
Extending the Hint Factory for the assis-
tance dilemma: A novel, data-driven Help-
Need Predictor for proactive problem-solving
help

Mehak Maniktala *

North Carolina State University
mmanikt@ncsu.edu

Christa Cody
North Carolina State University
cncody@ncsu.edu

Amy Isvik
North Carolina State University
aaisvik@ncsu.edu

Nicholas Lytle
North Carolina State University
nalytle@ncsu.edu

Min Chi
North Carolina State University
mchi@ncsu.edu

Tiffany Barnes
North Carolina State University
tmbarnes@ncsu.edu

Determining when and whether to provide personalized support is a well-known challenge called the as-
sistance dilemma. A core problem in solving the assistance dilemma is the need to discover when students
are unproductive so that the tutor can intervene. Such a task is particularly challenging for open-ended
domains, even those that are well-structured with defined principles and goals. In this paper, we present
a set of data-driven methods to classify, predict, and prevent unproductive problem-solving steps in the
well-structured open-ended domain of logic. This approach leverages and extends the Hint Factory, a
set of methods that leverages prior student solution attempts to build data-driven intelligent tutors. We
present a HelpNeed classification, that uses prior student data to determine when students are likely to be
unproductive and need help learning optimal problem-solving strategies. We present a controlled study to
determine the impact of an Adaptive pedagogical policy that provides proactive hints at the start of each
step based on the outcomes of our HelpNeed predictor: productive vs. unproductive. Our results show
that the students in the Adaptive condition exhibited better training behaviors, with lower help avoidance,
and higher help appropriateness (a higher chance of receiving help when it was likely to be needed), as
measured using the HelpNeed classifier, when compared to the Control. Furthermore, the results show
that the students who received Adaptive hints based on HelpNeed predictions during training significantly
outperform their Control peers on the posttest, with the former producing shorter, more optimal solutions
in less time. We conclude with suggestions on how these HelpNeed methods could be applied in other
well-structured open-ended domains.

Keywords: assistance dilemma, problem solving, unproductivity, efficiency, unsolicited help, adaptive
support, predicting help need, data driven tutoring, propositional logic, help appropriateness

*This reseach was supported by the NSF grants #1726550 and #1651909.

1

ar
X

iv
:2

01
0.

04
12

4v
1

 [
cs

.A
I]

 8
 O

ct
 2

02
0

1. INTRODUCTION

Intelligent Tutoring Systems (ITSs) provide individuals with adaptive feedback and hints, im-
proving learning (VanLehn, 2011). Studies suggest that hints, when provided appropriately, can
augment students’ learning experience (Bunt et al., 2004; Puustinen, 1998) and improve their
performance (Bartholomé et al., 2006). However, researchers often find that students display
poor help-seeking behavior (Aleven et al., 2006; Price et al., 2017); some abuse hints to ex-
pedite problem completion, and some avoid seeking help when they are in need (Aleven and
Koedinger, 2000; Price et al., 2017). To ensure learning despite student help avoidance, several
ITSs provide unsolicited assistance (Arroyo et al., 2001; Murray and VanLehn, 2006; Kardan
and Conati, 2015). However, determining when and whether to provide proactive assistance,
i.e., unsolicited help in anticipation of future struggle, is particularly challenging in open-ended
domains where there are many possible correct solutions. More generally, it belongs to a well-
recognized challenge in the domain of ITSs, called the assistance dilemma.

The assistance dilemma is a trade-off between giving and withholding information to achieve
optimal learning (Koedinger and Aleven, 2007). A core problem of the assistance dilemma is
the need to discover when and whether students are unproductive so that the tutor can intervene.
Several studies have explored ways to determine the timing of assistance, as well as scaffolding
in open-ended domains to improve learning (Fossati et al., 2015; Ueno and Miyazawa, 2017;
Borek et al., 2009; Kardan and Conati, 2015), and prevent student failure in exams (Merceron
and Yacef, 2005). While some researchers have explored the generalizability of such approaches
(Fratamico et al., 2017; Bunt and Conati, 2003), determining when to provide assistance is still
a challenging task for most open-ended domains, particularly because of differences in domains
and learners (Klahr, 2009; McLaren et al., 2014).

Open-ended domains can be ill-structured, where problems do not have a clear goal, set of
operations, end states or constraints; or they can be well-structured, where problems have a clear
goal, end states, or constraints. In this study, we seek to determine when to provide unsolicited
hints in a logic tutor to solve the assistance dilemma. While logic problems are well-structured
in that they contain all the information needed to solve the problem and there are well-defined
algorithms that students can use to solve them, they are open-ended in the sense that they have
many possible solutions that can all be correct. Our approach builds upon the Hint Factory,
a method for hint generation (Barnes et al., 2011). We extend the Hint Factory algorithm to
define step-level productivity, and define HelpNeed, to classify steps as unproductive or needing
help. Based on this HelpNeed definition, we explore several machine learning methods to build
a HelpNeed predictor and design an Adaptive pedagogical policy to proactively provide hints
when the next step is predicted to need help. We conduct a controlled study to investigate the
impact of Adaptive hints on student posttest performance, as well as the frequency of possible
appropriate and inappropriate help during training, when compared to students in the Control
group with access to on-demand hints but no Adaptive hints.

Our results showed that students in the Adaptive condition have significantly higher posttest
performance than those in the Control condition, as measured by solution optimality and time
and the former also exhibit better hint usage behaviors while training on the tutor in that they had
fewer HelpNeed steps, a lower possible help avoidance, and higher possible help appropriateness
(a higher chance of receiving help when it was likely to be needed) when compared to the

2

Control. Our main contributions can be summarized as:

• This work presents a novel, data-driven HelpNeed classification model to determine un-
productivity for steps, and a predictor for when unproductive steps might occur in well-
structured, open-ended, multi-step problem-solving domains.

• We develop a new Adaptive pedagogical hint policy that uses a HelpNeed predictor to
provide proactive hints when they are likely to be needed, and investigate its impact on
performance and appropriate help in a controlled study.

In the remainder of the paper, we first discuss the related work that establishes the need for
new ways to solve the assistance dilemma in well-structured open-ended problem solving. Next,
we introduce the Deep Thought logic tutor, the context for this work. Then, we present our novel
extensions to prior work on data-driven intelligence for tutoring to build HelpNeed classification
models. We then compare machine learning methods to derive a HelpNeed predictor tuned to
proactively identify steps where students are likely to need help. We present an Adaptive hint
policy using the HelpNeed predictor, and describe our controlled study and its impact on posttest
performance and whether it helped solve the assistance dilemma during training.

2. RELATED WORK

2.1. HELP SEEKING

Aleven et al. (Aleven et al., 2006) defined non-optimal help-seeking behaviors including help
avoidance, where students can benefit from seeking help but choose not to, and help abuse where
students excessively use help in situations where they could solve problems without assistance.
While some studies aim to solve the problem of help avoidance by regulating students’ help-
seeking behavior (Roll et al., 2011; Aleven et al., 2006), some employ unsolicited hints as we
propose here (Arroyo et al., 2001; Murray and VanLehn, 2006; Rus et al., 2017). Arroyo et
al. observed that unsolicited hints could improve learning gains for students with low prior
knowledge (Arroyo et al., 2001). Murray et al. found that proactive help reduced frustration and
saved students’ time when they were struggling (Murray and VanLehn, 2006).

2.2. ASSISTANCE DILEMMA

The assistance dilemma has been a well-known challenge in providing unsolicited hints. Provid-
ing assistance may reduce frustration and save students’ time, but may lead to shallow learning
or a lack of motivation to learn by oneself. On the other hand, withholding information can en-
courage students to learn by themselves, but may lead to frustration and wasted time (Koedinger
and Aleven, 2007; McLaren et al., 2014). Researchers have investigated data-driven approaches
to address this dilemma and create adaptive assistance both for on-demand hints provided on re-
quest (Anohina, 2007; Price et al., 2017; Wood and Wood, 1999) and proactive unsolicited hints
(Kardan and Conati, 2015; Ueno and Miyazawa, 2017). Koedinger and Aleven (Koedinger and
Aleven, 2007) worked towards addressing this dilemma in a cognitive tutor by initially withhold-
ing information about problem solutions and steps, and then interactively adding information,
only as needed, through yes/no feedback, explanatory hints, and dynamic problem selection.
Several studies have investigated approaches to resolve the assistance dilemma by modeling
student behavior (Murray et al., 2004; Ueno and Miyazawa, 2017; Conati et al., 2002; Kock

3

and Paramythis, 2010). One group created a tutoring policy within the DT Tutor that applied
decision theory to make its choice about whether to give a hint (Murray et al., 2004). In a study
conducted by Ueno et al. (Ueno and Miyazawa, 2017) in a programming tutor, they modeled
student performance using Item Response Theory to determine optimal hint scaffolding for pro-
viding assistance proactively upon mistakes. The authors discovered that hint scaffolding with
predicted probabilities for the learners’ success to be 0.5 provides the best learning performance.
We recently added unsolicited hints to our tutor, improving post-test performance for students
with low prior knowledge (Maniktala et al., 2020). However, the posttest performance of stu-
dents with high prior knowledge was negatively, but not significantly, correlated to how often
they used the unsolicited hints, suggesting the potential for negative effects from receiving too
many hints. Therefore, in this work we seek to develop adaptive support that can determine
when to proactively provide hints based on students’ aptitude or performance, as in other ITSs
(Bunt and Conati, 2003; Kardan and Conati, 2015).

The assistance dilemma is particularly challenging to address in open-ended domains that
deal with ill-structured problems (McLaren et al., 2014; Borek et al., 2009) as well as well-
structured problems (Ueno and Miyazawa, 2017). McLaren et al. in (McLaren et al., 2008)
conducted a study to explore the assistance dilemma in an ill-structured chemistry tutor with
inquiry learning using three levels of problem-level assistance: high (worked examples), mid-
level (less assistance than worked examples), and low (untutored problem solving). They found
mid-level assistance to lead to better learning than either low- or high-level assistance. In another
study, Borek et al. in (Borek et al., 2009) investigated the optimal amount of step-level assistance
in a discovery-oriented virtual chemistry laboratory (VLAB) and found that students learned the
conceptual tasks better with a mid-level assistance approach of hints and feedback. Further, their
results suggested that assistance should be given only when students are far off track.

Kardan and Conati used clustering and mining association rules to model when to provide
unsolicited adaptive support (hint timing, content, and interface) in an ill-structured exploratory
interactive simulation environment for teaching constraint satisfaction problems (Kardan and
Conati, 2015). While the students who received adaptive support did not have improved task
performance, they learned significantly more than those who did not receive the adaptive sup-
port. Fratamico et al. in (Fratamico et al., 2017) applied Kardan and Conati’s 2015 framework
to an electronic circuits simulator and found that it successfully classified students into groups
of high and low learners. Mostafavi, et al. similarly applied machine learning to form data-
driven proficiency profiles used in problem selection (Mostafavi et al., 2015), and showed that
it reduced the time taken in a previous version of the Deep Thought logic tutor. Conati et al. in
(Conati et al., 2002) presented several evaluations of a Bayesian Network used to model student
behavior in a well-structured physics tutor that, in part, is used to determine when unsolicited
mini-lessons should be provided to students. They also described how these modeling tasks in-
volve a high level of uncertainty when students are allowed to follow various lines of reasoning
and are not required to explicitly show their reasoning. As mentioned above, a study conducted
by Ueno et al. (Ueno and Miyazawa, 2017) in a well-structured programming tutor used Item
Response Theory to determine optimal scaffolding for unsolicited hints and discovered that pro-
viding scaffolding associated with 50% probability for students’ success led to the best student
outcomes.

4

2.3. UNPRODUCTIVE BEHAVIOR

Several studies have used the term “unproductive” to refer to undesirable behavior during train-
ing (Kai et al., 2018; Botelho et al., 2019; Park and Matsuda, 2018). For example, Beck and
Gong (Beck and Gong, 2013) define unproductive persistence or “wheel-spinning” based on
whether or not a student achieved mastery (three correct problems) in ten problem attempts.
Their definition of unproductivity has been used in recent studies to predict when an interven-
tion can help students by distinguishing between productive and unproductive behavior using
decision trees (Kai et al., 2018) and recurrent neural networks (Botelho et al., 2019). However,
this definition of problem-level and problem-completeness based productivity is not suitable for
our objective of guiding students toward efficient problem-solving strategies at a more granular
step-level, specifically in domains where problems can have several solution paths.

