

The right side of the figure shows the run-time student
ervironment. The studentinterface,known asthe Work-
benchsendstudenentriesto the Action Interpreteywhich
looksthemupin thesolutiongraphandprovidesimmediate
feedbackasto whetherthe entriesare corrector incorrect.
More detailedfeedbackis provided by Andes’ Help Sys-
tem. Boththe Action Interpreterandthe Help Systenrefer
to the studentmodelto make decisionsaboutwhatkind of
feedbackand help to give the student. The mostimpor-
tantpartof the studentmodelis a Bayesiametwork (Pearl
1988)thatis constructecandupdatedby the Assessqrand
providesprobabilisticestimatesf the students goals,be-
liefs, and knowledge (Conatiet al. 1997). The student
modelalso containsinformation aboutwhat problemsthe
studenthasworked on, what interfacefeaturesthey have
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used,andwhathelpthey have recevedfrom the systemin
thepast.

The Andes Student Modeling Framewor k

Inferring an agents plan from a partial sequenceof ob-
senable actionsis a task that involves inherent uncer
tainty, sinceoftenthe sameobsenableactionscanbelong
to different plans. In coachedproblem solving, two ad-
ditional sourcesof uncertaintyincreasethe difficulty of
the plan recognitiontask. First, coachedproblem solv-
ing often involves interactionsin which most of the im-
portantreasoningis hiddenfrom the coachs view. Sec-
ond, thereis additionaluncertaintyregardingwhatdomain
knowledgethe studenthasand can bring to bearin solv-
ing problems. While substantialresearchhas beende-
votedto using probabilisticreasoningrameworks to deall
with the inherentuncertaintyof plan recognition (Char
niak & Goldman1993; Huber, Durfee,& Wellman1994;
Pynadath& Wellman1995),noneof it encompassesppli-
cationswheremuch uncertaintyconcernsgthe users plan-
ning anddomainknowledge.Ontheotherhand probabilis-
tic approacheto studenimodelingmostlyassumeertainty
in plan recognition and use probabilistic techniquesto
modeluncertaintyaboutknowledge(Andersoretal. 1995;
Jamesori995).

Andesusesa framawork for studentmodelingthat per
forms plan recognitionwhile taking into accountboth the
uncertaintyaboutthe students plansand the uncertainty
aboutthe students knowledgestate(Conatiet al. 1997).
By integratingthesetwo kinds of information,Andes’ stu-
dentmodelis ableto performthreefunctions: plan reca-
nition, predictionof the students future goalsandactions,
andlong-termassessmertdf the students domainknowl-
edge. The framework usesa Bayesiannetwork to repre-
sentandupdatethe studentmodelon-line,during problem
solving (seeConatiet al., 1997,for a discussiorof theis-
suesinvolvedin using Bayesiannetworks for on-line stu-
dentmodeling). In the following two sectionswe describe
thestructureof the studentmodelandhow it is created.

Generating the solution graph

Likeitstwo predecessor§)LAE (Martin & VanLehn1995)
andPOLA (Conati& VanLehn1996),Andesautomatically
constructsts Bayesiametworksfrom the outputof a prob-
lem solver that generatesll the acceptablesolutionsto a
problem. We have basedAndes’ problem solver’s rules
ontherepresentationsedby CascadgVanLehnJones&
Chi 1992),a cognitive modelof knowledgeacquisitionde-
velopedfrom ananalysisof protocolsof studentsstudying
worked exampleproblems. The rulesare beingdeveloped
in collaborationwith threephysicsprofessoravho arethe
domainexpertsfor the Andesproject.

In additionto knowledgeaboutthe qualitatve andquan-
titative physicsrules necessaryo solve complex physics
problems,Andes’ problemsolver hasexplicit knowledge
aboutthe abstractplansthat an expert might useto solve
problemsandaboutwhich Andeswill tutorstudentsThus,
givenaninitial descriptionof the problemsituationanda
problem-solvinggoal, Andes producesa hierarchicalde-
pendeng network including, in additionto all acceptable
solutionsto the problemin termsof qualitative propositions
andequationsthe abstracplansfor generatinghosesolu-
tions. This network, calledthe solutiongraph represents
Andes’'modelof thesolutionspace.

