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ABSTRACT 

Encouraged by the success of deep learning in a variety of domains, 

we investigate the effectiveness of a novel application of such 

methods for detecting user confusion with eye-tracking data. We 

introduce an architecture that uses RNN and CNN sub-models in 

parallel, to take advantage of the temporal and visuospatial aspects 

of our data. Experiments with a dataset of user interactions with the 

ValueChart visualization tool show that our model outperforms an 

existing model based on a Random Forest classifier, resulting in a 

22% improvement in combined confused & not confused class 

accuracies. 
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1 Introduction 

There is increasing interest in creating AI agents that can predict 

their user’s needs, states, and abilities, and then personalize the 

interaction with the user accordingly. This includes understanding 

and reacting to a user's affective state. One such state is confusion, 

which is particularly relevant to user experience while interacting 

with complex interfaces because when a user is confused, they can 

experience a decrease in satisfaction and performance (e.g., [27]). 

A system that can detect its user’s confusion gains an awareness 

that can be leveraged to provide appropriate interventions to 

resolve such confusion. Detecting and resolving confusion is 

becoming especially relevant in supporting users interacting with 

Information Visualizations (InfoVis) because data visualizations 

are now widespread in our daily lives and confusion has been found 

to hinder their usage, especially when they increase in complexity 

(e.g., [25]). 

Prior work [24] showed that confusion during visualization 

processing can be detected using a Random Forest (RF) classifier 

and features based on summative statistics of eye-tracking (ET) 

data (user gaze, pupil size, and head distance from the screen) 

computed as the interaction unfolds.  This classifier achieved 57% 

and 91% accuracy in predicting confusion and lack thereof, 

respectively. In this paper, we investigate whether we can improve 

upon the results of [24] by employing a deep learning model to 

detect confusion from the same ET data set.  

The use of deep learning is generally limited in research on 

modeling and adapting an interaction to user affect, partially due to 

the difficulty in collecting and labelling large amounts of relevant 

data. Corpora of data are available for sentiment analysis [39], i.e. 

detecting positive vs. negative affect (valence) from text, because 

it is relatively easy to label valence, at least as compared to 

generating labels for finer-grained emotional states. There has also 

been work in using deep learning to detect affect from acted 

emotions in video (e.g., [10]) where the affective labels are known 

a priori. By comparison, collecting datasets for specific unscripted 

user affective states in interactive tasks is very laborious, and thus 

such datasets are usually small compared to those in domains where 

deep learning has been most successful (e.g., [19]). 

For this reason, approaches to predicting user affect mostly use 

classical machine learning methods similar to those used in [24]. 

There are two groups of notable exceptions. Works such as [4, 15, 

18] seek to predict multiple emotions (including confusion) in 

students interacting with educational software. They leverage 

Recurrent Neural Networks (RNNs) to learn from sequences of 

student interface actions but do so with engineered features based 

on knowledge of what is important while interacting with each 

system, thus not fully leveraging the RNN’s ability to learn 

representations from low-level data. The second exception relates 

to work that used deep learning on EEG signals to predict 

emotional valence and arousal in users watching short videos (1 

minute), designed to elicit specific emotional reactions [36, 26]. 

Thus, such work is geared toward providing proof of concept on 

the suitability of deep learning to capture affective signals from 
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EEG data; it does not pertain to modeling and possibly responding 

to affect as users engage with an interactive system.  

The scarcity of affective interaction data is exacerbated with ET 

data because collecting reliable data currently requires specialized 

equipment and collection in a lab setting. The dataset used in this 

paper is no exception, containing data from only 136 users. To 

address this issue, we propose a deep learning architecture 

purposefully designed to process eye-tracking data while being as 

lightweight as possible (section 4), which achieves a 49% 

improvement in detecting confusion compared to [24], with no loss 

in detecting an absence of confusion. 
Therefore, the first contribution of this work is that, to the best 

of our knowledge, we are the first to show the suitability of a deep 

learning approach for the task of classifying user affect from ET 

data. This result may have wider implications for the use of ET data 

in user modelling as a whole, where such data has been shown to 

have great potential for modelling not only affect (e.g. [3, 17, 23]) 

but also user cognitive abilities (e.g. [19]) and long-term traits (e.g., 

[32]). By demonstrating the effectiveness of using deep learning 

based methods with a relatively small eye-tracking dataset, we hope 

to provide an impetus for further research in this direction.   