In a study on an open-ended and ill-structured inquiry-learning program, McLaren et al. de-
fined unproductive events as student actions that are unlikely to advance understanding (McLaren
et al., 2014). Similarly, we identify unproductive problem-solving steps that are not likely to
advance student’s problem-solving strategies. However, our definition is based on time and
solution length/optimality, rather than domain-specific productivity models.

In many multi-step open-ended but well-structured problem-solving domains, shorter solu-
tions are considered to be more optimal, and solving problems in less time reflects both learning
and fluency (Mayer, 1992; Smith, 2012; Yacef, 2005; Cen et al., 2007). We use these basic as-
sumptions about time and solution length to design a data-driven approach to model productivity
on problem-solving steps, extending the Hint Factory, a data-driven approach for hint genera-
tion. This approach uses prior students’ data to assign scores to problem-solving states (Stamper
et al., 2008; Barnes et al., 2011). A core insight of this paper is that we can similarly use student
data to score productive problem-solving steps without the need to model the domain.

Some studies have observed that students game educational systems to elicit unsolicited hints
to complete problems faster (Baker et al., 2009; Baker et al., 2006; Murray and VanLehn, 2005).
Therefore, we limit the amount of information provided in our unsolicited hints, presenting them
as partially-worked steps.

3. TUTOR CONTEXT

The research in this paper is conducted using Deep Thought, a data-driven intelligent logic tutor
where students practice constructing formal propositional logic proofs in discrete math courses,
with 200-350 students per semester, since 2008 (Stamper et al., 2008; Barnes and Stamper, 2010;
Cody and Mostafavi, 2017; Mostafavi and Barnes, 2017). Each fall (f) or spring (s) semester,
we use stratified sampling on a pretest to assign students to conditions. Historical data exist for
2017, 2018, and 2019. This study uses data from f17, s18, f18, and s19; the HelpNeed predictor
uses f18, and s19; and the controlled study with the proactive hint policy was in f19. Finally,
the results of the controlled study are analyzed comparing data from f18R, s19R, along with
f19, where R represents a subset of the population that received randomly administered frequent
unsolicited hints1(Maniktala et al., 2020). Each section provides more details on the specific
datasets used.

Figure 1 shows the Deep Thought interface for a single problem, where students construct
their proofs in the workspace. Each proof problem starts with a set of given logic statements

1With a constraint that three unsolicited hints cannot be given in a row

5

Figure 1: Deep Thought interface: Workspace (left) with the provided givens (top) and the con-
clusion (bottom), domain rules (middle), the ‘Get Suggestion’ hint button and hint message box
(bottom-left). The color-coding is explained on the right (provided to students in an infobox).

with a conclusion to derive. Each statement is represented by a node, which students can click
to select and apply a logic rule to derive a new node. Each node derivation consists of two parts:
the justification and the derived statement. The justification is a set of 1-2 existing nodes and
the rule applied to them, and the derived statement is the result. The tutor checks each step’s
justification and derived statement to provide immediate feedback on the correctness of their
logic rule applications. In case of rule application errors, students receive a notification of the
mistake via popup, but the attempted incorrect node is deleted from the workspace. When a
statement is correctly justified and derived, a correct step is recorded and its node appears. The
nodes are colored according to their use-frequency1 in historical student solutions. A frequently-
used node is colored green, an infrequently-used node is colored yellow, and a node that has
never been used or has not been observed in the historical data is colored gray (see Figure 1).
Hints are available during Deep Thought’s training section using the Hint Factory (Stamper
et al., 2008). Students can receive on-demand hints below the workspace by clicking the “Get
Suggestion” button, and they can also receive tutor-initiated proactive hints that appear within
the workspace (see Figure 1).

A snapshot of the workspace at any given time is called the problem-solving state, and
transitions between states are called steps. When a problem is complete, students have connected
the given statements to the conclusion.

4. HELPNEED CLASSIFICATION AND PREDICTOR

In this section, we present our methods to determine when students need help learning efficient
problem-solving strategies. We seek to identify unproductive steps where students need help,

1A node is said to be used if its removal from the solution would make the problem incomplete.

6

so that we can predict them, and provide proactive hints with the aim to prevent them. To do
this, we first define our HelpNeed classification based on prior literature on problem-solving,
and later present our HelpNeed predictor to detect the need for help at the start of each step.

4.1. HELPNEED CLASSIFICATION

We designed the HelpNeed classification based on the literature on what behaviors may demon-
strate a detectable need for help during problem-solving. Based on the literature, learning is
reflected in both correctness and/or time (duration) in problem solving (Corbett and Anderson,
1994; Kai et al., 2018; Beck and Gong, 2013). However, since multi-step problem-solving in-
volves several steps in a row, we cannot directly use correctness as a criterion. Therefore, we
create new methods to detect efficiency, which is a proxy for eventual correctness and optimality
in multi-step problem solving, as discussed in detail in section 4.1.2.

Table 1 shows our HelpNeed classification, which is based on a step’s duration and efficiency.
Duration is the time taken by a student to carry out a step, described in detail below in 4.1.1.
Efficiency is our unique extension of the Hint Factory, that uses prior data to assign numeric
values that reflect a step’s quality and how well it promotes progress to a good solution, described
in 4.1.2.

The HelpNeed classification scheme is designed to identify steps that reflect suboptimal
strategies, i.e., steps that unnecessarily increase the solution length and/or problem-solving time.
We first define steps that do not demonstrate HelpNeed. For our first two categories, efficient
steps, that lead to shorter, more optimal solutions, are considered productive irrespective of
duration, with short times representing (1) Expert-like behavior and longer times classified as
(2) Strategic.

For our third category, we classify a single quick but inefficient step, i.e. a plausible guess, as
an (3) Opportunistic step. Research suggests that we should provide students some opportunities
to guess throughout the learning process in semi open-ended domains such as math (Capraro
et al., 2012; Polya, 2004). Polya (Polya, 2004) describes guess-and-check to be a strategy
when students apply plausible reasoning, where the goal is to distinguish a more reasonable
guess from a less reasonable one. In a beneficial use of guess-and-check, the student checks
whether they are moving closer to the goal and adjusts their strategy in the next step. Therefore,
we classify a single quick but inefficient, Opportunistic step as one where help is not needed.
To transfer the idea of Opportunistic steps to other domains, it will be important to determine
what combination of efficiency and duration constitutes a plausible guess, or Opportunistic step,
where help is not needed, in contrast to the remaining categories below.

Our fourth (4) Far Off category is meant to represent one in a series of steps that demonstrate
a lack of strategy, or being far off-track, and needing help. A study by Borek et al. in an ill-
structured open-ended domain, suggests that students who are far off track in problem-solving
can benefit from a hint (Borek et al., 2009). Likewise, in the well-structured, open-ended do-
main of linked lists, Fossati et al. intervened when students made steps that prevented problem
completion (Fossati et al., 2015). Research suggests that repeated guessing when faced with
difficulty can be a significant stumbling block in developing effective learning strategies, and
feedback at this stage can help students (Kinnebrew et al., 2014).

Based on the meaning of Far Off in these studies, we have defined Far Off steps as those
that demonstrate that the student is not reflecting on whether their consecutive steps are leading
toward an efficient solution. In our tutor, evidence of being Far Off can be seen when a student

7

quickly performs sequential inefficient steps. Therefore, we define Far Off steps as the second
and later steps in a series of quick, inefficient steps. In a sequence of three quick inefficient
steps, the first would be Opportunistic - with no need for help, and the second and third would
be classified as Far Off - with help needed. In this tutor, where the mean student solution length
is 10 steps, we determined that 2 steps are about 20% of the problem, and this is long enough to
intervene. The definition of Far Off steps could be adjusted for other domains to align with being
far off track, using a combination of duration and efficiency, for example by setting a maximum
time or number of inefficient steps that can elapse without an efficient step being taken.

Next, researchers use the term “wheel-spinning” or unproductive struggle to refer to the lack
of mastery in a timely manner (Beck and Gong, 2013; Kai et al., 2018). In our final category, a
student who has spent significant time but has derived a step that is inefficient may be engaging
in unproductive struggle, and we classify this as a (5) Futile step where a student needs help.
In the next two sections, we describe the step duration and efficiency components of HelpNeed
classification.

Table 1: Defining HelpNeed using step Efficiency and Duration

Classification Behavior Description

No HelpNeed
Expert-like A quick efficient step; demonstrating mastery

Strategic
A long efficient step; taking longer on an
expert-like step

Opportunistic A single, quick inefficient step

HelpNeed
Far Off

Maximum number of inefficient steps in a sequence
and/or multi-step duration for inefficient steps before
intervention is desired
In our tutor: consecutive quick but inefficient steps

Futile
A long inefficient step; taking too long on
a step that does not help make progress

4.1.1. Step Duration

A step duration is said to be Long if it is carried out in a time greater than 75th percentile of step
time for that problem, and Quick otherwise. These values are computed using historical per-
problem data averaged across solutions by students (N = 437), to account for the longer step
times in more difficult problems. For example, a step is Long in a difficult problem of our logic
tutor when the step time is greater than 5.48 min, whereas a step is Long in one easy problem of
our tutor if the step time is greater than 2.95 min.

4.1.2. Step Efficiency

We define step efficiency as a data-driven measure of how much a student’s most recent step
contributes to an efficient (short) solution. We explore four new step efficiency metrics defined
using the combination of the quality of each state (local or global), and the progress made in

8

a step (absolute or relative). We first present the Hint Factory, and then how we extended it to
define step efficiency.

4.1.2.1. THE HINT FACTORY
The Hint Factory is a method for generating hints in well-structured open-ended domains (Barnes
et al., 2008). In this approach, historical student solutions are used to form Markov decision
processes (MDPs) from interaction networks (Eagle et al., 2015), where vertices are observed
student problem-solving states (snapshots of their on-going or completed proof), and edges are
problem-solving steps, i.e, a transition between states. The Hint Factory uses value iteration, a
classic reinforcement learning technique, given in Equation 1, to assign an expected value V (s)
to each state s, where R(s) is the state’s reward, γ is the discount factor, and P (s|s′) is the pro-
portion of the observed solutions in state s that lead to state s′ using the action a. An action in
this equation is what causes a transition between states, therefore, action a represents a problem-
solving step, that can be carried out either by correct rule applications or by node deletions. For
example, in Figure 3, the arrows represent actions (steps). More specifically, an action a to de-
rive node A → E from the top start state is a tuple consisting of the rule, the node list the rule
applies to, and the resulting logic statement (HS, A → C, C → E,A → E). Note, while the
Bellman Equation 1 is used for stochastic environments in reinforcement learning, these actions
(steps) are carried out deterministically in our tutor. The original Hint Factory used this equa-
tion not to account for the uncertainty in carrying out steps, but rather to take into account the
probabilities of transition between each pair of states. This ensures that the value of each state is
dependent on the probabilities of transition at each successive step. In the Hint Factory, a large
reward is set for the problem-completion or goal states (100), penalties for incorrect states (10),
and a cost for taking each action (1) (Barnes et al., 2011). A non-zero cost on actions causes the
MDP to penalize longer solutions.

V (s) := R(s) + γmax
a

∑
s′

P (s′|s)V (s′) (1)

4.1.2.2. STATE QUALITY - EXTENDING THE HINT FACTORY
In this section, we leverage the Hint Factory approach to generate two quality metrics that de-
termine the expected values for each observed problem-solving state. The first metric of state
quality is our prior work on the Hint Factory, which we label as local quality value (LQV) with
local rewards (LR). Local quality provides insights about how far a state is from the closest
goal state, weighted by the probabilities of transitions, but it cannot provide information about
whether the state is on an efficient path to a solution.

GQV (s) := GR(s) + γ
∑
s′

P (s′|s)GQV (s′) (2)

Global Quality. We devised a novel, data-driven global quality value function, GQV in
Equation 2, to give higher values to states on efficient solution paths. Equation 2 sums GQV (s′)
over all states s′ reachable from s, weighted by P (s|s′), taking into account all future actions
from a current state, rather than just the one with the max expected value. The global rewards
GR are identical to LR for errors and actions, but are different for goals, giving shorter, more
efficient solutions higher rewards. The global reward GR(g) for each goal state g on a problem
is GR(g) = 100 − p ∗ δ(g) where δ(g) is the difference between the solution length of g

9

and that of the shortest solution, and p is a penalty for longer solutions. We set p = (100 −
80)/δmedian) where δmedian is the difference between the median and shortest solution lengths for
each problem because median student solution lengths are assigned a global reward of 80. Our
intention in setting this value of 80 is so that the student’s performance with a median solution
length represents a low B grade. Note, the relationship between the action a and follow-up state
s′ is the same for both local and global state values, because performing the action a when in
state s deterministically leads to the next state s′ based on our definition of actions. And, finally,
the proof of convergence for the modified value iteration equation 2 is given in appendix A.

