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1 ABSTRACT

How can an adaptive intelligent interface decide what partic-
ular action to perform in a given situation, as a function of
perceived properties of the user and the situation? ldeally,
such decisions should be made on the basis of an empiri-
cally derived causal model. In this paper we show how such
a model can be constructed given an appropriately limited
system and domain: On the basis of data from a controlled
experiment, an influence diagram for making adaptation de-
cisions is learned automatically. We then discuss why this
method will often be infeasible in practice, and how parts of
the method can nonetheless be used to create a more solid
basis for adaptation decisions.

1.1 Enumerate Keywords

Adaptive systems, Experiments, Decision theory, Influence
diagrams, Bayesian networks

2 INTRODUCTION

One way in which an intelligent user interface can be intel-
ligent is by adapting autonomously to properties of the user
or the situation. A user-adaptive system can be defined as a
system (&) that (a) makes nontrivial inferences concerning
properties of the user (/) on the basis of information about
U and (b) adapts its actions to the inferred properties of &/
and relevant contextual factors (cf. [6]).

How do user-adaptive systems go about choosing their ac-
tions? In descriptions of such systems, the decision pro-
cedures are usually described—if at all—in terms of if-
then rules or formulas that are accompanied by little em-
pirical or theoretical justification. Even with systems that
employ explicit decision-theoretic methods (see, e.g., [5];
INTRODUCTIONT[7]; [13]), the empirical basis of the de-
cision procedure is typically not in the focus of attention.

In this paper, we aim to encourage and help designers of

user-adaptive systems to develop decision procedures in a
more principled and—if possible—empirically justified way.
We address two questions in turn:

1. In an ideal situation—with a simple, restricted system
about which we can collect any empirical data we like—
what would be an effective method for developing an op-
timal decision procedure?

2. Inthe real world—in which the method just introduced is
normally infeasible—how can we adopt some aspects of
the method in order at least to improve on current prac-
tice?

To answer the first question, in the next section we introduce

a simple system and an experiment that we performed with

it.

3 EXAMPLE DOMAIN AND EXPERIMENT
3.1 The Specific Adaptation Issue

The example system (S) and domain used in our experiment
are illustrated in Figure 1. S is an assistance system that
presents sequences of spoken instructions to the user I/ (as,
for example, a computer support hot-line might do). One
question that arises is whether S should present the instruc-
tions (a) in a stepwise manner (i.e., allowing U/ to execute
each instruction in the sequence before hearing the next one)
or (b) in a bundled manner (i.e., all at once, before U starts
executing the first instruction) (cf. Figure 2).

The main drawback of stepwise presentation is the interac-
tion overhead: After executing each instruction (except the
last one in the sequence), &/ must somehow confirm to S
that he is ready for the next instruction. (We are assuming
here that S does not get direct information about ¢/’s task
performance.) This confirmation signaling requires a certain
amount of time and effort on /s part.*

The main limitation of bundled presentation is that it may
require U to try to store an excessive amount of information
in working memory (WM). If I{’s available WM capacity is
inadequate—for example, because the sequence of instruc-
tions is especially long, or because U simultaneously has to
store unrelated information in WM—U/ may fail to remem-

IMoreover, S may be able to formulate the instructions more concisely
if S can bundle them together, for example by using ellipsis.
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Figure 1. Main screen used for the experiment.
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Figure 2. lllustration of the two presentation modes for in-
structions.

ber the instructions. The resulting errors in task performance
may far outweigh the time saved by bundling the instruc-
tions. Accordingly, we may expect bundled presentation to
be inappropriate if the sequence of instructions is especially
long, and/or if ¢’s effective WM capacity is temporarily lim-
ited because U is distracted by environmental stimuli and/or
a task that he has to perform simultaneously.

If we were developing a full-blown, complex system, we
wouldn’t want to dwell much longer on this one aspect of
its behavior. It would be consistent with current practice to
implement a decision rule more or less like the following
one:

« If U/ is significantly distracted, or if the sequence of in-
structions comprises more than 3 steps, then use stepwise
presentation;
otherwise, use bundled presentation.

In an effort to develop an especially well-founded decision
procedure for this example system, we took the time to col-
lect extensive empirical data in a controlled setting.
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3.2 Method
3.2.1 Materials

Figure 1 shows the screen that subjects worked with through-
out the experiment. They used a mouse to click on the but-
tons labeled with digits and on the large OK button.