For example, considerthe problemstatemenshavn in
Figure2. The problemsolver startswith the top-level goal
of finding the final velocity of the car From this goal, it
forms the sub-goalof using a kinematicsequation,which
involvesseveral quantitiesincluding the car’s acceleration
anddisplacement.Sincethe acceleratiorof the caris un-
known, the problem solver forms a sub-goalto find it,
whichin turnleadsto a goal of usingNewton’s secondaw
appliedto thecar.

Whenall applicableruleshave fired, the resultis a par
tially orderedhetwork of propositiondeadingfrom thetop-
level goalto a setof equationgthat are sufficient to solve
for the soughtquantity This network, includingall propo-
sitions and the rules that were usedto generatethem, is
savedasthesolutiongraph.Figure3 shovs a sectionof the
solution graphfor this problem, shaving the relationship
betweerthe goalsof finding the final velocity andfinding
theaccelerationandtheactionsthataddresshosegoals.
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A 2000kg car at thetop of a20° inclined driveway 20m long slips
its parking krake and rolls down. Assume that the driveway is
frictionless At what speed will it hit the garage door?

Figure2: A physicsproblem.
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The Assessor’s Bayesian Networ k

The Assessos Bayesiannetwork is automaticallygener
ated eachtime the studentselectsa new problem. The
structureof the Bayesiametwork is takendirectly from the
structureof the solutiongraph. The network containsfive
kindsof nodesshawvn in Figure3 usingdifferentshapes:

1. Contet-Rulenodesmodeltheability to applyarulein a
specificproblemsolvingcontext in whichit maybeused.

2. Fact nodesrepresentthe probability that the student
knows afactthatis partof the problemsolution.

3. Goal nodesrepresenthe probability thatthe studenthas
beenpursuinga goalthatis partof the problemsolution.

4. Rule-Applicatiomodesepresenthe probabilitythatthe
studenthasapplieda pieceof physicsknowledgerepre-
sentedby a contet-rule to derive anew factor goal.

5. Strategy nodes(not shavn in Figure 3) correspondo
points wherethe studentcan chooseamongalternative
plansto solve aproblem.

To corvertthesolutiongraphinto a Bayesiametwork, it
is first annotatedvith prior probabilitiesfor all thetoplevel
nodes- the rule nodesandpropositionghatweregivenin
the problemstatement All othernodesare givena condi-
tional probabilitytabledescribingthe relationshipbetween
thenodeandits parents For example eachrule-application
nodehasasparentsxactly onerule node,correspondingo
therule thatis beingapplied,andone or moregoal and/or
factnodes,correspondindo the propositionsthat mustbe
true in orderto apply the rule. The conditionalprobabil-
ity tableof arule-applicatiomodecapturegheassumption
thatthe studenwill likely do the consequenrdctionif all of
theantecedertnowledge(Rule, Goals,andFacts)is avail-
able,but if any of the knowledgeis not available,the stu-
dentcannotapplytherule.

Whena studentperformsan actionin the AndesWork-
benchtheAction Interpreterdeterminesvhichfactor goal
nodesin the solutiongraph,if arny, correspondo thatac-
tion. If oneor more areidentified, the Assessois told to
setthevalueof thosenodesto True,andthe entirenetwork
is thenre-evaluatedto reflectthe effectsof the new obser
vation.

In generalgvidencethatafactis known causeshe prob-
abilities of the antecedentsf the correspondingnode(s)in
the solutiongraphto go up, indicatingthe model’s expla-
nationfor the new evidence.Lik ewise, the probabilitiesof
goalsandfactsthat are consequencesf knowing the fact
will alsogo up, correspondindo the model’s predictionof
future actionsthat have becomemorelikely asa resultof
observingthe evidence. If the studentasksfor help, An-
descan usethe probabilitiesproducedby the Assessoto
inform its decisiongegardingthe partof the solutiongraph
aboutwhichto begin hinting.