Our second contribution is the architecture we designed to 

achieve our results, which combines a Recurrent Neural Network 

(RNN) and a Convolutional Neural Network (CNN) to learn from 

sequential and visuospatial information in the ET data. Previous 

work that combined CNNs and RNNs dealt with temporal data 

(videos and EEG signals) suitable for having CNNs process input 

at each time step, as the RNN does [8, 31, 36, 26, 38]. This 

approach is not suitable for ET data (see section 2). However, ET 

data has the property that a temporal sequence of the data can be 

represented in a single frame in a meaningful way, namely with a 

scanpath image that records spatial information about the aggregate 

eye-movements in the sequence. To leverage this property of ET 

data, our proposed architecture uses an RNN sub-model that takes 

sequential raw eye-tracking samples as input while a CNN sub-

model processes the corresponding scanpath image in parallel. The 

sub-models are jointly trained in an end-to-end fashion as one unit. 

A formal evaluation of the model shows that it achieves better 

performance than either of its components do alone and 

significantly improves over previous work using non-deep learning 

methods [24]. We see our results as promising evidence that our 

proposed approach is worthy of further investigation as a general 

architecture, as interest in detecting user states from eye-tracking 

data continues to increase and more datasets of this type become 

available. 

The rest of this paper is structured as follows. Section 2 discusses 

related work. Section 3 presents the dataset of user confusion data 

leveraged in is paper. Section 4 presents the deep learning model 

we propose, including an RRN (section 4,1), a CNN (section 4.2), 

and the VTNet architecture that combines the two (section 4.3). 

Section 5 describes the evaluation of our proposed approach, and 

section 6 concludes the paper.  

2 Related Work 

The body of work in predicting user affect with deep learning 

methods is relatively small (compared to tasks like image 

classification) and occurs mostly in computer vision and natural 

language processing (NLP), where established methods can be 

adapted for classifying emotion from images, video, and speech 

(e.g., [1, 10, 9]). Exceptions pertain to classifying the emotions of 

students interacting with an intelligent tutoring system (ITS) [4, 15, 

18], and affective states from EEG signals [36, 26]. The ITS related 

works use RNNs to classify emotion from sequences of high-level 

interaction events (e.g., viewing a video lecture or textbook 

material taking a quiz), which does not take full advantage of the 

RNN’s ability to learn a representation from low-level data (e.g. 

mouse movements). Like our work, the works leveraging EEG data 

[36, 26] use raw signals but are concerned with predicting 

emotional valence and arousal in users viewing music videos 

explicitly designed to elicit specific emotional responses [22], as 

opposed to affective events spontaneously occurring during an 

interactive task. 

Eye-tracking (ET) data has been shown to contain good 

predictors of both affective and cognitive states, such as mind-

wandering [3], boredom and curiosity [17], affective valence [23] 

and learning [19] while interacting with educational software, user 

intention while playing a strategy game [16], reader difficulty with 

texts in foreign languages [29], schizophrenic symptom severity 

[33], and user confusion while interacting with a visualization-

based decision support tool [24]. This latter work predicted 

confusion by combining features derived from eye-tracking and 

interaction data as input to a Random Forest (RF) classifier. The 

classifier learns from engineered features based on summative 

statistics (e.g., mean and standard deviation) of measures related to 

the user's gaze, pupil size, and head distance to the screen. These 

measures include, for instance, rate and duration of fixations (gaze 

maintained at a point), and length and angles of saccades (paths 

between fixations). We compare our deep learning based approach 

directly to this work.  

The only work we identified that uses a deep learning approach 

to make predictions from ET data is one that aims to diagnose 

patient developmental disorders [30]. An RNN is used to learn 

patterns pertaining to the disorder from how patients look at a 

trained practitioner who is conducting a diagnostic interview. The 

model takes as input a temporal sequence that indicates if a patient 

was looking at certain regions (nose, jaw, etc.) of an interviewer’s 

face or not, at each time step. Deep learning has also been used for 

gaze estimation (i.e. predicting the (x, y) coordinates of a person’s 

gaze on a 2D plane) from images of the viewer’s face (e.g., [41]). 

Note that gaze estimation is what eye-tracking hardware does and 

this is distinct from using the estimated gaze data for a predictive 

task, as done in this work. 

There are a number of works that (like our own) combine the 

particular strengths of RNNs and CNNs. Most of these works (e.g., 

[8, 31, 37]) relate specifically to processing videos, using a model 

class known as Recurrent Convolutional Networks (RCNs). RCNs 

typically operate on an input of image sequences (i.e. the frames of 

a video), where at each step a CNN extracts visual features from 

the given frame and feeds them to the RNN, which models the 

temporal dynamics of the sequence. In addition, the 

aforementioned work [36, 26] on detecting affective valence and 

arousal from EEG signals use an RNN and CNN on a sequence of 

multichannel EEG signals, where at each time step the RNN is fed 



 

the vector of channel values, while a CNN is given a matrix 

representing the same values, but arranged in a way that reflects the 

spatial relationship among the sensors placed on the user’s head.  

This approach leverages the strength of CNNs in detecting patterns 

from spatial information, but the information must be provided at 

each time step to reflect the changing signal values. This approach 

is also used by [38] to predict user intentions from EEG signals.  