We now demonstrate the differences between local and global quality metrics using three
solution trajectories (series of steps) of varying solution lengths: Tshort, Tmedium, and Tlong
in Figures 2 and 3. Tshort is the shortest solution (four steps), with all nodes (derived problem-
solving statements) used. Recall as defined in section 3, a node is said to be used if it contributes
towards deriving the conclusion of the problem. Tshort have four used steps, Tmedium has five
steps with one unused node D; and Tlong has eight steps, and all nodes used.

We generated interaction networks to determine the quality values for each problem using
our historical data for N = 796 students. Figure 3 shows the quality values for the three trajec-
tories in Figure 2. The start state in Figure 3 consists of the four given statements (the topmost
state). Arrows between states represent steps, i.e, a transition between states by rule applica-
tions. Non-start states are represented by a +(XYZ), where XYZ is the new statement derived
in a step. The start state has a high global quality, but low local quality. The starting state’s
global quality is high because all efficient paths contain it, but its local quality is low because it
is probabilistically farther away from goals than any other state in the figure. The local quality
for states that are only found in incomplete attempts is lower than that for the start state. The
local quality of the goal states on all three trajectories is 100. The global quality value for the
goal state in each solution trajectory differs, with 100 for the Tshort goal (since it’s the most
efficient), 95 for Tmedium, and 80 for Tlong goal states.

From the start state to the goal in Tshort, both local and global quality state values increase
monotonically since it is the most efficient solution, and the chances of finishing the proof with
an optimal solution increase with each step on this trajectory. Note that not all quality values
increase over every trajectory. For example, step Tmedium − 2’s pre-state (+A → E) global
quality is higher than that for its post-state (+D) since the pre-state is probabilistically on a
more efficient path, but the local quality increases from pre- to post-state. Step Tlong − 3’s pre-
state (+¬E) has higher local and global quality values than its post-state (+¬E → ¬A) since the
post-state is farther from and less likely to reach Tlong’s goal than the pre-state is to Tshort’s closer
goal. The global quality decreases for two reasons: (1) Tlong goal is on a less efficient path, and
(2) global quality performs a weighted sum over all the subsequent, previously-observed states
in the larger (unshown) interaction network, many of which lead to incomplete attempts.

These three example trajectories demonstrate the differences between local and global state
quality metrics. The main strength of generating these quality values is the MDP approach
which ensures that each state quality value is based not only on the distance from a solution, but
also on the probability of transition at each of the successive steps. This allows us to rate steps
in a more probabilistic manner than a simple comparison based on the distance from the most
efficient expert solution.

4.1.2.3. PROGRESS - CHANGE IN QUALITY
Since state quality is a measure of relative “goodness”, we compare the quality of the current

10

Figure 2: Three Solutions with Varying number of steps for a logic problem in Deep Thought

(a) Trajectory Tlong: Eight
steps and all used nodes

(b) Trajectory Tshort: Four
steps and all used nodes

(c) Trajectory Tmedium: Five
steps and four used nodes

Figure 3: Illustration for the concepts of State Quality and Productive steps in 3 trajectories
Tshort, Tmedium, and Tlong

state with that of the previous and start states to evaluate the efficiency of a problem-solving
step. In this section, we define two measures for progress: relative, the change in state quality
from the previous problem-state, and absolute, the change in state quality from the start state.

Relative progress is the difference between the quality values of the current and previous
states. Relative progress with local quality identifies whether the previous or current state is

11

Table 2: Step Efficiency formula based on state Quality and step Progress

Quality-Progress Efficiency Formula
Global-Absolute (GQVpost−state - GQVstart−state) ≥ 0
Global-Relative (GQVpost−state - GQVpre−state) ≥ 0
Local-Absolute (LQVpost−state - LQVstart−state) ≥ 0
Local-Relative (LQVpost−state - LQVpre−state) ≥ 0

probabilistically closer to the goal. When using the global quality values, the relative progress
identifies which state is probabilistically closer and on a more efficient solution path.

Consider a valid, but long solution attempt. A relative progress measure reveals whether a
student is progressing toward a solution in a step, but not whether their trajectory is efficient.
Therefore, we define absolute progress as the difference between the current and start states’
quality, using either quality measure. Absolute progress using local quality reveals whether a
student’s current state is probabilistically farther or closer from any goal states than when they
began working on the problem. Global quality based absolute progress reveals the amount of
efficient progress a student has made since the problem started. For example, if a student is
always taking efficient steps, then the absolute progress will increase on every problem-solving
step.

4.1.2.4. STEP EFFICIENCY - QUALITY & PROGRESS
We define four kinds of step efficiency measures based on quality {Local, Global} and progress
{Relative, Absolute}. A step is considered efficient if the progress of its post-state using either
quality measure is a non-negative number, and inefficient otherwise, as shown in Table 2.

We now compare the four kinds of step efficiency using three solution trajectories (Tshort,
Tmedium, Tlong) shown in Figure 2. We checked our ratings of inefficient and efficient steps with
an expert logic instructor. Steps that were rated by our expert as inefficient are displayed in
red and others are in green in Figure 3. According to the local quality and absolute progress
(local-absolute) efficiency metric, all the steps are efficient because they eventually lead to a
solution. However, this metric is not sensitive to variations in solution lengths. When we use
local-relative efficiency, only the Tlong − 3 step is inefficient, as it is the only step where a
post-state is probabilistically farther from a solution than the pre-state. Using the global-relative
measure, steps Tmedium− 2 and Tlong − 3 are inefficient because they have a pre-state on a more
efficient path to the solution than the post-state. The global-absolute metric is the only measure
that labels the four expert-identified inefficient steps correctly1. Note that each type of efficiency
captures a different perspective on a step towards the solution. The global-absolute efficiency
metric aligns the most with expert labels for the sample trajectories and our expert verified this
alignment on a random sample of trajectories. Note that it would not be feasible to perform
expert ratings on all student-derived steps – even in small logic proofs we examined here, we
have N = 72,560 unique states in the prior student data for 35 problems and 796 students.

1Note that these four inefficient states also correspond to the four infrequently used (yellow) nodes in the student
solution shown in Figure 2a. However, some inefficient nodes have been observed to be frequently used, and some
efficient nodes to be infrequently used in our tutor, suggesting that the use-frequency alone cannot determine step
efficiency, as was done in our prior work (Stamper and Barnes, 2009)

12

Table 3: HelpNeed detected in historical data using each type of Step Efficiency and their Cor-
relation with students’ posttest optimality (all correlations are significant with p < 0.01)

Step efficiency used to
define HelpNeed

% of HelpNeed steps
w/ this metric

Corr

Global-Absolute 24.86 -0.36
Global-Relative 23.76 -0.32
Local-Absolute 16.09 -0.29
Local-Relative 18.14 -0.31

4.1.2.5. SELECTING A STEP EFFICIENCY METRIC

To understand which one of the four step efficiency metrics is most indicative of how stu-
dents’ work in the tutor’s training section affects their posttest solution optimality, we conducted
a correlation test. Note, we evaluate students on an optimality score based on the number of steps
on the posttest, with higher optimality scores given for fewer steps, explained in detail below in
section 5.3.

We used only two of the datasets, f18 and s19 (N = 437), to perform our correlation analysis,
since the problem ordering changed in Fall 2018. Using these two datasets allows us to control
for differences arising from problem ordering. For each student, we computed their posttest
optimality and the proportion of training steps that are labeled HelpNeed using each efficiency
metric. We then calculated the correlation between each type of training HelpNeed with posttest
optimality using Pearson’s coefficient. Table 3 shows that training HelpNeed is significantly
and negatively correlated to posttest optimality for all four of the efficiency metrics. A negative
correlation suggests that the higher the proportion of HelpNeed steps in training, the worse the
posttest optimality. Among the step efficiency metrics, the global-absolute metric is the most
correlated with posttest optimality. Therefore, we selected the Global-Absolute step efficiency
to detect when students require tutor interventions. The remainder of the paper uses the term
HelpNeed to refer to the definition that uses the global-absolute step efficiency.

4.2. HELPNEED PREDICTOR

Our prior work on proactive hints suggests that low prior knowledge students exert productive
persistence when the tutor provides proactive hints as partially worked steps (Maniktala et al.,
2020). Therefore, we sought to build a predictive HelpNeed classifier that could identify un-
productive steps at their start, so that we could proactively intervene with a hint, and possibly
convert unproductivity to productive persistence. This HelpNeed predictor predicts two classes:
1 for predicting HelpNeed, and 0 for otherwise.

To build the HelpNeed predictor, we engineered two types of classifiers: state-based, and
state-free in Python. We use a state-based classifier when a student’s problem-solving state can
be matched to historical data to leverage quality, and progress-based features for predictions (see
Appendix B). The state-free classifier is used when we don’t have that information. This two-
classifier architecture ensures that a HelpNeed prediction can be made regardless of whether a
state is present in the historical data.

13

Feature Engineering and Selection. We used the datasets f18, and s19 (N = 437) to de-
velop the HelpNeed predictor. We aggregate features on three levels of granularity: 1) most
recent step, 2) current problem, and 3) total (all student-tutor interactions). Appendix B pro-
vides more information about on 63 features. We normalized the features and performed feature
selection using the scikit-learn feature selection.SelectFromModel (Pedregosa et al., 2011). Ap-
pendix C shows the features selected, along with their descriptive statistics.

Related research on creating data-driven step-level hint policies in multi-step domains for
probability (Zhou et al., 2019) and linked lists (Fossati et al., 2015) have used individual models
for each problem. However, we developed a generalized cross-problem model, and compared
it with problem-specific models. The generalized model performed equally well in AUC and
recall when compared to problem-specific models for most of our tutor problems. Further, the
generalized model performed better than the problem-specific models when less historical data
was available, confirming that using a generalized model is a reasonable approach.

We now detail the predictive models we experimented with and our model selection ap-
proach. Table 3 shows that the input data is imbalanced as the proportion of HelpNeed steps is
small at 24.86%. So, we used 10-fold cross-validation with stratified random sampling2. We ex-
perimented with nine HelpNeed classifiers including Random Forest (RF), Decision Tree (DT),
Support Vector Classifier (SVC), Multi-layer Perceptron (MLP), Quadratic Discriminant Anal-
ysis, K-Nearest Neighbours, AdaBoost, Naive Bayes, all via scikit-learn, and XGBoost (Chen
and Guestrin, 2016). We used the sklearn class weight to determine automated weights for the
RF, DT, SVC, and MLP models to account for imbalanced data. So the model would be more
likely to correctly identify HelpNeed steps, we created expert weights (to improve recall) by
performing a grid search starting from the automated weights for class 0, and performed a grid
search for class 1 (HelpNeed), scoring the models on both recall and AUC (Arvai, 2018).

Table 4 shows the result of applying 10-fold cross validation on the classifiers with default,
automated, and expert class weights for state-based and state-free predictions. We omitted the
results for classifiers where class weights could not be adjusted because of their low perfor-
mance. The table shows the RF models with expert class weights have the highest recall for
both state-based and state-free predictions (0.90 and 0.91, respectively)3. RF outperforms all
other models because it is both an ensemble model and benefits from expert weights.

For the selected RF state-based classifier, quality- and progress-based features contribute
to 94.81% of the predictive power. Amongst these, the top three features to predict HelpNeed
are: (1) Global-Absolute Progress (GAP = 33.5%), (2) current state’s Global Quality = 22%),
and (3) Local-Absolute Progress (LAP = 13.1%). And, for the selected RF state-free classifier,
the top three features contributing to the classifier’s predictive power are: (1) problem time
(pTime = 10.7%), (2) total click-based actions in a problem (pActionCount = 8.5 %), and (3)
wrong rule applications in the problem (pWrongApp = 7.4%). These three features are likely
to be available in most well-structured multi-step domains. In ill-structured domains, there may
not exist a program that can detect whether a single rule application is correct or not. More
information on feature importance is provided in Appendix D.

The HelpNeed predictor is defined as the combined state-based and state-free RF classifiers
that predict the next step’s HelpNeed classification as in Table 1 at the start of that step using

2We also ensured that each student’s data was fully contained within either the training or test set of each fold
to avoid introducing bias

3The automated weights for these RF models are {class 1: 2.09, class 0: 0.66} while the expert weight for class
1 is 4.17 (∼2x) for the state-based predictions and 3.75 (∼1.8x) for the state-free predictions.