Their primary task was to execute sequences of spoken in-
structions, each sequence comprising 2, 3, or 4 steps. Each
sequence was presented by the system in either stepwise or
bundled mode (see Figure 2).> In stepwise mode, after ex-
ecuting a single instruction, the subject had to signal com-
pletion by clicking on the OK button in order to receive the
instruction for the next step. Each individual instruction for
a step was played from a separate sound file; the sound files
played for a given sequence in stepwise and bundled modes
were identical, the only difference between the modes being
the ordering of the actions of subject and system.

On half of the trials, the large rectangle at the top of the
screen provided a situational distraction which was intended
to reduce the amount of working memory capacity that the
subject had available for the primary task. At more or less
regular intervals, the rectangle took on a color that alternated
between red and green in random order. Whenever the same
color appeared twice in succession, the subject was to press
the space bar.

3.2.2 Design
There were three independent variables:

= Presentation Mode: stepwise or bundled
= Distraction: no or yes
= Number of Steps: 2, 3, 0r4

Twelve specific experimental conditions were created
through orthogonal combination of these factors.

Two dependent variables will be discussed here:®

= Execution Time
In both conditions the execution time was the total time re-
quired for the processing of an instruction sequence, minus
the time required by the system to play the instructions.*
Specifically: In bundled mode, this was the duration of
the interval between (a) the moment the system finished
playing the instruction sequence and (a) the moment the
subject completed the final step in the sequence by pressing
one of the numbered buttons. In stepwise mode, it was
the sum of the corresponding durations for the individual
steps, whereby the time required to press the OK button
(not relevant in bundled mode) was also included in the
execution time.

= Error
This variable had the value 0 for a particular instruction

2The original German formulation of an instruction was “Setze [letter]
auf [number]”.

3Further dependent variables are analyzed in [10], but the results are not
relevant enough here to warrant discussion in this paper.

4Note that it would just as well have been possible to include the to-
tal time for the playing of the instructions, since this time was identical in
stepwise and bundled mode.



sequence if the subject pressed all of the instructed buttons
in the correct order, the value 1 otherwise.

3.2.3 Subjects

Subjects were 24 students from various departments at the
University of Saarbriicken, who received financial compen-
sation for their time.

3.2.4 Procedure

For each subject, the experiment began with a practice phase
that was intended to familiarize subjects with the experimen-
tal environment and minimize learning during the main part
of the experiment. Four blocks of instruction sequences were
introduced and practiced in turn, each involving one combi-
nation of the independent variables Presentation Mode and
Distraction.

In the main phase of the experiment, the instruction se-
quences were again presented in four blocks, whose order
was systematically varied across subjects. In each block, 18
instruction sequences were presented, in 3 subblocks, each
of which comprised 6 sequences of each length. Half of the
subjects started with the shorter sequences and moved on to
the longer ones, while for the other half the order was re-
versed. Thus in all, data on 72 sequences were obtained from
each subject, with each specific condition being represented
by 6 sequences.

3.3 Results

Most interesting for our purposes are the results for the 12
specific combinations of independent variables, shown in
Figure 3. But to give an idea of the statistical reliability of
the results, we also report on statistical analyses of the effects
of individual independent variables.

For each of the two dependent variables, a three-way (3 x
2 x 2) analysis of variance (ANOVA) was conducted.®

3.3.1 Execution Time

With respect to execution time, main effects were found for
all three independent variables: Execution time is on the
whole longer if there are more steps in the sequence; if the
presentation is stepwise; and if there is a distraction task.®

The increase with the length of the instruction sequence is
easily understandable in view of the larger number of actions
that need to be performed.

The difference between the two presentation modes is due
mainly to the additional interaction overhead associated with
stepwise presentation. This overhead consists in 1, 2, or 3
extra clicks on the OK button, respectively, for sequences of
length 2, 3, and 4. Since this extra overhead is greater for
longer sequences, it is understandable that there is a signif-
icant two-way interaction between sequence length and pre-
sentation mode.

5Previously conducted multivariate analyses of variance had confirmed
that it was appropriate to conduct these separate ANOVAs.

SExcept where stated otherwise, all reported differences are statistically
significant at least at the level of p < .01.