All of these approaches combine CNN and RNN at every time 

step and therefore do not decouple the temporal from the spatial 

aspects of the data completely. Providing a temporally developed 

scanpath as input to a CNN at every time step (analogous to the 

above approach) would be less meaningful in our context because 

the purpose of providing the scanpath in the first place is to give a 

high-level picture of the user’s activity over the course of an entire 

interaction. By providing such a single scanpath to the CNN, our 

approach allows for processing this high-level spatial 

representation of the user’s overall activity prior to an episode of 

confusion, which complements more local temporal information 

about potential episodes of confusion generated by the RNN from 

raw sequences. Combining the CNN and RNN in this way is also 

beneficial computationally, as while in previous work the CNN had 

to operate on a datapoint at each time step, our method requires the 

CNN to operate only once per datapoint; an important 

consideration for deploying a model to a system that intends to 

detect and address a user’s confusion in real-time. 

3 Dataset 

3.1 Data Collection 

The dataset used in this paper is the same one used in [24]. It was 

generated via a study designed to collect labelled data for episodes 

of confusion from users interacting with ValueChart [5], an 

interactive visualization-based tool for supporting decision making.    

    Figure 1 shows an example of ValueChart configured for 

selecting rental properties from a set of alternatives (represented by 

the rows in the chart), based on a set of relevant attributes 

represented as columns (e.g., rent, location). The width of each 

column indicates the importance (weight) of the corresponding 

attribute. The amount of filled color in each cell specifies how the 

corresponding alternative fares with respect to the related attribute. 

The stacked bars to the right group all values for each alternative 

displaying its overall value (e.g., home4 in Figure 1 has the best 

overall value). Users can inspect the value of each attribute (e.g., 

the rent of home1), by left-clicking on the related alternative, they 

can sort the alternatives based on a specific attribute by double-

clicking on its name, they can swap attribute position, and they can 

change an attribute’s importance by resizing the width of its 

column. Although extensively evaluated for usability [35], the 

complexity of the decision tasks means that users can still 

experience confusion while interacting with ValueChart.  

In the study that generated the dataset, 136 participants 

performed tasks with ValueChart, relevant to exploring available 

options for a home rental decision problem. There were 5 task types 

(e.g., retrieve the cheapest home, select the best home based on size 

and location), each repeated 8 times, resulting in 5440 tasks (mean 

duration = 22.3s, st. dev.  = 18.4). The user's eyes were tracked with 

a Tobii T120 eye-tracker embedded in the study computer's 

monitor. In addition to gaze position, this eye-tracker also collects 

information on user pupil size and head distance from the screen. 

To collect ground truth labels for confusion, users self-reported 

their confusion during a task by clicking on a button labelled I am 

confused (top right in Figure 1). The confusion reports were 

verified at the end of the study session by asking users to confirm 

them after seeing replays of relevant interaction segments. This 

process resulted in 112 (2%) tasks with reported confusion (there 

was never more than one report per task) and 5328 without. This 

highly imbalanced dataset confirms that, overall, ValueChart has 

good usability but user confusion can still happen. In fact, 60% of 

users reported confusion at least once, indicating that it is worth 

capturing as a signal that indicates the user needs help. 

 Each datapoint in the dataset is a task segment that ends when a 

confusion self-report occurs or at a randomly selected pivot point 

for tasks where no confusion was reported (See Figure 2), with an 

average duration of 13.7 seconds (st. dev 11.3s). As the figure 

shows, the last second of data before a confusion report is 

removed to exclude signs of the intention to push the I am confused 

button.  

3.2 Data Pre-processing 

The Tobi T120 eye-tracker collects raw eye-tracking samples at a 

rate of 120 Hz. This raw data is usually processed with proprietary 

software into sequences of fixations, identified by clustering raw 

data to distinguish small eye-movements from real attention shifts. 

Leveraging fixations and saccades (the gaze paths between 

fixations) is the standard way to analyze ET data. In fact, the results 

on detecting confusion by Lallé et al. (2016) [24], which is the gold 

standard to which we compare our work, showed that summary 

statistics around fixations and saccades are strong features for 

classifying confusion.  

Figure 1: An example of ValueChart to choose a house from 

available options (rows) based on their attributes (columns). 

 

Figure 2: A datapoint of raw ET samples extracted from a 

study trial 



 

 

 

    In contrast, we leverage deep learning to learn from the raw ET 

samples, the lowest level of data available from the eye-tracker, to 

ascertain whether this provides any further discriminators useful for 

classifying confusion. Any patterns that could be lost in going to a 

higher level of data abstraction are necessarily maintained at this 

level, where the model has the opportunity to discover these 

patterns, as well as any interactions among them [2]. 