14

Table 4: Comparison of state-based and state-free predictors: Recall and AUC for 10-fold Cross
Validation; Dflt= Default model; Auto = using automated weights; Exp = using expert weights

Predictor
State-based State-free

Recall AUC Recall AUC
Dflt Auto Exp Dflt Auto Exp Dflt Auto Exp Dflt Auto Exp

RF .62 .83 .90 .71 .84 .83 .20 .51 .91 .52 .62 .62
DT .72 .84 .89 .82 .84 .82 .22 .46 .79 .53 .60 .54

SVC .58 .52 .63 .77 .68 .73 .12 .28 .42 .53 .52 .52
MLP .64 .62 .44 .75 .74 .67 .08 .24 .32 .53 .55 .54

the global-absolute metric. We performed a semester-based two-fold cross validation with f18
and s19 as the two folds to assess if the predictor can be used across semesters. We observed
similar recall and AUC as that observed in the 10-fold cross validation, with recall for state-
based predictions = 0.89 and state-free predictions = 0.89; and AUC for state-based predictions
= 0.88 and state-free predictions = 0.56. This confirms that the HelpNeed predictive classifiers
trained here can be expected to work in the future without the need for re-training.

5. EXPERIMENT

We conducted a controlled experiment to compare our Adaptive condition, where participants
received proactive hints (Figure 4) when our predictor indicated HelpNeed and the Control con-
dition, where participants worked as usual without proactive hints. Note, students in both con-
ditions could request on-demand hints.

5.1. HYPOTHESES

We have two hypotheses:

• H1: Students in the Adaptive condition will have better posttest performance than those
in the Control condition, as measured by solution optimality and time.

• H2: Students in the Adaptive condition will exhibit better training behaviors, with (a)
fewer HelpNeed steps, and (b) lower possible help avoidance, and higher possible help
appropriateness (a higher chance of receiving help when it was likely to be needed), as
measured using the HelpNeed classifier, when compared to the Control.

5.2. PROCEDURE

The tutor was a homework assignment in a Fall 2019 undergraduate discrete math course. The
study was conducted with 123 participants, and the students were given ten days to complete the
tutor.

The tutor is divided into four sections: introduction, pretest, training, and posttest. The in-
troduction presents two worked examples to familiarize students with the tutor interface. Next,

15

students solve two problems in a pretest, which is used to determine students’ incoming com-
petence. Students are assigned a condition based on their pretest performance for stratified
sampling, as detailed below. The pretest problems are designed to be easy and short, solvable
with short optimal solution lengths (Mean = 3.5, SD = 0.71). Next, the tutor guides students
through the training section with fifteen problems of varying difficulty. The difficulty of the
training problems is between that of the pretest and the posttest based on averaging the optimal
solution lengths over all training problems (Mean = 4.99, SD = 1.32). Finally, students take
a more difficult posttest with five problems, with longer optimal solution lengths compared to
the other sections (Mean = 7.25, SD = 1.89). Note that students can only receive hints in the
training but the tutor is designed to provide immediate feedback on rule application errors in all
the sections.

A stratified random sample based on pretest performance is used to partition the 123 par-
ticipants into two conditions, resulting in 70 in Adaptive and 53 in Control. The stratified sam-
pling was set up to result in a larger sample size for the Adaptive condition to gather more
data on how the intelligent policy was carried out. Among these participants, 111 (66 in Adap-
tive and 45 in Control) completed the tutor. We used a chi-squared test to assess the impact
of tutor completion rates on the group sizes, and found that the impact was not significant
(χ2 (1,N = 123) = 0.16, p = .69).

5.3. PERFORMANCE METRICS

The tutor automatically checks for problem completeness, so student solutions cannot be incor-
rect, but some may be more expert than others. Learning is measured by performance measures
of optimality, time, and accuracy, reflecting that expert-like problem solutions have fewer steps,
take less time, and have fewer mistakes. Optimality is an exponential decay function on normal-
ized steps e−steps to account for the small variance in the number of steps. Steps are normalized
to the interquartile range for each specific problem to account for varying problem lengths. Very
short solutions with steps less than or equal to Q1 (1st quartile) have optimality = 1, and those
with steps greater than Q3 (3rd quartile) have an optimality score of 0.36 or less based on the
exponential decay curve. Next, similar to other studies (Kardan and Conati, 2015; Tchétagni and
Nkambou, 2002), our performance includes the time students spend solving problems. To make
the time data into approximate normal distributions, we cap each action (any click performed)
time to one minute2, and sum the times for each action to determine the total (capped) time per
problem. Finally, accuracy is defined as the number of correct rule applications divided by the
total rule applications.

We do not hypothesize differences in the accuracy between the two conditions because the
tutor is designed to provide immediate feedback on incorrect rule applications without penalties,
even within the pre- and post-tests (see 5.2). We report this performance metric to ensure our
intervention does not harm students’ accuracy.

5.4. HINT USAGE

Since our study investigates proactive hints, it is imperative to understand students’ hint usage.
We measure hint usage in the tutor using the Hint Justification Rate (HJR). As shown in Figure

2The 3rd quartile of action time in Fall 2019 was 4.6s, and only 4690 out of 277,647 actions had an action time
greater than 1 minute

16

Figure 4: Proactive hint justification: A cyan proactive hint node (labeled Subgoal) is shown in
the pre-State on the left. “Hint Justification” is performed by clicking on nodes 1 and 4 and the
MP rule button in the pre-state. Since this is a correct justification, the hint becomes incorporated
as a green node in the solution as shown in the post-state on the right.

Table 5: The distribution parameters for students’ pre- and post-test performance in the two
conditions. T-test shows that the Adaptive group has significantly higher posttest optimality (p
= .04), and took significantly less time to complete the posttest (p < .01) than the Control group

Test
Optimality Time (min) Accuracy

Adaptive Control Adaptive Control Adaptive Control
Pretest .54 (.38) .60 (.27) 39 (20) 34 (16) .62 (.12) .62 (.14)
Posttest .71 (.27) .59 (.33) 18 (12) 29 (17) .71 (.10) .68 (.08)

4, a hint becomes justified if a student selects the correct rule and existing nodes to derive it.
HJR is defined as the proportion of the hints given (on-demand or proactive) that were justified.

6. RESULTS

In this section, we investigate our two hypotheses about the Adaptive condition: H1 on improved
posttest performance, and H2 on (a) reduced HelpNeed steps, and (b) reduced possible help
avoidance and increased possible help appropriateness during training. We also evaluate the
predictor’s efficacy in predicting HelpNeed, and show how the predictor can be used to assess
students’ help-seeking behavior.

6.1. H1 - POSTTEST PERFORMANCE

We first investigate hypothesis H1 on whether the Adaptive students have better posttest opti-
mality and time than their Control peers. Table 5 shows the distribution parameters of students’
pre-, and post-test performance in the two Conditions {Adaptive, Control}. As expected, no
significant differences were found between the two conditions in the pretest optimality: t(110) =
0.93, p = .18, time: t(110) = 1.27, p = .11, and accuracy (proportion of correct rule applications):
t(110) = 0.81, p = .37. This confirms that our stratified random sampling assignment balanced
Adaptive vs. Control conditions’ incoming competence (see section 5.2).

17

Table 6: Distribution parameters for students’ training steps in the two conditions. T-tests show
significant differences between the two conditions in the Far Off (p < .01) and Opportunistic (p
= .02) steps. Total training steps are only marginally significant (p = .10)

Training Steps
Step Behavior Description

Adaptive Control
p

Expert Quick efficient steps 61 (12) 65 (13) .10
Strategic Long efficient steps 25 (19) 21 (9) .17
Opportunistic Singular, quick, inefficient steps 5 (3) 7 (4) <.01*
Far Off Consecutive quick but inefficient steps 16 (20) 25 (25) .02*
Futile Long inefficient steps 13 (12) 12 (19) .47

Total Training Steps 121 (38) 133 (39) .10

A t-test on the posttest optimality shows a significant difference between the two conditions
(t(110) = 1.74, p = .04) with a moderate effect size (Cohen’s d = 0.4). Recall that higher optimal-
ity values reflect shorter, more efficient solutions. Next, on the total posttest time4, significant
differences were found between the two conditions with a large effect size (t(110) = 3.99, p <
.01, Cohen’s d = 0.8s), with students in the Adaptive condition (M = 18 min, SD = 12 min)
spending significantly less time on the posttest than those in the Control (M = 29 min, SD =
17 min). No significant differences were hypothesized or found between the two conditions in
the posttest accuracy (t(110) = 0.50, p = .31). These results show that delivering proactive hints
using the HelpNeed predictor indeed helped the Adaptive students generate better solutions in
less time than their Control peers on the posttest without negatively impacting their accuracy,
confirming our first hypothesis H1.

6.2. H2A - COMPARISON OF HELPNEED DURING TRAINING

In this section, we investigate hypothesis H2a that the students in the Adaptive condition will
have significantly fewer HelpNeed steps in training than the Control condition. Table 6 shows
the cumulative step-level behavior of the two conditions during training. A t-test on the total
training steps shows that the Adaptive condition took marginally significantly fewer total train-
ing steps on average compared to the Control condition: t(110) = 1.29, p = .10. The Adaptive
condition also has significantly fewer quick inefficient, Far Off and Opportunistic, steps per stu-
dent over all training problems than the Control (Opportunistic - Adaptive: 5, Control: 7, p <
.01, and Far Off - Adaptive: 16, Control: 25, p = .02) but there were no significant differences
in Futile steps between the two conditions (Adaptive: 13, Control: 12, p = .45). This suggests
that compared with the Control condition, the Adaptive condition avoided unnecessary Oppor-
tunistic and Far Off steps that might distract them away from efficient solutions. Table 6 also
shows that there are no significant differences in the Expert or Strategic steps between the two
conditions (Expert: p = .10, Strategic: p = 0.17). The significantly higher Opportunistic and

4The posttest time distributions were normal but there was a significant difference in variance between the two
groups using the Levene’s Test (p = .02), so, we conducted a Welch’s t-test to test for significant differences on
post-test time between conditions.

18

Table 7: Distribution parameters for the number of hints given and the hint justification rate in
the two conditions

Adaptive Control p
Proactive 28 (10) - -

On-demand 6 (9) 14 (15) <.01*
Hints

Received
Total Hints 34 (12) 14 (15) <.01*
Proactive 89% (8%) - -

On-demand 87% (22%) 90% (11%) .23
% Hint

Justification
Rate (HJR) Total HJR 89% (8%) 90% (11%) .26

Far Off steps in the Control condition may be a result of help avoidance because students may
not know when to seek help (Peña et al., 2011; Azevedo and Cromley, 2004). More details on
students’ help avoidance are discussed in subsection 6.7.

6.3. HINTS GIVEN AND USED IN TRAINING

In this section, we further investigate the sources of differences between the Adaptive and Con-
trol conditions. Table 7 shows the mean and standard deviation of the total number of proactive,
on-demand, and overall hints received by all students in the two conditions across training prob-
lems (the top part), and the hint justification rate (HJR) of students in the two conditions across
different types of hints (the bottom part). Note that the Control condition was not provided with
proactive hints, and thus only their on-demand hints count toward their total hints.

For the Adaptive condition, the total hints include both proactive and on-demand hints (Mean
= 34, SD = 12), whereas, for the Control condition, the total hints only include the on-demand
hints (Mean = 14, SD = 15). A Mann Whitney U test on the total hints for the two conditions
shows a significant difference (U = 445.5, z = 6.24, p < .01). On average, students in the
Adaptive condition received 28 proactive hints (22.8% of steps), and 6 on-demand hints (4.9% of
steps) while the Control condition received an average of 14 hints on-demand (10.5% of steps).
A Mann Whitney U test shows that students in the Adaptive condition requested significantly
fewer on-demand hints during training than those in the Control condition (U = 908.5, z = 3.46,
p < .01). This suggests that our HelpNeed predictor and proactive hints may have successfully
forecasted the Adaptive students’ needs for hints. Interestingly, we also found that whenever
students in the Adaptive condition requested hints in a step, they did so after working on the
step a median of 44 seconds before seeking help (Mean = 70s, SD = 125s), whereas the Control
condition requested hints after working on the step for a median of 21 seconds (Mean = 29s,
SD = 21s). A Mann Whitney U test on the time spent in a step before requesting help shows
a significant difference between the two conditions (U = 600, z = 1.97, p = .02). This suggests
that on average, students in the Adaptive condition may engage longer on their own than their
Control peers before requesting hints on a step. More details on help abuse are discussed in
subsections 6.5, and 6.7.