151

Four-step sequences:

50
7000 _
~ 6000 | _ - "~ 40
o
(O]
[%2]
£ 5000
° _—| 8
£ 4000 0
c o
2 3000 15 20
>
[&]
£ 2000
w 10
1000
0 oL— -
No ) ) Yes No ) ) Yes
Distraction? Distraction?
Three-step sequences:
6000 40
’8‘ 5000 -
g _ -7 30
E 4000 | ~ —_
() / c\o
E Nt
‘= 3000 920
c o
. =
S 2000 w
@ 10
& 1000
0 ob———e—eec -
No ] ) Yes No ) ) Yes
Distraction? Distraction?
- TWO-Step sequences:
o
[%2]
£ 3000 .- 20
Q / £
E 2000 7
c o10
2 1000 ]
=}
g e
< 0 0 =
L No ) Yes No ) Yes
Distraction? Distraction?

Figure 3. Mean execution times and error rates for each
combination of values of the independent variables.

(Dashed lines represent stepwise presentation, solid lines bundled presenta-
tion.)



The longer execution times when there is a distraction task
are explainable at least in part simply in terms of the greater
number of keypresses required in this condition.

There are no other significant interactions involving execu-
tion time.

In sum, the results for the variable Execution Time can be
understood fairly straightforwardly in terms of the number
of physical actions that ¢/ has to execute in the various con-
ditions.

3.3.2 Errors

With respect to errors, main effects were again found for all
three independent variables: The probability of an error is
greater if there are more steps in the sequence; if the presen-
tation is bundled; and if there is a distraction task.

The ANOVASs also revealed several two-way interactions in-
volving pairs of independent variables; but since these are
most easily interpretable in terms of results for specific com-
binations of three independent variables, we will not discuss
them.

Most relevant for our purposes is the significant three-way
interaction of the independent variables. The most salient
specific features of the results are the high error rates under
bundled presentation when there is a distraction task (except
with two-step sequences, where the error rates are too low
to be of much interest). For four-step sequences (see the top
right-hand graph in Figure 3), a Scheffé test shows that this
error rate is significantly higher than the other three error
rates shown. For three-step sequences, the corresponding er-
ror rate is significantly higher than the lowest error rate in
the same graph (p = .02), but the differences from the other
two error rates are not significant (p = .065 and p = .287,
respectively).

In sum, even though the last two differences do not (quite)
reach accepted levels of statistical significance, the analyses
of variance show that the overall pattern of results for errors
represents stable underlying regularities that can be expected
to reoccur in similar situations.

3.4 Brief Discussion

In sum, a conventional analysis of the data confirms the qual-
itative hypotheses formulated at the beginning of this sec-
tion: Stepwise presentation of instructions, unlike bundled
presentation, is a slow but safe method which is essentially
invulnerable to situational distractions.

4 USING THE RESULTS IN A LEARNED INFLUENCE
DIAGRAM

The experiment just reported on tells us more than we would
normally have time to find out about the causal relationships
that are relevant to S’s adaptation decisions. But we still
don’t have a decision procedure that specifies exactly when
S should present its instructions in a stepwise (vs. bundled)
mode. We will now present and motivate a way of deriving
such a decision procedure.
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Number of Steps Presentation Mode | Distraction?
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Figure 4. Bayesian network learned on the basis of the
experimental data, showing a prediction made under uncer-
tainty about the independent variable Distraction.

4.1 Learning a Bayesian Network

The first thing we need is a model that will help S to predict
U’s execution time and errors in each specific situation. For
this purpose, we defined a Bayesian network (BN) with the
structure shown in Figure 4. Each node in this network is ob-
servable: For each observation in the dataset resulting from
the experiment (describing how a particular subject handled
a particular sequence of instructions), a precise value of the
corresponding variable is available.

Learning a Bayesian network that contains only observ-
able variables and whose structure has been specified in ad-
vance is straightforward.” We used the NETICA® built-in-
algorithm for learning BNs. This algorithm, which presup-
poses that all variables are observable, computes the (condi-
tional) probabilities on the basis of frequencies in the data.®

The properties of the data that are summarized in Figure 3 are
reflected in the conditional probability tables (CPTs) of the
learned BN and in the specific inferences made by the BN. In
particular, the basic uncertainty-management capabilities of
BNs allow the following generally useful types of inference:

38. Predicting the dependent variables given uncertainty
about the values of the independent variables: S may want
to make a prediction (and an adaptation decision) even with-
out knowing the values of all of the independent variables
shown in Figure 4. For example, S may not know whether

7In a modeling effort that is in some ways comparable to the present one,
Lau and Horvitz ([9]) used data on users” WWW search behavior to learn
BN models that can be used to predict and interpret such behavior.