Figure 3 (left) shows an example of a datapoint consisting of a 

sequence of raw ET samples, namely a 2D array with the number 

of rows corresponding to the number of samples captured in one of 

the confused/not confused datapoints described in section 3.1 (and 

shown in Figure 2). Each ET sample (a row in Figure 3, left) 

includes 4 measures for each eye: the x and 

𝑦 gaze coordinates (Gx, Gy, in Figure 3 (left)) on the study 

screen, the size of the pupil (P), and the distance of that eye from 

the screen (HD).  

An advantage of learning from the raw ET samples is that they 

can support ad hoc data augmentation. Data augmentation is 

commonly used to deal with limited data availability, and in its 

simplest incarnation, it involves duplicating data points exactly 

(random over-sampling) [12].  Because of the nature of our data, 

we can do something better. We observe that in our datapoints (i.e., 

sequences of raw ET samples), values change only by a small 

amount from one sample to the next, because of the high sampling 

rate.  This can be seen by looking at adjacent rows on the left of 

Figure 3. Given this observation, we split the sequence of ET 

samples in each datapoint into four separate datapoints with the 

same label of confusion or lack thereof. We do so by performing a 

cyclic split (e.g., as when dealing a deck of cards), which preserves 

the temporal structure of the time series data. Figure 3 demonstrates 

this splitting process: samples (rows) that are four steps apart in the 

2D array to the left (coded with the same color in the figure) are 

assigned to the same split datapoint to the right. Thus, a datapoint 

with n samples is cyclically split into four datapoints, each 

containing n/4 samples. 

This cyclical split provides our deep learning models with 

multiple opportunities to learn from the same datapoint in a more 

intelligent way than by simply duplicating it. The difference 

between resulting items provides intra-class variance, while the 

cyclic partition ensures the preservation of the data's sequential 

pattern. A different approach to data augmentation that has been 

used with signal data is to create multiple datapoints by slicing each 

datapoint using a sliding window, as in [36]. This approach is 

suitable when class discriminators are present in similar forms 

throughout the entire sequence (e.g. an EEG signal that captures a 

lingering emotion, as in [36]) because the sliding window breaks 

up the data sequence into segments that are essentially equivalent 

in terms of predictive power. We do not use this method because of 

the nature of confusion, which makes it unwarranted to assume that 

indicators of confusion are present to the same degree throughout 

the entire signal. 

A difficulty in using raw ET data collected at a high sampling 

rate is the length of the resulting sequences (as discussed in the 

next section). The cyclical split also helps with this issue because 

it reduces the length of each datapoint by a factor of four.  

4 Models and Approach 

This section describes the intuition behind using an RNN and a 

CNN on ET data and combining them in a way that is appropriate 

for the data. Due to the relatively small size of our dataset, in each 

case, it was important to minimize model complexity. Thus, 

reducing the number of learnable parameters to avoid overfitting 

was the driving force behind the various design choices described 

in this section. 

4.1 RNNs 

RNNs are a neural network variant especially suited for sequential 

data, such as ET data. We chose to investigate RNNs because of 

the nature of confusion itself. As an affective state, confusion 

Figure 3: The 2D array to the left is an example of a datapoint consisting of ET samples (rows). This datapoint is cyclically split to 

create four separate datapoints (right): rows that are four steps apart in the left table (coded with the same color) are assigned to 

the same split datapoint to the right 



 

doesn't occur instantly. Rather, it develops over a period of time as 

the brain uncovers discrepancies between its existing knowledge 

and what it observes and continues with subsequent attempts to 

resolve these discrepancies, until the person either resolves their 

confusion or gives up [9]. 

Confusion may develop based on events further back in time, in a 

strictly local sequence, or as a combination of both. RNNs are able 

to handle such varied temporal dependencies, which is why it was 

chosen for this investigation.  

Two variations of RNN have become popular for modelling 

temporal data: Long-Short Term Memory (LSTM) networks and 

Gated Recurrent Units (GRU). LSTMs are gated RNNs that use 

self-loops to facilitate the learning of long-term dependencies while 

also ensuring long-term gradient flow [14]. A GRU is essentially a 

simplified LSTM that reduces the number of gates and thus the 

number of learnable parameters [7]. Because of this reduction in 

parameters, we chose to use the GRU as the RNN sub-model in our 

architecture. 

Based on evidence that for RNNs, neural network depth in the 

traditional sense (i.e. the number of layers) is not as important as 

recurrent depth for classification tasks [40], we limit our model to 

a single layer, thus limiting complexity. Figure 4 visualizes the 

GRU architecture we use. We chose a hidden layer of 256 units 

during hyperparameter tuning using common heuristics [13]. The 

GRU’s hidden layer is fully connected to each of the input 

elements, namely the values of an ET sample for a given time step. 

