
Structured Nonsense: Automatic Imitation of Writing Style

Misha Denil
Department of Computer Science
University of British Columbia

201-2366 Main Mall
Vancouver BC

V6T 1Z4
mdenil@cs.ubc.ca

Abstract

In this report we present a system designed
to generate nonsense sentences in a specified
style. A style is defined implicitly by provid-
ing a set of training documents (e.g. books writ-
ten by a single author) and the system extracts
the necessary information to mimic structural
properties of the text. We quantify our success
in the style mimicry task by measuring the abil-
ity of our system to fool a standard stylometric
evaluation tool.

1 Introduction

Most research related to stylometry focuses on either
identifying the authorship of texts (the most famous ex-
ample being the Federalist Papers) or on classifying texts
by genre. There has been very little work on attempting
to generate novel texts with a specified style.

In contrast, the majority of work on text generation fo-
cuses on transforming a knowledge representation into
words, and these generation systems are typically pro-
duced for domain specific problems. By choosing a do-
main to operate in the researchers are essentially deciding
on a predetermined style before the system is built. A text
generation system might turn knowledge into text using a
predefined set of rules; the style of the resulting output is
then a product of the rules themselves, which have been
crafted for the problem at hand.

In this report we take the view of (Argamon and Kop-
pel, 1998) that the topic (i.e. semantic content) of a doc-
ument is independent of the style and attempt to build
a system which is capable of generating documents in
a specified style while ignoring issues of semantics en-
tirely. That is, our system produces nonsense sentences
which are intended to be nonsense in the style of the doc-
uments it was trained on.

2 Related work
Our goal in this work is to build a generative model of
language which mimics style. Although there is very lit-
tle work which addresses this problem directly, there is a
significant body of similar work which we can draw on
for techniques and direction.

There has been some recent work which looks at
how standard authorship attribution techniques preform
when presented with maliciously crafted data (Brennan
and Greenstadt, 2009). This work is useful to us since
it examines the robustness of stylometric techniques to
mimicry; we make use several of these standard tech-
niques in our evaluation, and it is important to consider
how robust they are in general. In a similar vein, (Somers
and Tweedie, 2010) look at the ability of standard stylo-
metric techniques to correctly identify a pastiche as being
written by an author other than the one being imitated.

Kacmarcik and Gamon study a related problem where
they look at the feasibility of automatically obfusticating
the stylometry of a document (Kacmarcik and Gamon,
2006). Their success in this task suggests that our task
may be quite difficult, since stylometric techniques can
be sensitive to a small number of changes. Nonetheless
we find that this is not the case in this report.

There is a large body of work in the NLP literature on
classifying document style. Some representative works
in this area are (Finn and Kushmerick, 2006) and (Arga-
mon and Koppel, 1998) which both attempt to learn style
classifiers in a variety of domains.

A 2005 study (Uzuner and Katz, 2005) investigates
how different language models can be used to identify
authorship and discuss which types of standard features
are suitable to generalize from characteristics of a docu-
ment to characteristics of the author.

3 Contribution
The work presented in this report differs from previous
work in the sense that no one else has focused on gener-

ating work in a given style. Our work is also different in
that we focus only on the stylistic aspects of generation
and eschew the complications introduced by attempting
to model semantics. This makes our models very simple
compared to other text generation systems, and allows us
to focus our efforts on style generation exclusively.

4 Corpus
The corpus we chose to use for this report is a collection
of books1 by 12 different authors, selected from Project
Gutenberg. The books are provided as plaintext, so mini-
mal pre-processing was required to put them in a suitable
format. The text files provided by Project Gutenberg typ-
ically have a block of front and end matter that is added
by the project administrators; since the exact format of
this extra material can vary depending on the book, we
removed it manually from each file.

For each of the 12 authors we selected between three
and seven of their works for this project. The authors
were chosen to represent a variety of styles of writing
and contain works of non fiction as well as fiction from a
variety of genres.

5 System
5.1 Architecture
The system in this report focuses primarily on sentence
generation. We made the choice to focus on this level
of detail because within a document, sentences are the
most structurally rich elements. We also hypothesize that
sentences are the most important structural element of a
document to model well in order to produce a readable
result. Although we will not be able to test this hypothesis
directly, it has a significant amount of intuitive appeal.

The system we develop here has four phases:

1. Annotation In this phase, the raw data is anno-
tated either by attaching POS tags to each word or
by finding a parse tree for each sentence.