Procedural help: deciding what to say

In a Wizard of Oz experimentdesignedo provide infor-
mationaboutthe kinds of helpstudentsisingAndesmight
need(VanLehn1996), studentssolved problemson anin-
terfacesimilarto Andes,requestinghelpby sendinga mes-
sageo ahumantutor. In thisexperimentthemostcommon
help requeststudentsmadewas of the form, “I'm stuck.
What shouldl do next?” (27 occurrence®ut of 73 help
requests)The partof Andes’helpsystenthatanswerghis
kind of helprequesis calledthe ProceduraHelper

In mosttutoringsystemssuchasAndersons modeltrac-
ing tutors(Andersonetal. 1995),it is easyto decidewhat
the topic of a hint shouldbe becausehe studentis only
allowed to follow one solution path. If thereare several
correctpathsthroughthe solutionspace the tutor asksthe
studentwhich onethe studentwantsto pursue. Thus,the
tutor alwaysknows what paththe studentis on, andwhen



sheindicatesthat sheis stuck, the only possiblehint is to
pointto the next performablestepon thatpath.

In the physicstaskdomain,however, therearemary cor-
rectsolutionpathsbecausénferencesanbedonein mary
different orders. In someproblems,there may be more
thanone alternatie solution stratgy that may be brought
to bear resultingin theapplicationof differentphysicdaws
andthe useof differentequationsThus,it is impracticalto
keepaskingthe studentwhich pathsheis following. In fact,
our own informal analyse=of tutoring transcriptsindicate
that humantutorsrarely ask studentswhat their goalsare
beforegiving a hint. Moreover, Andesseldomforcesstu-
dentsexplicitly to enterall the stepsof a derivationin the
interface. Thesepropertiesof the domainmale it very dif-
ficult to know whatpaththe students pursuing,andwhere
alongthatpaththe studentwaswhenshegot stuck.

Nonethelesst would be extremelyinfelicitousif Andes
gave hintsintendedto help a studentalongonepartof the
solutionpathwhenthe studenis actuallyfocusingon a dif-
ferentpart of the path, or possiblygoing down a different
pathaltogether Thus,Andesusesits Bayesianmetwork to
infer which part of the solutionthe studentis working on
and whereshegot stuck. This is a form of probabilistic
planrecognitionandit is oneof themainreasongor using
Bayesiametworksin Andes.

As with ary plan recognitiontask, Andesneedsan in-
ductive biasto guidethe searchthroughthe solutionspace
for the students mostlikely solution path. The biasthat
Andesusesds to assumehatthe studentrraverseghe solu-
tion graphin depth-firstorderwhengeneratinga solution.
This meanghatif a studenthasjustidentifiedthe displace-
mentof the carin Figure3 (nodeF1in the diagram),they
would not be expectedto go on to drawv an axis (nodeF5)
until they had also identified the car’s accelerationnode
F2). Following this assumptionAndessearcheshe solu-
tion graphdepth-firstfor pathsthatbegin with the students
mostrecentaction.

Sincewe aretrying to identify anappropriatepartof the
solutionto give a hint about,we wantto determinewhere
the studentis probablygetting stuck. In otherwords, we
have to find a nodethat the studentis not likely to have
in mind already The depth-firsttraversalof the solution
graphthereforewill terminatewheneer it reachesa node
whoseprobability is belov a certainthreshold(currently
0.8). The searchwill alsoterminateif it reachesa node
thatmustbe enteredbeforecontinuingwith therestof the
solutionbecausét is a preconditionfor applyingary other
rule alongthatpath.