At each time step, the GRU produces an output value interpreted as 

a probability for the confused/not confused class using the softmax 

equation, and this output at the end of a datapoint is the prediction 

of confusion or not for the corresponding trial (see Figure 4, right).  

While there is no fixed length on which RNNs must operate, in 

practice sequences should be shorter than 400 steps (and often 

much shorter) [28]. Even after the cyclical split described in section 

3.2, 50% of our datapoints have a length longer than 600 ET 

samples. We address this issue by considering only 5 seconds of 

relevant ET samples before a confusion self-report (or placeholder 

for no confusion) in each data item since Lallé et al. (2016) found 

this interval to perform as well as considering the full length of data 

back to the start of the trial1. 

4.2 CNNs 

Another way in which a sequence of raw ET samples can be 

represented is as a scanpath image. Given the coordinates in the raw 

eye-tracking samples, these images are created to contain the path 

 
1 These 5 seconds exclude the one second just before the report, as discussed in 

section 3.1 and Figure 2. 

made by the user’s gaze over the sequence, where dots represent 

individual samples, and connecting lines represent the transitions 

between two samples (shown in Figure 5) 2 . The temporal 

information of the gaze sequence is lost, but visuospatial 

information comes to the forefront. We leverage a CNN 

architecture to predict confusion in our datapoints from the 

scanpath images of the corresponding sequences of raw ET 

samples.        

      Because the sequence length does not change the size of the 

corresponding scanpath image, we use full sequences as input to 

the CNN input, as opposed to the 5 second segments used for the 

RNN. This allows us to leverage the full information of the user’s 

gaze activity over the trial, regardless of how long it lasts. Although 

this might seem unwarranted given that Lallé et al. [24] found no 

added benefit when considering full sequence vs 5 second ones, 

their comparison was based on a uniform data representation 

consisting of summary statistics of gaze, pupil size, and head 

distance.  Here we combine temporal information on 5 seconds of 

data, with a different representation focusing on the user’s complete 

attention patterns prior to the confusion report (or pivot point). 

    Scanpaths are rather different from the images that CNNs are 

typically used for. For instance, CNNs have been successfully used 

with natural images containing a hierarchy of parts (e.g. a car’s 

wheels and their subcomponents) as well as properties such as 

colour and texture, that CNNs model in their various layers [11]. 

No such hierarchies nor properties appear in a scanpath image. 

Instead, scanpaths capture a strictly visual and spatial (visuospatial) 

representation of gaze data where dots visualize where given gaze 

samples are located in relation to the others, the density of dots 

indicates the amount of user attention to a specific area, and 

connecting lines indicate the relative length and frequency of the 

saccades to and from that area. The image as a whole provides 

information about the user’s overall attention over the interface.  

A CNN can capture these relevant scanpath characteristics. We 

chose some of the hyperparameters of the CNN architecture (shown 

in Figure 6) with knowledge of our data and the CNN model class 

2 Such images are commonly available via the eye-tracker’s software, based on 

fixations. 

Figure 5: Example scanpath image 

Figure 6: The CNN architecture used in this paper 

Figure 4: The RNN architecture used in this paper 



 

 

 

in mind while balancing the competing goal of minimizing 

learnable model parameters to prevent overfitting our small dataset. 

The choices made to balance these competing goals are as follows. 

1. As scanpaths consist of dots and lines, the deep hierarchies 

associated with natural images are not required. As such, our 

CNN consists of two convolutional layers (see Figure 6) of 16 

and 6 channels, respectively. We determined these 

hyperparameters by increasing each from one until validation 

set performance decreased. Having two layers makes sense, as 

this is enough to extract simple visual features while avoiding 

the additional parameters that come from unnecessary layers 

and overfitting to patterns unique to the training data.  

2. Although having only two convolutional layers is 

advantageous for the reasons described above, it prevents the 

model from building a large receptive field (important for 

capturing local information) via depth. To balance this, we use 

a slightly larger kernel size than is common (5x5 vs. the more 

common 3x3) in order to increase the receptive field’s width 

directly (kernel is the dark red square shown over the input 

image and in a subsequent layer in Figure 6). Though a larger 

kernel size requires more weights, the increase is much less 

than would come from additional convolutional layers, thus 

satisfying our goal of building a small model. 

3. We make two changes related to the input. First, as colour has 

no meaning in a scanpath image, we use a single grayscale 

input channel, to further reduce the number of parameters. 

Second, as our images do not contain fine or nuanced textures 

(like the hair of an animal for instance), high resolution is not 

important. Thus, we downsize the images by a factor of 6, to 

reduce the dimensions and parameters of each convolutional 

layer. This single-channel low-resolution input image (and its 

dimensions) are denoted as the input layer in Figure 6. 