For HJR, the total hints HJRs are high, around 90% for both conditions, and no significant
difference was found between the two conditions (U = 1074.5, z = 1.21, p = .11), which suggests
that our hints are well-accepted by students in both conditions. More specifically, no significant

19

differences are found in the on-demand HJR between the two conditions (Means: Adaptive: 87,
and Control: 90, U = 513.5, z = 1.84, p = .03). Further, the Adaptive condition justified most
of their hints regardless of delivery type (proactive HJR: 89%, and on-demand HJR: 87%). This
affirms our prior results that students in the Adaptive condition incorporated proactive hints into
their solutions as frequently as on-demand hints (Maniktala et al., 2020).

6.4. HINT COUNT AND POSTTEST PERFORMANCE

We found that the Adaptive condition received significantly more hints during training (sub-
section 6.3) and also performed significantly better on the posttest in optimality and time (sub-
section 6.1). We perform a correlation analysis comparing the Adaptive condition to students
who also received frequent proactive hints at random times in previous semesters to determine
whether this difference in performance could be due to the increased number of hints provided to
the Adaptive group. Ideally, we would compare the HelpNeed policy with a policy that provides
the same number of proactive hints randomly. However, this is difficult to achieve, since the pol-
icy is adapting to individual students and the total number of proactive hints per student is neither
predetermined nor consistent. Since we cannot directly compare student performance because of
varying hint frequencies, we conducted a correlation analysis instead. Further, we contrast the
correlation of hint count with posttest performance while controlling for pretest performance
across datasets with Random, a combined dataset with Random and Adaptive proactive hint
conditions, and the Adaptive condition alone. This can help us to understand differences in
correlation arising from the Adaptive condition.

Table 8 shows the correlation between hint count (total and proactive) and posttest perfor-
mance (Optimality, and Time) with pretest performance as the covariates. First, we analyzed
prior datasets, where students were given proactive hints at random intervals with about 40%
and 33% frequency in f18R and f19R1 respectively. Proactive hints in f18R, and s19R were
given frequently at random times irrespective of prior knowledge or progress on the problem,
so within each random condition, there was no significant difference in the proactive hint count
between students with low and high prior knowledge (Maniktala et al., 2020). For the f18R
+ s19R dataset, we found that the total hints (proactive + on-demand) did not correlate to the
posttest performance metrics. Further, the number of proactive hints significantly correlated to
longer posttest time but did not significantly correlate to posttest optimality. This suggests that
receiving higher numbers of proactive hints on random steps during training can be detrimental
to students’ posttest time.

Proactive hints were provided on average of 23% student steps in the f19 Adaptive condi-
tion (f19A) of this study, which is lower than the f18R and s19R proportions. We repeated the
correlation analysis including the f19 Adaptive condition (f19A) of this study to check if the
lower f19A proactive hint count led to better posttest performance than the higher f18R and
s19R proactive hint counts. On this combined dataset, the total hints received was not signifi-
cantly correlated with posttest performance. However, the higher number of proactive hints (that
presumably occurred more often in the studies with more frequent random hints) significantly
correlated with lower optimality and longer time. Finally, we performed the correlation between
hint count and posttest performance for f19A alone. On this dataset, we observed insignificant
correlations for all pairs of hint type {total, proactive}, and posttest metrics {optimality, time}.

1f18R, and s19R were collected in Fall 2018 and Spring 2019 semesters respectively where R represents a subset
of the population that received frequent unsolicited hints provided randomly

20

Table 8: Correlation analysis between hints given and posttest performance metrics

Dataset
Hints
Given

Optimality Time
corr p corr p

f18R, s19R
Total -0.05 .62 0.16 .13

Proactive -0.14 .19 0.49 < .01

f18R, s19R, f19A
Total -0.05 .52 0.13 .11

Proactive -0.17 .04 0.27 < .01

f19A
Total -0.003 .98 -0.15 .24

Proactive 0.15 .24 0.04 .77

This is as expected because proactive hints were provided adaptively based on individual student
needs, and led to improved performance for all.

This analysis suggests that providing too many proactive hints can be detrimental to student
performance. These results imply that students do need more hints than the number they request,
but providing hints when they are needed is more important than simply providing more.

6.5. GAMING BEHAVIOR

Since studies suggest that some students may game an educational system to complete the prob-
lems faster by using hints frequently (Baker et al., 2009), we analyze gaming behaviors. Our
Adaptive hints policy is complex, so students are unlikely to guess what causes proactive hints
to be triggered. A student trying to game the proactive hints in our tutor would have to carry
out Futile or Far Off steps to receive proactive hints. However, Table 6 (training steps) shows
that the Adaptive condition students had significantly fewer Far Off and Opportunistic steps
during training than Control, and a similar number of Futile steps, giving no indication of in-
creased gaming. Further, proactive hints that are partially worked steps require the student to do
some work to use them, reducing the potential for gaming the system, or possibly turning such
attempts into learning opportunities.

We also analyzed how often students were gaming the system by requesting more hints than
needed. Figure 5a shows that the on-demand hints in both the conditions constituted a small
proportion of each student’s total steps (Adaptive: Mean = 4%, SD = 8%; Control: Mean =
12%, SD = 14%). We found only one student from the Control condition who requested hints
on more than 50% of their steps. Next, we investigated how often students requested hints in a
short step time, where we consider “short” to be the top 25% quickest requests. We found that
the 25th percentile (1st quartile) of step time before a student requested a hint in the study is 17
seconds. Figure 5b shows the histogram of students in the two conditions, comparing the number
of training steps with too-quick hint requests (requested under 17 seconds). Summed over all
problems in the training section, each student in the Adaptive condition had significantly fewer
too-quick hint requests (requested in under 17s) than those in the Control condition (Adaptive:
Mean = 6 too-quick requests per student, SD = 10; Control: Mean = 15 too-quick requests per
student, SD = 15; U = 498.5, z = 3.36, p < .01). This suggests that students in the Adaptive
condition are less likely to game the system by requesting hints without engaging long enough
to think about the next step, than students in the Control condition.

21

Figure 5: Comparison of Gaming in Deep Thought between the two conditions

(a) Histogram for the proportion of training
steps with hint requests

(b) Histogram for the number of too-quick hint
requests

Overall, we observed that students in the Adaptive condition were less likely to game proac-
tive or on-demand hints, with significantly fewer quick inefficient steps. The design of the proac-
tive hints seems to successfully prevent gaming behaviors that detract from learning. However,
we provide more details on help abuse in the next two sections.

6.6. THE POLICY’S EFFICACY IN PREDICTING HELPNEED

In this section, we evaluate the HelpNeed predictor by comparing the HelpNeed predictions
with the observed step behavior during training for both conditions. Note that this comparison
is complex, because students can request hints at any time, and a hint received (proactive or
on-demand) can change a step’s observed HelpNeed if and when it is justified. Comparing the
performance of our HelpNeed predictor on the two conditions can provide us some insights into
how the predictor performs with and without predictor-driven interventions. We also use the
predictor to compare student help-seeking behavior between the two conditions.

We evaluate the performance of the predictor in a manner similar to a confusion matrix, com-
paring step predictions with observed step behavior on 7970 and 5975 steps respectively for the
Adaptive (N = 66 students), and Control (N = 45 students) conditions5. As an exploratory analy-
sis, we compared the total HelpNeed predictions and observed HelpNeed steps between the two
conditions. If a step is classified as HelpNeed, we call it an observed HN step. Alternatively, a
step that is not classified as HelpNeed is called an observed OK step. Similarly, if the HelpNeed
predictor predicts HelpNeed in a step, we call it a predicted HN step, otherwise, we call it a
predicted OK step. We found 1858 (23.3%) observed HN training steps for the Adaptive group,
and 1660 (27.8%) observed HN training steps for the Control group. A chi-square test on the
observed HN vs. OK training steps between the two conditions shows a significant difference
(χ2 (1,N = 111) = 36.2, p < .01). The Adaptive condition has a percent HelpNeed steps only

5The number of steps is larger for the Adaptive condition since there are more students assigned to this condition.

22

4.5% lower than that for the Control because the Adaptive condition’s total training steps are
also lower (marginally significant) than that of the Control. Section 6.2 shows that the Adaptive
condition has significantly fewer Far Off and Opportunistic steps than the Control, which con-
tributes to their reduced total steps as well. So, even though the Adaptive condition has fewer
HelpNeed steps, their lower total steps make the difference in percent-HelpNeed between the
two conditions small. We also compared the predictions of HelpNeed between the two groups.
Interestingly, the Control condition had a noticeably higher proportion of predicted HN training
steps than the Adaptive condition (Control: 2296, 38.4%, Adaptive: 1820, 22.8%). A chi-square
test on predicted HN vs. OK training instances between the two conditions shows a significant
difference (χ2 (1,N = 111) = 399.0, p < .01). This result is consistent with the findings that
students in the Adaptive condition were likely to follow their frequent hints and this resulted in
a higher proportion of observed OK steps, leading to fewer HN predictions.

Next, we investigated the correctness of step predictions and the impact of hint provision
on the observed step behavior. Figure 6 shows bar graphs comparing training steps in the two
conditions on whether a step is observed OK (top) or observed HN (bottom). Furthermore, each
step can be categorized as prediction of HN/OK steps and hinted/no-hints (including both on-
demand or proactive)6. Therefore, for both observed OK or observed HN steps, the proportions
of training steps are further categorized based on the combination of HelpNeed predictor results
{pred-OK = predicted OK, or pred-HN = predicted HelpNeed} with Hint provision {noHint =
no hint was provided, hinted = a hint was provided} which resulted in four types:

1. pred-OK + noHints: predicted OK and no hints were provided
2. pred-OK + hinted: predicted OK but hints were provided
3. pred-HN + noHints: predicted HelpNeed but no hints were provided
4. pred-HN + hinted: predicted HelpNeed and hints were provided

The observed OK steps are shown in the top portion of Figure 6. The Adaptive group (4998,
62.7%) has a much higher percentage of pred-OK + noHints steps than the Control group (2974,
49.8%). This suggests that, while both conditions can solve a large number of steps on their
own, the Adaptive students can successfully solve more steps on their own than the Control. On
pred-OK + hinted steps, interestingly, we observe a very small proportion of such steps for the
Adaptive group (106, 1.3%), considerably lower than that for the Control group (348, 5.8%).
Assuming our HelpNeed predictor was perfect, these numbers would reflect the possible help
abuse steps where students asked for hints when they didn’t need them. While it is possible
that our HelpNeed predictor could have incorrectly predicted these steps to be OK, we believe
that these numbers still provide insights into relative possible help abuse between different con-
ditions. For pred-HN + noHints steps, no such steps were observed for the Adaptive group
simply because proactive hints were automatically provided for all predicted HN steps. How-
ever, we observe 761 (12.7%) such instances for the Control condition, where the HelpNeed
predictor incorrectly predicted a step to be HN but was observed to be OK without help. Ideally
we want the misclassification rate to be as low as possible, with both the rates of false positives
(predicted HN and observed OK) and false negatives (predicted OK and observed HN) low.
However, we trained the predictors to improve recall (as discussed in section 4.2) by lowering
the rate of false negatives, i.e., we trained the model to prioritize correctly predicting HN steps

6Note, the graph provides only the percentages. The numbers corresponding to these eight comparisons are
presented in Appendix E

23

Figure 6: Comparing training steps in the two conditions on a combination of three aspects:
predictions of HN or OK, observed HN or OK, and hint provision (on-demand or proactive)

so we could provide hints when they were most needed. Finally, for pred-HN + hinted steps,
as expected, we observe a higher proportion of pred-HN + hinted steps for the Adaptive group
(1008, 12.6%) than the Control group (232, 3.9%). We expected this number would be lower
for students in the Control condition, who we thought would avoid asking for help. There are
two possible scenarios for such Observed OK steps in the Adaptive group where students were
predicted to need help, and received a hint: ideally, 1) the hint helped students achieve a more
efficient step than predicted, or 2) a student was given help unnecessarily.