Theresultof thistraversalis asetof pathsthroughtheso-
lution graph,eachbeginningwith the students mostrecent
action,andterminatingwith a nodethat hasa probability
of lessthan .8, or that must be entered. In our example
(Figure3), supposehatthelastactionobsenredis F5. Ad-
ditionally, supposehe probabilitiesof F3, F6, G2, G3, G4,
G6, and G8 are above .8, andthe probabilitiesof F1, F2,
F7,andG7 arebelow .8. The setof pathsfoundin the part
of thegraphthatis shavn will be:

1. F5—5F3—-G4 - G2 - G3 > F1

2.F6 - F3 >G4 — G2 —> G3 — F2
3. F5 > F6 -G8 — G6 — G7

Next, Andesmustchooseoneof thesepathsasthe oneit
will useto guidethestudent.To dothis, it looksatthejoint
probabilityof all thenodesn eachpathexceptthelastnode,
whichis theonethatthe students supposedo be stuckon.
The pathwith the highestvalueis choserasbeingthe most
likely to representhe students currentpath, andthusthe
bestcandidatdor procedurahelp.

In theabsencef additionalevidence,if therulesassoci-
atedwith kinematicshave higherprior probabilitythanthe
rulesassociateavith Newton’s law, thenpathsl and2 will
be chosenover the third path. However, sincethesetwo
pathsareidenticalexceptfor the lastnode,they will have
exactly the samejoint probability. In sucha situation,we
needametricto decidewhich of thelastnodesn eachpath
is the bestcandidatdor a hint, giventhatbothareon paths
thatthe studentis probablypursuing. We choosethe node
with the lowest probability, becauset is the one that the
students mostlik ely to be stuckon.

If, ontheotherhand the studentasperformedsomeac-
tionsassociatedvith the Newton’s law plan, suchasdraw-
ing a vectorfor the weight of the car (not shavn in Fig-
ure 3), thethird pathwill be morelikely, andnodeG7 will
thereforebeselectedsthetopic of thehint to begenerated.

Generating hintsfrom BN nodes

Evidencefrom studiesof the performanceof humantutors
suggestshatone of the mainreasondumantutorsareef-
fective is that they areableto let studentsdo mostof the
work in correctingerrorsand overcomingimpasseswhile
providing just enoughguidanceto keepthemon a produc-
tive solution path (Merril etal. 1992). Likewise, in gen-
eratinghelpfrom thetargetnodeselectedy the procedure
describedabove, Andestries to encouragehe studentto
solve the problemon her own by giving hints, ratherthan
by directly telling herwhatactionsto perform.

Andes’ ProceduralHelper usestemplatesto generate
hints from nodesin the solutiongraph. For eachgoal and
fact in its knowledge base,Andes has an associatedse-
quenceof hinttemplatesrangingfrom quitegenerato very
specific. Slotsin the templatesarefilled in with descrip-
tions of the appropriateobjectsin the problemsituation.
When guiding a studenttowardsa particulargoal, Andes
begins by using the most generaltemplatesto encourage
the studentto generatdhe next solutionstepwith aslittle
extrainformationaspossible.

For example,supposehat AndeshasselectechodeG7
from Figure 3, representinghe goal of drawing all of the
forceson the car, asthetopic of its next hint asdescribed
in the previous section. The templatesassociatedvith this
goalarel

(3 “Think aboutwhatyou needto doin orderto have
a completdreebodydiagramfor [ ] body)

The numbersbeforeeachtemplateindicatethe specificity of
thehint. Theagumentsaftereachtemplatestringtell the system
how tofill in thecorrespondinglots,indicatedby squarebraclets.



(5 “Dr aw all the forcesacting on [
your freebodydiagram” body)

Choosingthe first templatefrom this list, and substituting
the appropriatedescriptionsof objectsor quantitiesfrom
the probleminto the slots,Andeswould generatehe hint,

Hint 1 “Think aboutwhatyouneedto doin orderto have
a completereebodydiagramfor [the car]”

If the studentdoesnot know whatto do after receving
thefirst generahint, shecanselectafollow-up questionby
clicking oneof threebuttons:

e ExplainFurther: Andeswill displaythe next hint in the
hint sequencewhich givesslightly more specificinfor-
mationaboutthe propositionrepresenteddy thenode.

e How do | dothat?: Andesfinds a child of the hint node
that hasnot yet beenaddressedand gives a hint about
thatnode.If thereis morethanonechild node,it chooses
the onewith the lowestprobability, assuminghatis the
nodethe studentis mostlikely to be stuckon.