8NETICA is a commercial tool from Norsys Software Corp. (see
http://www.norsys.com) for working with Bayesian networks and influence
diagrams.

9We have also used these same data to learn considerably more com-
plex Bayesian networks, whose additional nodes represent (a) other vari-
ables measured in the experiment, such as errors on the distraction task; (b)
a variable representing the average execution speed of the current subject,
which makes it possible to take individual differences into account; and (c)
an unobservable node representing 24’s current working memory load (see
[3]). To focus attention on the central methodological issues, we discuss
here only the simplest possible network that could be defined for this exper-
iment.



Number of Steps Presentation Mode | Distraction?
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Figure 5. The same network as in Figure 4, showing the
interpretation of an observation of /°s performance.

U is currently distracted. As Figure 4 shows, if a probability
distribution for each of these variables is specified, the net-
work will still generate a prediction for 2/’s execution time.

39. Learning about ¢/ or the current situation: When U’s
performance in performing a task is observed, the corre-
sponding node(s) (Execution Time and/or Error) can be in-
stantiated with the observed values. Evaluation of the net
will then lead to updated beliefs about any variables that
were not already known with uncertainty. For example, Fig-
ure 5 shows how the network infers that S was probably dis-
tracted after observing that &/ made an error. This learning
about the current/ can enhance the quality of S’s future pre-
dictions and decisions about this particular 4.*° In terms of
the original experiment, this type of inference is like choos-
ing a random observation about a subject and trying to guess
what specific condition the subject was in when he or she
generated that observation—a type of inference which is not
supported by the usual techniques for analyzing experimen-
tal data.

4.2 Extending the BN to an Influence Diagram

Before the system can actually make decisions, we have to
extend this network to an influence diagram (Figure 6), in
two steps:

1. Add a value node that expresses the system’s evaluation
of a particular combination of values of the dependent vari-
ables Error and Execution Time. Note that the relative impor-
tance of these two criteria can vary greatly depending on the
nature of the task (e.g., setting font preferences vs. control-
ling a power plant) and the situation. If this relative impor-
tance were fixed once and for all, it could be encoded directly
into the CPT of the utility node. Instead, to make it possible
to use different importance weights, we introduce a chance
variable Weight of Error. S can instantiate this variable to
various values to take into account shifting priorities. For
example, a value of 16 means that avoiding 1 error is just as

101 this type of learning about the user is to be done repeatedly, the BN
has to be extended to become a dynamic BN—see, e.g., [7].
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Figure 6. An influence diagram defined as an extension to
the BN of the previous figures.

important as saving 16 seconds of execution time.

2. Make Presentation Mode into a decision node. The three
links pointing into this node from other variables express the
fact that the values of these other variables may be known ex-
actly at the time when a decision is made. Once the complete
influence diagram has been specified and solved,'* S knows
the utility of each action it might take in each situation. For
example, Figure 6 shows that the utility of bundled presenta-
tion in the situation described by the other nodes is —6.0679.
By comparing this utility with that of stepwise presentation,
S can decide which mode to use.

In addition to having S make decisions in individual cases,
the designer will probably want to have an overall picture
of the decisions that S will make. For example, it’s con-
ceivable that, for any reasonable value of Weight of Error, S
would always decide to use stepwise presentation. In that
case, the designer could probably save a lot of trouble by not
implementing bundled presentation in the first place. Tools
for evaluating influence diagrams offer a way of getting such
an overview without iterating through all possible situations
and seeing what decision is recommended by the influence
diagram: Associated with each decision node is a table that
describes the decision policy for that node—i.e., what deci-
sion should be made for each possible combination of the
values of the variables that may be known precisely at the
time of the decision. The policy for the present influence di-
agram is summarized concisely in Table 1 on the basis of the
actual policy table generated automatically for the influence
diagram.

Note that the type of information provided by the policy for a
decision node can have a similar function to the results of the
sensitivity analyses that are sometimes performed with pre-

11For discussions of solution algorithms, see [12] and [8]; the algorithm
used by NETICA is based on the latter work.