Next, we examine the observed HN steps where steps were classified in a posthoc manner
as Far Off or Futile. The lower portion of Figure 6 shows that for pred-OK + noHints steps,
where the predictor failed to identify HelpNeed, is higher for the Adaptive group (995, 12.5%)
than the Control group (335, 5.6%). This result is likely because the predictor is strongly biased
toward efficient steps present in student solutions, and proactive hints always suggest efficient
steps. Therefore, when students used them, their attempts appeared more expert, which, in turn,
caused the predictor to predict that their next steps would also be more expert. This suggests that
our predictor needs revision to include hint usage since some expert-like and strategic behaviors
by the Adaptive students may be due to previously-received, justified hints. The proportion of

24

Table 9: Definition of possible help avoidance, abuse, and appropriateness using HelpNeed

Help Behavior Metric Definition

Possible Help Avoidance
%steps with observed HelpNeed
but no hints were requested or received

Possible Help Abuse
%steps with no predicted or observed HelpNeed
but hints were requested

Possible Help Appropriateness
%steps with predicted HelpNeed
and hints were received

training steps in the next pred-OK + hinted category is low in both conditions (Adopted: 51,
0.6% and Control: 22, 0.4%). The next category includes 1257 (21.0%) pred-HN + noHints
steps for students in the Control condition, that were predicted and observed to need help, but
no hints were received, representing possible help avoidance steps that the predictor correctly
identified. Finally, the pred-HN + hinted steps were predicted to need help, and received a hint,
but still resulted in HelpNeed. The Adaptive group had 812 (10.2%) and the Control group had
46 (0.8%) of these steps. Note that our hints provide partial information to carry out the next step
but a student may not use the hint immediately– they may wait. Therefore, we further analyzed
the usage of proactive hints in the Adaptive condition for this category and found that in 613
of these instances (75.5% of pred-HN + hinted-HN), students justified the proactive hints in the
second step after the hint was provided. This suggests that the proactive hints did help students
in these steps, but it took two steps before we could observe this impact.

6.7. EVALUATING HELP BEHAVIOR WITH HELPNEED PREDICTOR

In this section we investigate H2b, that students in the Adaptive condition would have lower
possible help avoidance, and higher possible appropriate help, as measured using the HelpNeed
classification, when compared to the Control. We also compare possible help abuse to determine
whether the Adaptive hints impacted gaming behaviors. Note, we add a prefix possible to these
behaviors because HelpNeed does not represent ground truth as classified by experts. Rather,
HelpNeed is our classification of steps needing help, and the predictor is a heuristic measure.

Table 9 provides the definitions for the help behaviors we investigated, and Figure 7 shows
a comparison in these behaviors between the conditions, evaluated using the predictor. For
each student, we define possible help avoidance as the percentage of total training steps that
were observed to be HelpNeed but hints (on-demand or proactive) were neither requested nor
proactively provided. Figure 7 shows that the Adaptive condition has a mean of 12.5% possible
help-avoidance per student in training problems (SD = 3.5%), and the Control condition has a
mean of 26.6% possible help-avoidance per student in training problems (SD = 5.2%). We found
significantly lower possible help avoidance in the Adaptive condition than the Control (U = 138,
p < .01) with a moderate effect size = 0.597. Next, we define possible help abuse as the percent-
age of training steps with neither predicted nor observed HelpNeed, but students requested hints,
indicating either that the prediction was wrong and help was needed and effectively used, or it

7Effect size for Mann Whitney U test is calculated using
z2

n− 1

25

Figure 7: Comparison of possible help avoidance, abuse, and appropriateness between condi-
tions using our HelpNeed classification and predictor

was right but help was abused. We found a significant difference between the two conditions (U
= 365, p < .01) and a moderate effect size = 0.40, with the Adaptive condition (Mean = 1.3%,
SD = 0.4%) having lower possible help abuse than the Control (Mean = 5.8%, SD = 2.4%).

Finally, possible help appropriateness is the percentage of training steps predicted to need
help and a hint was either requested or provided proactively. Figure 7 shows that the Adaptive
condition has a mean of 22.8% possible help-appropriateness per student in training problems
(SD = 4.8%), and the Control condition has a mean of 4.7% possible help-appropriateness per
student in training problems (SD = 2.2%). We found significantly higher possible help appro-
priateness in the Adaptive condition than the Control (U = 155, p < .01) with a moderate effect
size = 0.58. These results confirm hypothesis H2b that students in the Adaptive condition had
lower possible help avoidance, and higher possible appropriate help than students in the Control.
We further show that students in the Adaptive condition demonstrated lower possible help abuse
than students in the Control.

7. DISCUSSION

In this paper, we provide a unique extension of the Hint Factory to determine productivity on
a step-level in an intelligent data-driven tutor. We present a HelpNeed metric and predictor to
identify steps where students are likely to need help learning efficient problem-solving strategies.
We also show the analysis evaluating the impact of intervening with Adaptive hints using our
HelpNeed predictor in a controlled study. In this section, we discuss the HelpNeed approach, the
evaluation of the Adaptive hint policy, as well as its limitations and potential for generalization.

7.1. THE HELPNEED METRIC AND PREDICTOR

Our definition of unproductive, HelpNeed behavior is different from the existing literature that
either defines problem-completeness-based metrics (Beck and Gong, 2013), or uses pre-defined
domain-specific metrics that require expert knowledge or domain modeling (McLaren et al.,

26

2014). We instead focus on solution length (i.e. optimality), which is valued across problem-
solving domains. Further, our definition of HelpNeed also takes into account step duration.
This is important because we do not want to disrupt helpful guess-and-check patterns that might
involve students deriving an inefficient step but learning in the process.

A study by Fossati, et al. on a proactive hint policy for the iList linked list tutor, incorporated
step duration, using both problem-based parameters and individual student characteristics (Fos-
sati et al., 2015). Similarly, we combine a problem-based parameter for a duration threshold
after which steps are considered long, and each student’s actual step duration to detect Help-
Need. The HelpNeed design ensures that we do not harm students who take, or need, more time
when carrying out a learning task. Such students are likely to carry out longer steps that are
classified as Strategic or Futile steps more than the quicker Expert, Far Off, or Opportunistic
steps during training. Since we consider Strategic (long but efficient) steps productive, it gives
such deliberating students more opportunities to learn by themselves. Further, a Futile (long
and inefficient) step, indicates that the student could benefit from proactive intervention, saving
them time and directing them towards efficient strategies. Our prior work suggests that proac-
tive hints promote learning through self-explanation and foster productive persistence among
students with low prior knowledge (e.g. those with long step durations in the pre-test) (Manik-
tala et al., 2020). While this HelpNeed policy performed well, future work may explore the use
of individual student parameters to tune the model.

Central to our HelpNeed approach is our novel data-driven metric of global quality, an ex-
tension of the Hint Factory. A core insight of the work in this paper is that we can use the Hint
Factory to determine step-level productivity. The original Hint Factory generated local quality
values, because it assigns state values assuming the best transition between each pair of states.
We developed a modified Bellman equation to determine the global quality that employs a more
probabilistic approach and varying rewards for goal states based on solution optimality/length.
As demonstrated in Section 4.1.2, the global quality successfully addresses our need for identi-
fying step efficiency. One limitation of this work is that we consulted only one domain expert to
rate a small sample of steps for assessing the ground truth of step-level productivity. As an al-
ternative, we performed the correlation analysis in Table 3 which shows that training HelpNeed
defined using each of the four step efficiency metrics significantly correlates to posttest perfor-
mance. In future work, we plan to further explore the proposed quality and progress metrics to
better understand their tradeoffs and determine whether they can be used across domains.

7.2. ADAPTIVE HINT POLICY

In this section, we discuss the results of providing partially worked steps as proactive hints using
our HelpNeed predictor, and our post-hoc evaluation of the predictor. Our results show that
proactive hints using the predictor reduce students’ Opportunistic and Far Off steps in training,
and enable them to form more optimal proofs in shorter time on the posttest.

Our results showed that combining our HelpNeed predictor with proactive hints can not
only reduce the number of times students need to explicitly ask for help but also reduce help
avoidance. While one can argue that the increased number of total hints could have improved
the Adaptive condition’s posttest performance, the correlation analysis in section 6.4 suggests
that simply receiving more proactive hints at random times can be harmful, so it is important to
identify when help is needed.

Prior research shows that gaming the system usually consists of quickly asking for succes-

27

sively more informative hints to get to a bottom-out hint that gives students the answer to the
current question (Baker et al., 2008). Since our tutor focuses on multi-step problems where a
correct answer is a set of correctly derived statements, no single hint can give a student a correct
answer. We found that students in the Adaptive condition were less likely to game the system by
requesting hints than the Control condition because the Adaptive group had significantly fewer
steps with quick hint requests than the Control group. Another type of gaming occurs when stu-
dents realize that a system predicts performance and provides proactive hints based on frequent
failures (Baker et al., 2008). Since our policy uses both time and inefficient steps to determine
when to proactively offer a hint, we believe it is more difficult for students to determine a pat-
tern, and game our system. Therefore, we recommend more complex policies to make it more
difficult for students to game proactive hints. Our proactive hints are more likely to occur when
we predict students to derive non-optimal statements. So, even students whose goal is to game
our policy, must still apply domain rules correctly, and therefore, still get valuable practice.

We also evaluated students’ help behavior using our HelpNeed classification and predictor.
We found that the Adaptive condition has significantly lower possible help avoidance and help
abuse, with significantly more possible appropriate help than the Control. A limitation of this
study is that this comparison relies on our HelpNeed classification and predictor, which are only
shown to be correlated to posttest performance, but have not been proven to correspond directly
to expert measures of help need.

The evaluation of the HelpNeed predictor in section 6.6 suggests ways to identify steps where
students did not show effective help-seeking. Further, this evaluation helped us understand how
we can improve the predictor. The HelpNeed predictor predicted that students in the Adaptive
condition would carry out more steps without demonstrated HelpNeed than they were able to.
We believe this resulted from not differentiating efficient steps with hints from those without
during the prediction task. Beck et al. in (Beck et al., 2008) proposed a Bayesian Evaluation
model for a Reading Tutor to measure the impact of help on student knowledge. Further, a study
by Chaudhry et al. used a deep learning model to jointly predict the hint-taking and knowledge
tracing task. They found that incorporating the hint-taking model improved the deep learning
knowledge tracing (Chaudhry et al., 2018). Similar to these studies, our predictor should be
revised to account for whether or not students received and justified hints.

7.3. GENERALIZATION TO OTHER DOMAINS

A limitation of this work is that we only assess our method in one ITS for one domain. To
apply the HelpNeed model and predictor, the requirements for a new domain are to have state
and state-transition representations (so we can define steps) and scoring for final solutions so
the state-based and state-free classifiers can learn values for the HelpNeed predictor. Deriving
state representations, and therefore the HelpNeed methods, should be relatively straightforward
in well-structured domains such as multi-step math, physics, or statistics problems, but studies
are needed to confirm their effectiveness.

It is possible that the HelpNeed methods will also work in programming-related contexts.
For example, for the iList linked list tutor, Fossati et al. (Fossati et al., 2015) devised the Pro-
cedural Knowledge Model (PKM), to identify “critical” states for feedback, using per-problem
models. We believe that our HelpNeed model could be used to provide a general cross-problem
model, that could reduce the time needed to design per-problem models.

Several studies have applied the Hint Factory in the domain of programming by representing

28

problem-solving states as abstract syntax trees (ASTs) (Iii et al., 2014; Rivers and Koedinger,
2013; Price et al., 2016). Researchers have already performed expert analyses (Dong et al.,
2019) and preliminary automated methods to determine unproductivity (Marwan et al., 2020) in
novice programming . In future work, we propose to compare the effectiveness of the HelpNeed
method with these methods. We note that programming problems have large state-spaces (Price
et al., 2016; Rivers and Koedinger, 2017), which can lead to fewer state-based matches but the
methods proposed here can be used to developed state-free classifiers that do not require state
matches to build a HelpNeed predictor.

Generalization will also require adapting the definition of both Opportunistic and Far Off
steps. For the specific domain and tutor in this study, we defined Opportunistic steps as in-
efficient steps that do not need help, and Far Off as inefficient steps that do need help. For
other problem-solving domains, these categories should be defined based on how long a student
should be allowed to work without intervention. For example, in a block-based programming
problem that typically takes 1000 steps, it would be unreasonable to proactively intervene every
2 steps. We would expect to use a sliding window, tallying time and the proportion of inefficient
steps, to determine when an inefficient step can be considered Opportunistic or Far Off. We
would adjust the definitions of Opportunistic and Far Off steps until the definition applied to a
historical dataset shows correlation with posttest performance as done here in Section 4.1.2.5.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we present a novel approach for predicting HelpNeed in a logic tutor by extending
the Hint Factory. We present a modification to the Bellman equation for quantifying the global
quality of problem-solving states in well-structured open-ended domains. We show how this
quality metric can be used to form a novel data-driven HelpNeed classification model for unpro-
ductivity. Overall, we found that providing partially worked steps as proactive hints upon pre-
dictions of HelpNeed can improve students’ posttest problem solving optimality and time. Fur-
thermore, our Adaptive hint policy led students to improved training behaviors, with fewer steps
predicted to need help, lower possible help avoidance and help abuse, and a higher help appro-
priateness (receiving help when it was predicted to be needed). This work demonstrates that our
novel, data-driven HelpNeed predictor can address the assistance dilemma for well-structured
open-ended problem-solving in logic. The design of our system has revealed the importance
of considering pedagogy and theoretical grounding in determining HelpNeed. Specifically, we
based decisions about what step-level features may be indicative of HelpNeed on prior literature
on learning. Related data-driven systems should also incorporate what is known about learning
with the opportunities that data-rich systems afford.