¢ Why?: Andesdisplaysa canneddescriptionof the rule
thatwasusedby the problemsolverto derive thatnode.

In theabove example afterseeingHint 1, clicking onthe
“Explain Further”buttonresultsin the hint,

Hint 2 “Dr aw all theforcesactingon [the car] as part of
your freebodydiagram”

whichis amorespecificdescriptionof thegoalin question.
Clicking “How do | do that?” after Hint 1, on the other
hand,might resultin the hint,

Hint 3 “Do youknowof any[other] forcesactingon [the
car]?”

which pointsto a sub-goalf drawing theforcesonthecar,
namelydrawing the normalforce (theword “other” is used
optionallyif atleastoneforce hasalreadybeendrawn).

] as part of

The discour se model

Anotherimportantconsiderationvhen generatinghints is
the currentdiscoursecontext. In particular Andesshould
avoid giving ahint thatthestudentasalreadyseen.There-
fore for eachnodein the solution graph, Andeskeepsa
recordof what hints aboutthat nodeit hasgiven the stu-
dent. Whenthe hint selectionalgorithmselectsa nodethat
hasalreadybeenmentionedthe ProceduraHelpertriesto
give a more specifichint thanwas given lasttime. If the
mostspecifichint availablehasalreadybeengiven, Andes
will repeatt.

Andesalsousests representationf whatthestudenthas
donesofarto generateeferringexpressionsFor example,
if the studenthasdefinedthe acceleratiorof the caras A,
Andeswill referto it by the variable A, ratherthanwith
its description.So Hint 1 above would be, “To find A, try
usingaprinciplethatmentionsacceleratiori.

Updating the student model after a hint

An ITS musttake into accountthe hints thatit hasgiven
when interpretingthe students actionsand updatingthe

studentmodel. Typically, a studentwill askfor hintsdown
to acertainlevel of specificitybeforetakingtheactionsug-
gestedvy thehint. Thus,the studentmodelershouldinter-
pret studentactionstaken in responseo a hint differently
dependingon thathint’s specificity

This problem has been solved differently in different
ITS’s. Mary tutors,e.g. (Andersonetal. 1995),assume
thathintsaffecttheknowledgedirectly. Forinstancestrong
hintsmaycauseahestudento learntheknowledgerequired
to make theaction. Thus,it doesnot matterwhethera stu-
dent’s correctentry wasprecededy a stronghint, a weak
hint or no hint atall. If they make a correctentry, thenthey
probablyknow the requisiteknowledge. This seemsa bit
unrealisticto us, especiallywhenthelastpossiblehintis so
specificthatit essentiallytells the studenwhatto enter(as
often occursin Andes,the Andersoniartutors, and mary
others). Perhapghe mostelaborateand potentially accu-
rate methodof interpretinghints is usedby the SMART
ITS (Shute1995),which usesa non-linearfunctionderived
from reportsby experts,thatbooststhe level of masteryby
differentamountsdependingon the specificity of the hint
andthelevel of masterybeforethe hint wasgiven.

Our approachattemptsto be more principled by mod-
eling a simple “theory” of hints directly in the Bayesian
network. Thetheoryis basedn two assumptions:

o Hints from Andes’ ProceduraHelperarewordedso as
to remindthe studentof the requisiteknowledge,rather
thanteachit. (Teachingmissingpiecesof knowledgeis
handledby the ConceptualHelp system,which is not
discussedhere.) Thus, procedurahints do not directly
causestudentdo masteiknowledge.

¢ A stronghint increaseghe chancethat the studentcan
guesdhenext actionratherthanderiveit from herknowl-
edge.Thus,ahint cancauseanentrydirectly.

In otherwords, hints affect actionsdirectly but not domain
knowledge.