Finally, the CNN contains a 50-unit hidden layer connecting the 

output of the convolutions with the class predictions in the output 

layer (right of Figure 6). The size of this hidden layer was chosen 

as a reasonable progression between the numerous neurons 

resulting from the convolutions and the two-unit output layer. 

4.3 VTNet 

Having developed the intuition behind using each of the RNN and 

CNN on eye-tracking data, here we describe an architecture to 

leverage the strength of both models together. In our approach, each 

of the CNN and RNN takes a different representation of the same 

data sequence and processes it independently. This model 

(visuospatial-temporal network, or VTNet from now on) is shown 

in Figure 7.  The GRU’s 256-unit hidden state that results from 

processing a datapoint is concatenated with the 50 element vector 

output of the CNN resulting from processing the corresponding 

scanpath, creating a single vector of size 306. This combined output 

vector is fully connected to a simple neural network with one 

hidden layer, (to create a differentiable classifier with minimal 

additional parameters), which classifies the input as either confused 

or not confused. The entire model is then learned end-to-end as a 

single unit.  

Our hypothesis in creating the VTNet was that having a model 

that can process a multimodal representation of ET data will 

enhance its predictive abilities by having access to sequential 

information close to any confusion report as well as spatial 

information from earlier parts of the trial. This may be beneficial to 

predicting confusion if there are signals that occur earlier in the trial 

than the last 5 seconds available to the GRU.  

Previous architectures that combine CNNs and RNNs (see 

section 2), do so by feeding input to both sub-models at each time 

step and are thus not suitable for our learning task. This is because 

processing a scanpath image as it develops over time through a 

CNN to extract features for RNN input gives no more information 

than that already available in the raw sequence. Instead, ET data 

has the property that a given temporal sequence of data can be 

represented in a single frame in a meaningful way. That is, a given 

image of a user’s entire scanpath contains information about the 

aggregate spatial eye-movement.  

4.4 Implementation 

All of our neural network-based models are implemented using 

PyTorch (https://github.com/sdv4/VTNet_ICMI2020). We use 

negative log-likelihood as our loss function, with the Adam 

optimizer [21]. We limit training to 100 epochs, employing linear 

learning rate decay and early stopping to end training when 

validation performance stops improving. We train our models using 

a single Nvidia GTX 1080 GPU.  

5 Evaluation 

We first determine how the GRU model (the RNN component of 

VTNet) performs compared to the RF approach in [24] (section 

5.2). We begin with this comparison because the RNN is the most 

intuitive neural model to use with raw ET data. Next, in Section 5.3 

we evaluate the performance of the CNN architecture described in 

section 4.2 on scanpath images and determine whether combining 

it with the GRU in the VTNet architecture is more effective than its 

constituent parts are alone, as hypothesized in section 4.3. 

5.1 Experimental Setup 

Model performance is evaluated with confused class accuracy 

(Conf.) and not confused class accuracy (N. Conf.), which are the 

proportion of confused and not confused tasks correctly identified 

Figure 7: The VTNet architecture 



 

as such, respectively. Because of the dataset's class imbalance, both 

metrics together are more meaningful than accuracy alone. 

For instance, a 98% overall accuracy could be achieved by simply 

classifying everything as not confused, but not capturing any 

instance of confusion, thus preventing the real-time provision of 

support when confusion does arise. We also report the mean of 

confused and not confused class accuracies as combined accuracy; 

a unified measure of performance.   

All models are evaluated using 10 runs of 10-fold cross-

validation (giving 100 iterations of CV in total) to reduce 

fluctuations in the results due to the random selection of folds. All 

results reported in the next section are the average of the 10 runs of 

10-fold CV. Further, cross-validation is done across users so that 

no user contributes data points to both the training and test sets of 

a given fold, thus measuring model performance on unseen users. 

Cross-validation is also stratified so that the distribution of 

confusion data points in each fold is kept similar to that of the 

dataset as a whole.  

For the RF model, nested CV (i.e., further cross-validation on 

each training set) was used for feature selection, hyperparameter 

tuning, and to choose the decision threshold that maximizes 

confused and not confused class accuracies3. For the deep learning 

models, using nested CV would be computationally onerous. 

Instead, for each of the 100 iterations of CV, we randomly select 

20% of the data as a validation set for hyperparameter tuning and 

decision threshold setting. Note that contrary to the nested CV, the 

validation set is holdout data that is not re-added to the training set 

for a final round of training prior to evaluation on the test set. This 

effectively results in the DL models being trained on 20% less data 

than the RF model.  