This work has two main limitations. First, the HelpNeed predictor does not incorporate hint
usage, meaning that some students with efficient steps based on hints were not given future help
when it was needed. Second, the HelpNeed model and predictors here have only been evaluated
in a single tutor in a single domain. While the step efficiency and HelpNeed metrics are designed
to apply to well-structured, open-ended domains that value shorter solutions, studies are needed
to confirm their effectiveness for other domains.

REFERENCES

ALEVEN, V. AND KOEDINGER, K. R. 2000. Limitations of student control: Do students know when

29

they need help? In International Conference on Intelligent Tutoring Systems. Springer, 292–303.

ALEVEN, V., MCLAREN, B., ROLL, I., AND KOEDINGER, K. 2006. Toward meta-cognitive tutoring:
A model of help seeking with a cognitive tutor. International Journal of Artificial Intelligence in
Education 16, 2, 101–128.

ANOHINA, A. 2007. Advances in intelligent tutoring systems: problem-solving modes and model of
hints. International Journal of Computers Communications & Control 2, 1, 48–55.

ARROYO, I., BECK, J. E., BEAL, C. R., WING, R., AND WOOLF, B. P. 2001. Analyzing students’
response to help provision in an elementary mathematics intelligent tutoring system. In Papers of
the AIED-2001 workshop on help provision and help seeking in interactive learning environments.
Citeseer, 34–46.

ARVAI, K. 2018. Fine tuning a classifier in scikit-learn. https://towardsdatascience.com/
fine-tuning-a-classifier-in-scikit-learn-66e048c21e65.

AZEVEDO, R. AND CROMLEY, J. G. 2004. Does training on self-regulated learning facilitate students’
learning with hypermedia? Journal of educational psychology 96, 3, 523.

BAKER, R. S., CORBETT, A. T., KOEDINGER, K. R., EVENSON, S., ROLL, I., WAGNER, A. Z.,
NAIM, M., RASPAT, J., BAKER, D. J., AND BECK, J. E. 2006. Adapting to when students game
an intelligent tutoring system. In International Conference on Intelligent Tutoring Systems. Springer,
392–401.

BAKER, R. S., CORBETT, A. T., ROLL, I., AND KOEDINGER, K. R. 2008. Developing a generalizable
detector of when students game the system. User Modeling and User-Adapted Interaction 18, 3,
287–314.

BAKER, R. S., DE CARVALHO, A., RASPAT, J., ALEVEN, V., CORBETT, A. T., AND KOEDINGER,
K. R. 2009. Educational software features that encourage and discourage “gaming the system”. In
Proceedings of the 14th international conference on artificial intelligence in education. 475–482.

BARNES, T. AND STAMPER, J. 2010. Automatic hint generation for logic proof tutoring using historical
data. Journal of Educational Technology & Society 13, 1, 3.

BARNES, T., STAMPER, J., AND CROY, M. 2011. Using markov decision processes for automatic hint
generation “. Handbook of Educational Data Mining 467.

BARNES, T., STAMPER, J. C., LEHMANN, L., AND CROY, M. J. 2008. A pilot study on logic proof
tutoring using hints generated from historical student data. In EDM. 197–201.

BARTHOLOMÉ, T., STAHL, E., PIESCHL, S., AND BROMME, R. 2006. What matters in help-seeking? a
study of help effectiveness and learner-related factors. Computers in Human Behavior 22, 1, 113–129.

BECK, J. E., CHANG, K.-M., MOSTOW, J., AND CORBETT, A. 2008. Does help help? introducing the
bayesian evaluation and assessment methodology. In International Conference on Intelligent Tutoring
Systems. Springer, 383–394.

BECK, J. E. AND GONG, Y. 2013. Wheel-spinning: Students who fail to master a skill. In International
conference on artificial intelligence in education. Springer, 431–440.

BOREK, A., MCLAREN, B. M., KARABINOS, M., AND YARON, D. 2009. How much assistance is help-
ful to students in discovery learning? In European Conference on Technology Enhanced Learning.
Springer, 391–404.

BOTELHO, A., VARATHARAJ, A., PATIKORN, T., DOHERTY, D., ADJEI, S., AND BECK, J. 2019.
Developing early detectors of student attrition and wheel spinning using deep learning. IEEE Trans-
actions on Learning Technologies.

30

https://towardsdatascience.com/fine-tuning-a-classifier-in-scikit-learn-66e048c21e65
https://towardsdatascience.com/fine-tuning-a-classifier-in-scikit-learn-66e048c21e65

BUNT, A. AND CONATI, C. 2003. Probabilistic student modelling to improve exploratory behaviour.
User Modeling and User-Adapted Interaction 13, 3, 269–309.

BUNT, A., CONATI, C., AND MULDNER, K. 2004. Scaffolding self-explanation to improve learning
in exploratory learning environments. In International Conference on Intelligent Tutoring Systems.
Springer, 656–667.

CAPRARO, M. M., AN, S. A., MA, T., RANGEL-CHAVEZ, A. F., AND HARBAUGH, A. 2012. An in-
vestigation of preservice teachers’ use of guess and check in solving a semi open-ended mathematics
problem. The Journal of Mathematical Behavior 31, 1, 105–116.

CEN, H., KOEDINGER, K. R., AND JUNKER, B. 2007. Is over practice necessary?-improving learning
efficiency with the cognitive tutor through educational data mining. Frontiers in artificial intelligence
and applications 158, 511.

CHAUDHRY, R., SINGH, H., DOGGA, P., AND SAINI, S. K. 2018. Modeling hint-taking behavior and
knowledge state of students with multi-task learning. International Educational Data Mining Society.

CHEN, T. AND GUESTRIN, C. 2016. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining. ACM, 785–794.

CODY, C. AND MOSTAFAVI, B. 2017. Investigating the impact of unsolicited next-step and subgoal hints
on dropout in a logic proof tutor. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education. ACM, 705–705.

CONATI, C., GERTNER, A., AND VANLEHN, K. 2002. Using bayesian networks to manage uncertainty
in student modeling. User modeling and user-adapted interaction 12, 4, 371–417.

CORBETT, A. T. AND ANDERSON, J. R. 1994. Knowledge tracing: Modeling the acquisition of proce-
dural knowledge. User modeling and user-adapted interaction 4, 4, 253–278.

DONG, Y., MARWAN, S., CATETE, V., PRICE, T., AND BARNES, T. 2019. Defining tinkering behavior
in open-ended block-based programming assignments. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education. 1204–1210.

EAGLE, M., HICKS, D., AND BARNES, T. 2015. Interaction network estimation: Predicting problem-
solving diversity in interactive environments. International Educational Data Mining Society.

FOSSATI, D., DI EUGENIO, B., OHLSSON, S., BROWN, C., AND CHEN, L. 2015. Data driven automatic
feedback generation in the ilist intelligent tutoring system. Technology, Instruction, Cognition and
Learning 10, 1, 5–26.

FRATAMICO, L., CONATI, C., KARDAN, S., AND ROLL, I. 2017. Applying a framework for student
modeling in exploratory learning environments: Comparing data representation granularity to handle
environment complexity. International Journal of Artificial Intelligence in Education 27, 2, 320–352.

III, B. P., HICKS, A., AND BARNES, T. 2014. Generating hints for programming problems using inter-
mediate output. In Educational Data Mining 2014. Citeseer.

KAI, S., ALMEDA, M. V., BAKER, R. S., HEFFERNAN, C., AND HEFFERNAN, N. 2018. Decision
tree modeling of wheel-spinning and productive persistence in skill builders. JEDM— Journal of
Educational Data Mining 10, 1, 36–71.

KARDAN, S. AND CONATI, C. 2015. Providing adaptive support in an interactive simulation for learning:
An experimental evaluation. In Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems. ACM, 3671–3680.

KINNEBREW, J. S., SEGEDY, J. R., AND BISWAS, G. 2014. Analyzing the temporal evolution of stu-
dents’ behaviors in open-ended learning environments. Metacognition and learning 9, 2, 187–215.

31

KLAHR, D. 2009. ” to every thing there is a season, and a time to every purpose under the heavens”:
What about direct instruction?

KOCK, M. AND PARAMYTHIS, A. 2010. Towards adaptive learning support on the basis of behavioural
patterns in learning activity sequences. In 2010 International Conference on Intelligent Networking
and Collaborative Systems. IEEE, 100–107.

KOEDINGER, K. R. AND ALEVEN, V. 2007. Exploring the assistance dilemma in experiments with
cognitive tutors. Educational Psychology Review 19, 3, 239–264.

MANIKTALA, M., CODY, C., BARNES, T., AND CHI, M. 2020. Avoiding help avoidance: Using inter-
face design changes to promote unsolicited hint usage in an intelligent tutor. Accepted to appear in:
International Journal of Artificial Intelligence in Education.

MARWAN, S., DOMBE, A., AND PRICE, T. W. 2020. Unproductive help-seeking in programming: What
it is and how to address it. In Proceedings of the 2020 ACM Conference on Innovation and Technology
in Computer Science Education. 54–60.

MAYER, R. E. 1992. Thinking, problem solving, cognition. WH Freeman/Times Books/Henry Holt &
Co.

MCLAREN, B. M., LIM, S.-J., AND KOEDINGER, K. R. 2008. When and how often should worked
examples be given to students? new results and a summary of the current state of research. In Pro-
ceedings of the 30th annual conference of the cognitive science society. 2176–2181.

MCLAREN, B. M., TIMMS, M., WEIHNACHT, D., BRENNER, D., LUTTGEN, K., GRILLO-HILL, A.,
AND BROWN, D. H. 2014. A web-based system to support inquiry learning. In Proceedings of the
6th International Conference on Computer Supported Education-Volume 1. SCITEPRESS-Science
and Technology Publications, Lda, 43–52.

MERCERON, A. AND YACEF, K. 2005. Educational data mining: a case study. In AIED. 467–474.

MOSTAFAVI, B. AND BARNES, T. 2017. Evolution of an intelligent deductive logic tutor using data-
driven elements. International Journal of Artificial Intelligence in Education 27, 1, 5–36.

MOSTAFAVI, B., LIU, Z., AND BARNES, T. 2015. Data-driven proficiency profiling. International Edu-
cational Data Mining Society.

MURRAY, R. C. AND VANLEHN, K. 2005. Effects of dissuading unnecessary help requests while pro-
viding proactive help. In AIED. Citeseer, 887–889.

MURRAY, R. C. AND VANLEHN, K. 2006. A comparison of decision-theoretic, fixed-policy and random
tutorial action selection. In International Conference on Intelligent Tutoring Systems. Springer, 114–
123.

MURRAY, R. C., VANLEHN, K., AND MOSTOW, J. 2004. Looking ahead to select tutorial actions: A
decision-theoretic approach. International Journal of Artificial Intelligence in Education 14, 3, 4,
235–278.

PARK, S. AND MATSUDA, N. 2018. Predicting students’ unproductive failure on intelligent tutors in
adaptive online courseware. In Proceedings of the Sixth Annual GIFT Users Symposium. Vol. 6. US
Army Research Laboratory, 131.

PEDREGOSA, F., VAROQUAUX, G., GRAMFORT, A., MICHEL, V., THIRION, B., GRISEL, O., BLON-
DEL, M., PRETTENHOFER, P., WEISS, R., DUBOURG, V., ET AL. 2011. Scikit-learn: Machine
learning in python. Journal of machine learning research 12, Oct, 2825–2830.

PEÑA, A., KAYASHIMA, M., MIZOGUCHI, R., AND DOMINGUEZ, R. 2011. Improving students’ meta-
cognitive skills within intelligent educational systems: A review. In International Conference on
Foundations of Augmented Cognition. Springer, 442–451.

32

POLYA, G. 2004. How to solve it: A new aspect of mathematical method. Vol. 85. Princeton university
press.

PRICE, T. W., DONG, Y., AND BARNES, T. 2016. Generating data-driven hints for open-ended program-
ming. International Educational Data Mining Society.

PRICE, T. W., LIU, Z., CATETÉ, V., AND BARNES, T. 2017. Factors influencing students’ help-seeking
behavior while programming with human and computer tutors. In Proceedings of the 2017 ACM
Conference on International Computing Education Research. ACM, 127–135.