This mini-theoryof hintsis encodedn the Bayesiamet-
work asfollows. Wheneerahinthasbeengivenfor anode,
a new nodeis attachedo the network asits parent,repre-
sentingthefactthata hint wasgiven. The conditionalprob-
ability tableon thetargetnodeis modifiedsothatthetarget
nodemaybetrueif it wasderivedeithervia theapplication
of aknown rule, or via guessingbasedon the hint. More-
over, the higherthe specificity level of the hint, the more
likely thatthe target nodeis true (The specifiy levels are
the numbersthat appearat the beginning of the hint tem-
platesshawvn earlier). In operation,this meansthat when
the studentmakes the correspondingentry, the hint node
“explainsaway” someof that evidence,so the probability
of masteryof therequisiteknowledgeis notraisedasmuch
asit would beif thestudentmadethatentrywithoutrecev-
ing a hint.

Evaluations of Andes

In the Fall semestenf 1997, an earlier versionof Andes
wasusedin aformative evaluationby studentsn theintro-
ductory physicscourseat the US Naval Academy About



160studentsvereaslkedto useAndesin theirdormrooms
to do their physicshomework for threeweeks. Students
were given a short pre- and post-testto assesghe effect

of usingAndeson their understandin@f physicsconcepts.
Only 85 studentendedup usingthesystemenoughto eval-

uatetheir testresults. A multiple regressionfor thesestu-

dentswith post-tesscoreasthedependentariable,shavs

asmallbut significantpositive effect of thenumberof times

astudentasledfor help (p < .05, R? = .016). Theonly

othervariableto have a significanteffect on post-tesscore
wasthe students pre-tesiscore.

The small size of the effect of askingfor help, together
with reportsfrom studentsthat the hints did not always
seenrelevantto whatthey werethinking aboutat thetime
they asledfor help,led usto revisethe planrecognitional-
gorithmto its presenform. In theversionof Andesusedin
thefirst evaluation,the plan recognitionstratgyy was sim-
ply to assumehatthegoalnodewith thehighestprobability
in the entire network wasthe onethe studentwasaddress-
ing. However, sincethereis notemporalinformationrepre-
sentedn the Bayesiametwork, this meantthatthe system
wasignoring evidenceaboutwhenactionshadbeendone.
Theversionof the procedurahelpsystemdescribedn this
paperaddresseshis problemby using the students most
recentactionasthe startingpointin its searchfor the next
hint target.

Preliminaryresultsfrom 25 studentsvho usedthe new
versionof Andesin the Springsemesteshow thatthenum-
berof helprequestper problemwentup from 0.19in the
Fall to 0.52in the Spring. Testresultsfor thesestudentsare
notyet availableasof this writing.

As the projectmovesforward,we will continueto gather
datafrom suchformative evaluations.Theseevaluationsare
invaluablein bothassessinthe effectivenes®of the system
andsuggestingiew directionsandimprovements.

Future work and conclusions

Thereareseveral areasof future work plannedfor the An-
desITS. Theseinclude:

¢ Improved languagegeneration:for instance,using dis-
coursecuesandmoresophisticatedurfacegeneratiorio
improvethecoherencendgrammaticalityof the output.

e Tutorial planning:anew project(CIRCLE) s looking at
the problemof decidingwhatkind of responséo giveto
the studentat arny giventime (e.g. a hint vs. anlonger
explanatorysubdialogvs. noresponse).

In this paperwe have presentedh framework for gener
atingresponseto helprequestshatis particularlyrelevant
to domainsin which thereis uncertaintyaboutthe users
mentalstate.We would arguethatthis uncertaintyexiststo
somedegreein mostdomainsfor which help systemsare
implemented Our ProceduraHelp moduleperformsthree
functions:it decideson the mosteffective topicfor its help,
it generates hint aboutthat topic taking into accountthe
previous discoursecontet, andit updatests modelof the
users mentalstateas a resultof having receved the hint.
Furthermoretheintegrationof theseabilitieswith ageneral

knowledgeassessmenibol meanghat Andescanadaptits
helpasthe studentslevel of knowledgechange®vertime.
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