To address the imbalance between confused and not confused 

datapoints in the dataset, Lallé et al., (2016) [24] used Synthetic 

Minority Oversampling Technique (SMOTE) [6] for their RF 

model but recall that their model was not learning from ET data 

sequences. SMOTE is not generally suitable to augment sequences, 

because it measures similarity between samples by Euclidean 

distance, which is a bad match for long and temporally misaligned 

pairs [12]. However, preliminary experiments showed that SMOTE 

increased GRU performance with our data, possibly because we 

limit sequence length to 5 seconds worth of samples, and because 

confusion self-reports may provide an anchor that maintains a 

degree of temporal alignment in our sequences. Thus, for 

evaluating the performance the GRU when used on its own (Section 

5.2) and for the RF model, classes in the training sets are balanced 

by first using SMOTE to increase the size of the minority class 

(confused) by 200% and then randomly down-sampling the 

majority class (as was done in [24]), resulting in approximately 

1350 confused and 1350 not confused datapoints.  

We cannot use SMOTE when evaluating the CNN nor with the 

VTNet that includes it (Section 5.3), because we use the full ET 

sequences to produce the scanpaths and as mentioned, SMOTE 

does not work well when having substantially longer sequences 

[12]. Thus, for these models, we just down-sample the majority 

class to achieve class balance, which reduces the number of non-

 
3 This is done by choosing the threshold closest to the (0,1) point on the Receiver 

Operating Characteristic (ROC) curve. 

confused items to approximately 450 (matching the number of 

confused items).  

Validation and/or test sets are left unbalanced in all models, so 

as to evaluate the models on data reflecting the realistic class 

distribution of the original dataset. 

5.2 Results of Comparing GRU and RF 

Comparing the performance of the GRU and RF models (Table 1), 

shows that GRU outperforms the RF classifier in both confused and 

combined accuracies, with no change in not confused class 

accuracy.  The GRU achieves a combined accuracy of 0.78, 

compared to the 0.67 achieved by the RF. We test this result with 

an independent samples t-test, which shows that the difference is 

statistically significant4 (𝑡18 = 6.28, 𝑝 <  .001). The difference in 

confused accuracy is also significant (𝑡18 = 6.22, 𝑝 <  .001), with 

a substantial 41.5% improvement over the not confused accuracy 

of the RF model.  These results allow us to conclude that the GRU 

outperforms the RF in classifying confusion with this dataset, 

where the impact of the GRU is specifically in improving confused 

class accuracy, namely detecting confusion when it occurs, with no 

loss in the accuracy of predicting when a user is not confused.  

In [24], the authors experimented with combining ET data and 

interaction data based on the interface actions available in the 

ValueChart (see section 3.1) to train their model. This combination 

gave them their best results, namely 0.61 confused accuracy and 

0.926 not confused accuracy, for a combined accuracy of 0.768. 

With this additional data modality, the RF still doesn't perform 

better than the GRU trained only on ET data. This result is 

especially encouraging when we consider that the GRU is trained 

on 20% less data (the portion held out as the validation set). It 

should be noted that we also experimented with including 

interaction data in our approach, by adding information of mouse 

clicks to the vectors of sequential data fed to the GRU. However, 

adding this interaction data generated no significant improvement, 

likely because the number of these events is sparse in comparison 

to the number of samples in a given sequence. A more suitable way 

to include interaction data would be to include the mouse 

coordinates at each time a sample is collected. This would give a 

fine-grained stream of interaction data at a level of granularity 

similar to that found in the raw eye-tracking sample. However, 

tracking of mouse coordinates was not available for the dataset used 

in this investigation.  

5.3 Results of Comparing GRU, CNN, and VTNet 

After establishing the superiority of the GRU over the RF model in 

classifying confusion, we evaluate the CNN as an independent 

model and then the performance of the VTNet model that combines 

the two. The result of this comparison is summarized in Table 2. 

The VTNet has been trained with the same hyper-parameter 

4 Significance is defined at p <.05 throughout the paper. 

Model Conf. N. Conf. Combined 

RF 0.53 0.80 0.67 

GRU 0.75 0.80 0.78 

 Table 1: Test set performance of GRU and RF. 



 

 

 

configuration as its corresponding sub-models. We see that for all 

three measures (confused accuracy, not confused accuracy, and 

combined accuracy) the VTNet outperforms both the GRU and the 

CNN.  One-way ANOVA with classifier type (VTNet, GRU, and 

CNN) as the factor shows a significant effect on all three measures 

(combined: F3,36 = 47.59, p < .001, 𝜂𝑝
2= .27; confused: F3,36 = 

39.74, p < .001, 𝜂𝑝
2= .76; not confused: F3,36 = 9.25, p < .001, 𝜂𝑝

2= 

.33). Post hoc testing via Tukey HSD (which adjusts for multiple 

comparisons) shows that for all three measures, the difference is 

statistically significant between VTNet and both GRU and CNN, 

with no significant difference between the latter two. With this, we 

conclude that VTNet surpasses the performance of both of its 

constituent parts and is thus an effective model for classifying 

confusion from our ET data.  