PRICE, T. W., ZHI, R., AND BARNES, T. 2017. Hint generation under uncertainty: The effect of hint
quality on help-seeking behavior. In International Conference on Artificial Intelligence in Education.
Springer, 311–322.

PUUSTINEN, M. 1998. Help-seeking behavior in a problem-solving situation: Development of self-
regulation. European Journal of Psychology of education 13, 2, 271.

RIVERS, K. AND KOEDINGER, K. R. 2013. Automatic generation of programming feedback: A data-
driven approach. In The First Workshop on AI-supported Education for Computer Science (AIEDCS
2013). Vol. 50.

RIVERS, K. AND KOEDINGER, K. R. 2017. Data-driven hint generation in vast solution spaces: a
self-improving python programming tutor. International Journal of Artificial Intelligence in Edu-
cation 27, 1, 37–64.

ROLL, I., ALEVEN, V., MCLAREN, B. M., AND KOEDINGER, K. R. 2011. Improving students’ help-
seeking skills using metacognitive feedback in an intelligent tutoring system. Learning and instruc-
tion 21, 2, 267–280.

RUS, V., BANJADE, R., NIRAULA, N., GIRE, E., AND FRANCESCHETTI, D. 2017. A study on two
hint-level policies in conversational intelligent tutoring systems. In Innovations in Smart Learning.
Springer, 175–184.

SMITH, M. U. 2012. Toward a unified theory of problem solving: Views from the content domains.
Routledge.

STAMPER, J. AND BARNES, T. 2009. Unsupervised mdp value selection for automating its capabilities.
International Working Group on Educational Data Mining.

STAMPER, J., BARNES, T., LEHMANN, L., AND CROY, M. 2008. The hint factory: Automatic gen-
eration of contextualized help for existing computer aided instruction. In Proceedings of the 9th
International Conference on Intelligent Tutoring Systems Young Researchers Track. 71–78.

TCHÉTAGNI, J. M. AND NKAMBOU, R. 2002. Hierarchical representation and evaluation of the stu-
dent in an intelligent tutoring system. In International Conference on Intelligent Tutoring Systems.
Springer, 708–717.

UENO, M. AND MIYAZAWA, Y. 2017. Irt-based adaptive hints to scaffold learning in programming.
IEEE Transactions on Learning Technologies 11, 4, 415–428.

VANLEHN, K. 2011. The relative effectiveness of human tutoring, intelligent tutoring systems, and other
tutoring systems. Educational Psychologist 46, 4, 197–221.

WOOD, H. AND WOOD, D. 1999. Help seeking, learning and contingent tutoring. Computers & Educa-
tion 33, 2-3, 153–169.

YACEF, K. 2005. The logic-ita in the classroom: a medium scale experiment. International Journal of
Artificial Intelligence in Education 15, 1, 41–62.

33

ZHOU, G., AZIZSOLTANI, H., AUSIN, M. S., BARNES, T., AND CHI, M. 2019. Hierarchical reinforce-
ment learning for pedagogical policy induction. In International Conference on Artificial Intelligence
in Education. Springer, 544–556.

34

A. APPENDIX: PROOF OF CONVERGENCE FOR THE MODIFIED BELL-
MAN BACKUP FUNCTION

Theorem: The modified Value iteration (Eqn 2) converges to GQV ∗ for any initial estimate
GQV , i.e.,

lim
k→∞

GQVk = GQV ∗ ∀GQV

For any estimate of the value function GQV , we define the modified Bellman backup oper-
ator B̂ : R|S| → R|S|

B̂GQV (s) = GR(s) + γ
∑
s′∈S

P (s′|s)GQV (s′)

Before we provide the proof of convergence, we provide the proof of contraction, i.e, for any
two value functions GQV and GQV’:

||B̂GQVk − B̂GQV ′k|| ≤ γ||GQVk −GQV ′k||

where the max norm:
||GQV || = max

s∈S
|GQV (s)|

||v − v′|| = Infinity norm (max difference over all states)
Proof of contraction:

||B̂GQV − B̂GQV ′||

=

∣∣∣∣∣
∣∣∣∣∣
[
GR(s) + γ

∑
s′∈S

P (s′|s)GQV (s′)

]
−

[
GR(s) + γ

∑
s′∈S

P (s′|s)GQV ′(s′)

]∣∣∣∣∣
∣∣∣∣∣

= γ

∣∣∣∣∣
∣∣∣∣∣
[∑
s′∈S

P (s′|s)GQV (s′)−
∑
s′∈S

P (s′|s)GQV ′(s′)

]∣∣∣∣∣
∣∣∣∣∣

= γ

∣∣∣∣∣
∣∣∣∣∣
[∑
s′∈S

P (s′|s)(GQV (s′)−GQV ′(s′))

]∣∣∣∣∣
∣∣∣∣∣

≤ γmax
s

∑
s′∈S

P (s′|s)|GQV (s′)−GQV ′(s′)|

≤ γ
∑
s′∈S

P (s′|s)||GQV −GQV ′||

= γ||GQV −GQV ′||
since P (s′|s) are non-negative and sum to one
Proof of Convergence:

||GQVk+1 −GQV ∗||∞ =
∣∣∣∣∣∣B̂GQVk −GQV ∗∣∣∣∣∣∣

∞
≤ γ ||GQVk = GQV ∗||∞ ≤ ...

≤ γk+1 ||GQV0 −GQV ∗||∞ −→ 0

35

B. LIST OF ALL THE FEATURES ENGINEERED ALONG WITH THE LEVEL

AT WHICH THEY WERE AGGREGATED (STEP (S), PROBLEM (P), TO-
TAL (T))

Feature Level Description
GAP s Absolute progress on the current state using global quality
GRP s Relative progress of the current state using global quality
LAP s Absolute progress of the current state using local quality
LRP s Relative progress of the current state using local quality
localPrevious s Local Quality of the previous state
globalPrevious s Global Quality of the previous state
localCurrent s Local Quality of the current state
globalCurrent s Global Quality of the current state
Time s, p, t Time Taken
AvgStepTime p, t Average Step Time

ActionCount s, p, t
Total number of actions performed (e.g. selecting nodes,
rule clicks, hint button clicks, etc).

DirectProof
ActionCount

s, p, t
The number of actions performed while working on the
problem as a direct proof. Students can switch between
direct and indirect proof at any given time.

IndirectProof
ActionCount

s, p, t

The number of actions performed while working on the
problem as an indirect proof. A logic proof is said to be
indirect if we first assume the negation of conclusion to
be true and then arrive at a contradiction.

DirectionChange s, p, t
The number of time a student switched between direct
and indirect proof using the direction switch button.

FDActionCount s, p, t
The number of actions performed while working on a
forward step. The student can switch between forward
and backward step at any time

BDActionCount s, p, t
The number of actions performed while working on a
step backwards using instantiation and generalization
logic rules.

StepCount p, t The number of steps performed

SolSize p
The solution size of a problem, calculated as the number of the
logic statements in the current state

RuleDescription s, p, t
The number of times a student clicked the description
button of any logic rule.

36

HintRequest s, p, t
The number of time the hint was requested by the
student using the “Get Suggestion” button

ProactiveHintCount s, p, t The number of proactive hints given.
OnDemandHintCount s, p, t The number of on-demand hints given.
Deleted p, t The number of nodes deleted.
RightApp p, t The number of Right logic rule applications.
WrongApp s, p, t The number of Wrong logic rule applications.
Accuracy s, p, t Proportion of total logic rule applications that are correct.

SessionCount t
Total number of sessions - each time a student logs back
in, we increment the number of sessions.

NewSession p Binary variable: 1 for the first problem in any session
Skips t Total number of problems skipped.
Restarts t Total number of problems restarted.
EasyProblems t The total number of easy problems solved.
DifficultProblems t The number of difficulty problems solved.

37

C. DESCRIPTIVE STATISTICS FOR THE FEATURES SELECTED FOR STATE-
BASED AND STATE-FREE RANDOM FOREST CLASSIFIER WITH EX-
PERT WEIGHTS (GREY CELLS SUGGEST INAPPLICABLE)

Feature State-Based State-Free Mean SD
GAP Yes 9.91 32.77
GRP Yes 4.26 21.27
LAP Yes 33.85 37.70
LRP Yes 9.05 20.90
localPrevious Yes 31.22 33.20
globalPrevious Yes 50.68 32.06
localCurrent Yes 40.26 37.76
globalCurrent Yes 54.94 34.31
pTime Yes Yes 718.55 4051.65
pAvgstepTimePS Yes Yes 130.39 1306.00
tAvgstepTimePS Yes Yes 266.36 429.40
sActionCount No Yes 5.98 6.47
pActionCount Yes Yes 58.60 98.97
tActionCount Yes Yes 1304.02 870.32
pDirectProofActionCount Yes Yes 54.06 89.52
tDirectProofActionCount Yes Yes 1204.48 795.68
pInDirectProofActionCount No Yes 4.55 33.72
tInDirectProofActionCount No Yes 99.54 216.65
pDirectionChanges Yes No 0.17 0.97
pFDActionCount Yes Yes 58.03 97.75
tFDActionCount Yes Yes 1283.66 855.38
pBDActionCount Yes Yes 0.58 2.97
tBDActionCount Yes Yes 20.36 33.04
tStepCount No Yes 119.40 76.72
pSolSize Yes Yes 7.45 3.00
sRuleDescription Yes No 0.57 2.34
pRuleDescription Yes Yes 7.46 25.68
tRuleDescription Yes Yes 196.96 230.58
pHintRequest Yes Yes 1.64 5.48
tHintRequest Yes Yes 11.60 19.83
sDeleted No Yes 0.13 0.36
pDeleted Yes Yes 1.71 4.53

38

tDeleted Yes Yes 28.95 27.32
pRightApp Yes Yes 6.42 7.10
tRightApp Yes Yes 119.40 76.72
sWrongApp Yes Yes 0.45 1.24
pWrongApp Yes Yes 4.92 10.51
tWrongApp Yes Yes 246.16 162.78
sAccuracy No Yes 0.69 0.41
pAccuracy No Yes 0.73 0.25
tSessionCount Yes No 3.11 2.22
pNewSession Yes No 0.05 0.21
pRestarts Yes Yes 0.13 0.52
tRestarts No Yes 4.79 5.42
tEasyProblemsPS Yes Yes 3.59 2.75

39

D. FEATURE IMPORTANCE GRAPHS

40

E. COMPARING TRAINING STEPS IN THE TWO CONDITIONS ON THREE

ASPECTS: PREDICTION OF HN/OK STEPS, OBSERVED HN/OK STEPS,
AND HINT PROVISION (ON-DEMAND OR PROACTIVE)

Category Adaptive Control
pred-OK + noHints-OK 4998 2974
pred-OK + hinted-OK 106 348
pred-HN + hinted-OK 1008 232

pred-HN + noHints-OK 0 761
pred-HN + noHints-HN 0 1257
pred-HN + hinted-HN 812 46
pred-OK + hinted-HN 51 22

pred-OK + noHints-HN 995 335

41

	1 Introduction
	2 Related Work
	2.1 Help Seeking
	2.2 Assistance Dilemma
	2.3 Unproductive Behavior

	3 Tutor Context
	4 HelpNeed Classification and Predictor
	4.1 HelpNeed Classification
	4.1.1 Step Duration
	4.1.2 Step Efficiency

	4.2 HelpNeed Predictor

	5 Experiment
	5.1 Hypotheses
	5.2 Procedure
	5.3 Performance Metrics
	5.4 Hint Usage

	6 Results
	6.1 H1 - Posttest Performance
	6.2 H2a - Comparison of HelpNeed during training
	6.3 Hints Given and Used in Training
	6.4 Hint Count and Posttest Performance
	6.5 Gaming behavior
	6.6 The Policy’s Efficacy in Predicting HelpNeed
	6.7 Evaluating Help Behavior with HelpNeed predictor

	7 Discussion
	7.1 The HelpNeed Metric and Predictor
	7.2 Adaptive Hint Policy
	7.3 Generalization to other domains

	8 Conclusions and Future Work
	A APPENDIX: Proof of Convergence for the Modified Bellman Backup function
	B List of all the Features Engineered along with the level at which they were aggregated (Step (s), Problem (p), Total (t))
	C Descriptive Statistics for the Features Selected for State-Based and State-Free Random Forest Classifier with Expert Weights (Grey cells suggest inapplicable)
	D Feature Importance Graphs
	E Comparing training steps in the two conditions on three aspects: prediction of HN/OK steps, observed HN/OK steps, and hint provision (on-demand or proactive)