Table 1. Summary of the policy for the decision node Pre-
sentation Mode

Steps Distraction = “No” Distraction = “Yes”
Four Stepwise iff w > 9 Stepwise iff w > 3
Three Stepwise iff w > 21 Stepwise iff w > 6
Two Always bundled Stepwise iff w > 9

dictive models of interface designs. For example, [1] (Chap.
7) includes a sensitivity analysis which determined in what
situations a new method for correcting typing mistakes in
an editor would be more effective than the already existing
methods. It is a convenient feature of influence diagram tools
that they produce information of this sort as a side effect in
situations such as the one considered here.

In sum, the idealized method just proposed is straightfor-
ward, in that it combines well-known methods from exper-
imental psychology with some of the simpler functions of
readily available decision-theoretic software tools. Yet it per-
mits a more effective use of the experimental data for adap-
tation decisions than would be possible through the use of a
conventional data analysis.

5 PARTIAL APPLICATIONS OF THE IDEALIZED
METHODOLOGY

Unfortunately, this methodology will be infeasible in most
practical situations. The main problem is that it is usually
impossible to obtain experimental data in a situation that is
identical to the situations in which the system is actually to
be used.

But against the background of the discussion so far, we can
identify several fallbacks that enable the designer to derive
adaptation policies in a principled way, possibly with an em-
pirical basis.

5.1 Fallback 1: Modify the Learned Model by Hand

In a relatively favorable situation, we may have developed a
model like the one described above and want to apply it to
a system or domain that differs in just a few specific ways
from the one for which the experimental data were collected.

Here are examples of relatively simple differences that might
arise:

« The individual task steps might be longer and/or cogni-
tively more demanding (or shorter and/or simpler).

= Different types of situational distractions might arise,
which might be less or more distracting than the distrac-
tion task studied in our experiment.

Obviously, if exactly the same decision procedure is used in
the new situation, the decisions will in general be based on
false premises and therefore often be inappropriate.

Sometimes it may be possible to modify the originally
learned influence diagram by hand on the basis of a theo-
retical analysis of the changes in the context. To take a clear
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example where this approach seems attractive, suppose that
the only difference between the original context C' and the
new context C’ is that in C”, under stepwise presentation, the
operation that Z/ has to perform in order to confirm comple-
tion of a step takes about 300 msec longer than it did in C.
The only necessary change in the influence diagram would
seem to concern the conditional probabilities (in the CPT for
the node Execution Time) that predict the execution time un-
der stepwise presentation. Specifically, the prediction should
be increased by (n — 1)300 msec, where n is the number of
steps in the sequence. Since errors have negligible frequency
under stepwise presentation, there is no reason to expect that
the frequency of errors would be affected by this change.

Engineering-oriented cognitive models that have been devel-
oped in human-computer interaction research, such as the
GOMS model and Model Human Processor ([1]) and their
descendants, are intended to support this type of prediction.
Still, an obvious limitation of this approach is that the conse-
guences of a change in context may not always be predictable
on the basis of theoretical analysis alone. Suppose, for exam-
ple, that it’s not the confirmation operation that is lengthened
but rather the execution of a typical task step (e.g., instead of
just clicking on a button, / now has to adjust the position of a
slider). This change will presumably not just lengthen execu-
tion times: Under blocked presentation, it will also lengthen
the time during which ¢/ has to remember the remaining in-
structions, thereby increasing the error rate. The size of the
increase in error rate is hard to predict reliably in the absence
of additional data.

5.2 Fallback 2: Collect Real Usage Data

A designer might think that any controlled experiment would
be so far removed from the reality of actual system use
that even the sort of theoretical extrapolation just discussed
would not yield a useful adaptation policy. Or there may
simply be insufficient resources available for a controlled ex-
periment.

An alternative may be to employ data on actual system use
instead. While data are being collected, S might be acting
nonadaptively or applying some suboptimal adaptation pol-
icy. But this type of data is likely to have some important
limitations relative to experimental data, including various
types of missing data, uncontrolled contextual factors, and
bias introduced by whatever decision policy S is applying
during the learning phase. Even if statistical learning meth-
ods are employed that deal as well as possible with such
complications (see, e.g., [4]), it may be impossible to learn a
BN which is accurate enough to be useful.

5.3 Fallback 3: Do the Analysis Without Data

The problems mentioned so far will be so serious in many
cases that the whole idea of collecting empirical data and
learning from it appears to be infeasible. But even then, it
may be useful to apply the same basic logic of the idealized
methodology, replacing the empirical data with qualitative



educated guesses:

1. Specify the structure of the influence diagram that could
in principle be learned with empirical data, using what-
ever information, experience, or theoretical insight you
have available.

