
Connor Mayer
CPSC 503
UBC
Why semantic role labelling

• How to efficiently and accurately tag the predicate in a sentence, as well as its arguments, and what their role is
 – Who did what to whom, where and how?

 “Yesterday, the dingo ate the wallaby”

 Temporal **Agent** **Predicate** **Goods (theme)**

• Many NLP applications

• **Markov logic networks** offer a unique approach to this task
 – Allow for simultaneous determination of a predicate, the arguments to the predicate, and the sense of the predicate (Meza-Ruiz and Riedel 2009)
 – Highly desirable in SRL, as these decisions are not independent
 – Standard approaches cannot perform all tasks simultaneously.
Markov Logic Networks

- Undirected graphical model representing joint probability distribution
- Define potential function ϕ over each clique (complete subset):

- Can represent in log-linear form:

$$P(X = x) = \frac{1}{Z} \exp \left\{ \sum_j w_j f_j(x) \right\}$$

where j ranges over all features f, w_j is a real-valued weight associated with the jth feature and Z is a normalization constant.
Markov Logic Networks

- Markov Logic Networks consist of one binary node for each possible grounding of every predicate.

- Predicates that occur in the same formula form cliques in the graph.

- Weights are essentially potential functions that represent the truth of that particular grounding.

\[
P(X = x) = \frac{1}{Z} \exp \left\{ \sum_j w_j f_j(x) \right\}
\]
Example

- $\forall x \text{Smokes}(x) \Rightarrow \text{Cancer}(x)$
- $\forall x \forall y \text{Friends}(x, y) \Rightarrow (\text{Smokes}(x) \Leftrightarrow \text{Smokes}(y))$
- Ground using Anna and Bob:
Example

- $\forall x \text{Smokes}(x) \Rightarrow \text{Cancer}(x)$
- $\forall x \forall y \text{Friends}(x, y) \Rightarrow (\text{Smokes}(x) \iff \text{Smokes}(y))$
- Ground using Anna and Bob:
The System

1) Extract predicates from NLTK Propbank subset into databases
 - Certain features had to be calculated (e.g. finding constituent heads, finding paths between constituents)

2) Learn weights for predicates by giving Alchemy the databases and a FOL knowledge base

3) Do inference using Alchemy on test sentences

4) Evaluate results using script to calculate precision, recall and F_1.
Sample Predicates for SRL

Based on Meza-Ruiz and Riedel (2009) and Xue and Palmer (2004)

Hidden Predicates

- **isPredicate**(*p*): *p* is the sentence's predicate
- **PredicateSense**(*p, s*): predicate *p* has sense *s*
- **Role**(*p, a, r*): constituent *a* has role *r* for predicate *p*

Observable Predicates

- **type**(*a, t*): constituent *a* has type *t* (NP, VP, etc.)
- **path**(*a1, a1, p*): path *p* leads from *a1* to *a2*
- **subcat**(*a, e*): parent of constituent *a* uses expansion rule *e*
- **headword**(*a, o*): word at head of constituent *a* has POS *o*
Sample formulae

• Coarse “Part of speech” tag:
 ▪ \(\text{Cpos}(p, +p_pos) \land \text{Cpos}(a, +a_pos) \implies \text{role}(p, a, +r) \)

• Relative position of constituents:
 ▪ \(\text{Word}(p, +p_w) \land \text{Word}(a, +a_w) \land \)
 \(\\text{position}(p, a, “Left”) \implies \text{role}(p, a, +r) \)

• Lemma:
 ▪ \(\text{Lemma}(p, +l) \land \text{Lemma}(a, +l) \implies \text{role}(p, a, +r) \)

Many, many more...
Learning and Inference in Alchemy

Learning

• Need to learn formula weights
• Uses **Discriminative Weight Learning**
 – Set weights to maximize conditional probability of training set given the examples
• Can also do **Generative Weight Learning**
 – Maximizes pseudo-log likelihood
 – Generally less efficient than discriminative learning

Inference

• Get most probable values of hidden predicates given evidence
• Alchemy supports a variety of inference algorithms
• Default is **Lifted Belief Propagation**
 – Lifted inference exploits FOL properties for more efficient inference
Memory Issues in Learning

All computations done on quad-core 3.4 Ghz Intel Core i7-2600 CPU with 8 GB of RAM

- Running learning on 1000 training sentences caused the system to run out of memory while converting the formulae to Conjunctive Normal Form (prior to any actual learning)

- Ditto for 250

- 50 made it to MC-SAT phase before running out of memory

- Lazy inference and memory limiting flags made no appreciable difference
Memory Issues in Learning

• Running with 10 sentences did not cause the system to run out of memory
 • Did cause segmentation fault with no error message in the middle of the learning process.

• Segmentation fault did not occur when training on a single sentence.
 • Not a very effective classifier...

• Realized this weekend that using the less efficient generative learning avoids segfault.

• Ran on 10 sentences. It's still going...
Why?

- Markov Logic Networks grow exponentially:
 - Number of ground predicates in $O(d^c)$
 - $d = \text{maximum predicate arity}$
 - $C = \text{number of constants}$

- Problem compounded by Phrase Structure Grammar:
 - Dependency Grammar tree has exactly n nodes for n words
 - PSG tree has $O(2n – 1)$

- Constants also include number of unique paths in tree ($O(n^2)$), parts of speech, etc...

- Running on 10 sentences generated almost 200,000 ground clauses
Lessons learned

Alchemy may be unsuitable for SRL
 • Claims “more than 10 million ground clauses on machines with 4GB of memory”

 • Model problems?

 • Meza-Ruiz and Riedel (2009) pulled it off
 • Didn't use Alchemy
 • Used dependency grammar
 • No mention of training corpus size or learning time

 • The amount of information being processed is not unreasonable for SRL
Future Directions

- Talk to Alchemy creators and ask where we went wrong
- Try a different Markov Logic engine like *Tuffy*
 - Better with lots of data?
- Examine original idea of using coarse-to-fine inference to reduce the model size by means of an existing labeler
 - *markov thebeast*
Questions?