   VTNet achieves a 79% confused class accuracy, which represents 

a 49% increase over the original RF model. It is also the only one 

of the three deep learning models to increase not confused class 

accuracy (reaching 84%), suggesting that combining temporal and 

visuospatial information from ET data manages to capture patterns 

pertaining to the absence of confusion that go otherwise undetected. 

That fact that the VTNet does not have SMOTE augmented data, 

yet still outperforms the GRU with augmented data, shows that 

there is a strong signal for confusion in the scanpath images, which 

complements well the temporal information captured by the GRU.  

This suggests that additional confusion signal is present further 

back in the trial than the 5 seconds processed by the GRU, contrary 

to what was found in [24]. 

   The performance of the VTNet model is also higher than other 

published approaches to predicting confusion using RNNs in a 

different context, namely leveraging the interaction data of users 

while they study with ITSs [4, 18]. Neither of these previous works 

reports positive or negative class accuracies (i.e. confused and not 

confused, in our case), but both report Area Under the Curve (AUC) 

for the model’s ROC, namely an AUC of 0.57 for [4] and AUC of 

0.72 for [18]. By comparison, we achieve an AUC of 0.84 with 

VTNet and eye-tracking data. 

6 Conclusions and Future Work 

In this paper, we presented a novel approach that leverages deep 

learning for detecting user confusion from raw sequences of eye-

tracking (ET) data. Our work contributes to the research on 

automatic detection of user affective states, with the long-term goal 

of creating intelligent interactive systems that can respond to these 

states to improve user experience. We focus on user confusion 

because it is a state that is well-known to affect user satisfaction 

and performance with interactive systems (e.g., [27]), thus it would 

be highly valuable to empower such systems to detect confusion 

and provide appropriate interventions to resolve it. 

The approach we presented in this paper to detect user confusion 

from ET data combines the strength of CNNs in spatial reasoning 

with the strength of RNNs in temporal reasoning. The resulting 

model (VTNet) outperforms its constituent models considered on 

their own when tested on a dataset capturing episodes of confusion 

for users interacting with a visualization-based interactive system 

for decision support (ValueChart). VTNet also largely outperforms 

a previous model based on Random Forests, on the same dataset 

[24], bringing a 22% increase in combined confused and not 

confused class accuracies, with the bulk of the increase (49%) 

being in detecting confusion when it occurs (79% accuracy) which 

is remarkable considering that our dataset contained only 2% 

datapoints for confusion.  

Deep learning has proven very effective in domains with large 

datasets, showing for instance 16-23% improvements when 

initially applied to speech recognition and a 41% reduction in error 

rate when applied to object recognition [2]. Our results provide 

encouraging evidence that deep learning can be useful even with 

the smaller datasets usually available for predictive tasks involving 

hard-to-collect interaction data (e.g., ET data) and complex user 

states (e.g., affective reactions). As such, our work extends existing 

preliminary work on using deep learning approaches for predicting 

user affect from user interface actions, by predicting the specific 

affective state of confusion from eye-tracking data.  

Our approach also extends previous work on combining CNNs 

and RNNs, by integrating the two in a manner that suits the specific 

sequential and visuospatial nature of the ET data, where a temporal 

sequence of raw samples in a given timeframe can also be 

represented as a single visual scanpath for that timeframe. Our 

results provide evidence that there is a benefit to modelling 

sequential data local to a confusion episode, while having access to 

an image of the gaze activity over a longer span of interaction prior 

to confusion, indicating that there are important yet distinct signals 

in both representations, which when combined, give stronger 

results than either signal considered alone.    

Moving forward, we will explore methods for increasing the 

VTNet performance, such as increasing receptive field size via 

dilated convolutions. We will integrate our predictors of confusion 

into ValueCharts, and investigate responses designed to mitigate 

confusion as it is detected during a user’s interaction with the 

system. We will also investigate whether our results generalize to 

predicting confusion in other interactive tasks, and to predict other 

states relevant to ascertain user experience with an interactive task. 

Along these lines, we plan to test the VTNet approach on other ET 

datasets that have been used to predict user states such as learning 

[19], affective valence [23], as well as early stages Alzheimer’s 

disease (to appear). Finally, we believe that our VTNet approach 

could be applied to other data modalities that have been used for 

affect detection. For instance, we are interested in looking at speech 

and EEG data, where the VTNet could be adapted to learn from the 

combination of the temporal signals with the related spectrogram 

(for speech) or with a heatmap representation of the signal over the 

brain for EEG.   
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Model Conf. N. Conf. Combined 

GRU   0.75        0.80 0.78 

CNN   0.73        0.80 0.77 

VTNet   0.79        0.84 0.82 

 Table 2: Test set performance of neural models. 
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