2. Describe at least qualitatively the relationships that you
think exist among the nodes in the influence diagram.

3. Formulate a policy that seems appropriate in the light of
the qualitative analysis.

The three influence diagrams shown in Figure 7 are typical
of the kinds that a designer might be able to draw with-
out the benefit of empirical data, as a way of making ex-
plicit his or her beliefs.*” They illustrate the potential—and
limitations—of attempts to arrive at adaptation policies with-
out empirical data.*®

5.3.1 1. One User Property, One Criterion Variable

Diagram 1 shows the case of a training system that must de-
cide whether to explain a particular application (e.g., an e-
mail system) with reference to a concrete, analogical con-
ceptual model (e.g., one involving a filing-cabinet metaphor)
or with reference to an abstract model. Here, the adaptation
decision is the simplest possible type, since only one user
property and one criterion variable are involved.

The graph to the left of the influence diagram shows a re-
lationship that would justify adaptation: a crossover inter-
action such that the analogical model leads to better perfor-
mance for users with low visual ability, while the abstract
model is better for those with high ability. This qualitative
relationship is not only a necessary one for justifying adap-
tation, it is also sufficient in this case. It is not necessary to
know the exact quantitative nature of the interaction. So even
if a designer chose not to conduct an empirical study on this
question, they could justify the policy just mentioned if they
could argue that a crossover interaction must exist.

5.3.2 2. Two User Properties, One Criterion Variable

In Diagram 2, a second user property is taken into account
as well: the learning mode, which may be concrete or ab-
stract. One might be able to predict on theoretical grounds
the crossover interaction that Sein and Bostrom ([11]) found
(shown in the graph to the right of the influence diagram).
Unfortunately, merely qualitative knowledge of the two in-
teractions shown for Diagram 2 does not provide grounds for
formulating an adaptation policy: It’s obvious enough what
to do with users who have high visual ability and an abstract
learning mode; but what about those who combine high vi-
sual ability with a concrete learning mode? Without empir-
ical data on this specific group, one can only guess whether
their visual ability or their learning mode should predomi-
nate in determining the decision. So a theoretically based

12The use of influence diagrams and related formalisms to help clarify a
decision maker’s assumptions and values is common practice in the field of
decision analysis (see, e.g., [2]).

B3Actually, to ensure realism, the first two diagrams are based on an ex-
periment of Sein and Bostrom ([11]).
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policy for this type of decision would be partly well-founded
and partly essentially arbitrary.

5.3.3 3. One User Property, Two Criterion Variables

In Diagram 3, we suppose that for some reason the only
choice available to the system is between (a) presenting only
the abstract conceptual model or (b) presenting both the ab-
stract and the analogical model in succession. Although Sein
and Bostrom ([11]) didn’t investigate this question, we could
predict on theoretical grounds that the addition of the analog-
ical model would benefit all users to some extent—especially
those with low visual ability. So there’s no crossover that in
itself would justify any adaptation. Similarly, if we also con-
sider only the second criterion variable of training speed, us-



ing only the abstract model is better for all users. The justifi-
cation for treating users differently can be seen only when the
overall value of the decision is considered: For some users,
the inclusion of the second model may be worth the decline
in training speed, while for others it may not be. So to justify
adaptation, we would have to make some assumption about
the relative importance of performance and training speed;
and even then the formulation of a policy would involve a
good deal of guesswork unless the relevant empirical data
were available.

In sum, as the number of relevant variables increases, it be-
comes increasingly difficult to justify a particular adaptation
policy solely on the basis of qualitative beliefs about the re-
lationships among the variables—even if it can be assumed
that these beliefs are correct. But even if useful empirical
data can’t be collected, the type of analysis proposed here
may help in the formulation of a coherent policy and in the
identification of the aspects of the policy that are most likely
to be wrong.

6 SUMMARY OF CONTRIBUTIONS

The content-specific message of this paper concerns some
tradeoffs that need to be taken into account when a system
decides how to present a sequence of instructions to a user.

The more general message is methodological. In showing
how designers might in principle create a solid empirical ba-
sis for adaptation decisions, we have mainly succeeded in
showing how difficult it usually is to do so in practice. But
still, we hope to have contributed a clearer understanding of
the problem, so that designers (a) “know what they don’t
know” when considering adaptation policies and (b) can take
whatever steps are practically feasible in their particular sit-
uation toward deriving a solid basis for their adaptation poli-
cies.
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