2. Learning In this phase, parameters for the differ-
ent models are selected using the annotated data as
input.

3. Generation In this phase, the trained models are
used to produce novel sentences.

4. Realization In this phase, the sentences produced
during generation are modified to improve readabil-
ity and aesthetics.

The annotation phase is preformed using existing NLP
software, and the realization phase is very simple. We

1The corpus is made available with the source code for our
system. See Appendix A for instructions on how to obtain it.

will discuss the specifics of both of these phases in the im-
plementation section, but for now we focus on the func-
tion of the modules used in the learning and generation
phases.

In our system, learning and generation dual in the sense
that during learning data is fed into a model which ad-
justs its parameters in response to this input, and gener-
ation involves running this process in reverse by using
the existing model parameters to produce data which the
model would expect to see as input. Reversibility is an
important requirement of all the models in this system
so we will discuss the models themselves and it should
be understood that the learning phase involves selecting
parameters for the models and the generation phase in-
volves running these models in reverse to sample from
the learned distributions.

The content model is responsible for modeling how
words relate to one another within a single sentence.
Proximity relationships between words can be very com-
plex. One approach to deal with this complexity is to
make the content model very sophisticated in order to
capture these relationships. We attempt to manage this
complexity by decomposing the problem into two parts.
In our system the content model is responsible for select-
ing individual words but it does so under externally im-
posed structural constraints which depend on the context
of the word being selected. We hypothesize this approach
will allow us to make use of a very simple content model
since the higher level structural constraints on content are
modeled separately.

The structure model is responsible for modeling sen-
tence structure. We use the output of the structure model
to constrain the generation of content. The structure
model imposes grammatical and syntactic constraints on
the content model to ensure that, e.g. the resulting se-
quences of words are grammatical sentences.

Throughout this report it will be useful to refer to the
structure model and the content model separately. We
will refer to the complete system which combines the two
models into a single system as the combined model.

5.2 Implementation

In the previous section we discussed the roles that dif-
ferent phases of generation play within our system in a
general sense. In this section we describe specific mod-
ules which were implemented for each phase. Although
the requirements of each phase general enough to be sat-
isfied by many different implementations, we implement
only one module for each phase in this report.

5.2.1 Annotation
The annotation phase augments the input data with

additional structural information which is exploited dur-
ing learning and generation. We used the Stanford

Parser (Klein and Manning, 2003) and the Stanford POS
Tagger (Toutanova and Manning, 2000) to produce struc-
tural annotations for our models. In principle the Stanford
Parser would be sufficient since it produces POS tags for
each word as part of the parse trees it produces; however,
for practical reasons it is helpful to use both tools since
the tagger is significantly faster when only POS tags are
needed.

5.2.2 Learning and Generation
Content Model The content model used in this report
is based on building empirical distributions of n-grams.
The implementation is general, in the sense that an arbi-
trary n can be selected at training time.

Rather than recording n-grams of words directly, in this
model we actually record n-grams of (word, POS tag)
pairs. The reason for this is twofold: first, the attached
POS tag serves as a primitive form of word sense dis-
ambiguation. The second and more important role of the
POS tags is that they provide a mechanism for the content
model to be constrained by the structure model. As dis-
cussed below, the structure model produces a sequence of
POS tags which we call the sentence skeleton. The con-
tent model is used to select a word to replace each tag.

More formally, the content model encodes the
joint likelihood P (w1, t1, . . . , wn, tn) where wi is the
ith word in the n-gram and ti is the correspond-
ing POS tag. When filling in a sentence skele-
ton provided by the structure model, we sample
each word in the sentence from left to wright using
P (wm|tm, wm−1, tm−1, . . . , wm−n+2, tm−n+2) to sam-
ple the mth word in the sentence. If there is not enough
history available (e.g. when sampling the first word of a
sentence using a trigram model) we marginalize over the
unavailable history and condition the resulting marginal
distribution.

The content model can also be used to generate sen-
tences in an unconstrained way by sampling the mth
(word, tag) pair instead of conditioning on an externally
provided POS tag. The only subtlety here is deciding
when to end a sentence; however, we can take a very
naı̈ve approach and simply continue to sample new words
until a sentence ending punctuation mark is generated.
This technique is exploited to generate sentences directly
from the content model during the evaluation.

Structure Model The structure model used in this re-
port is based on building empirical distributions of parse
tree productions. We assume that the probability of each
production occurring is independent of where in the parse
tree it occurs. This assumption is known to be false, but
we hypothesize that this model will still be sufficient to
provide useful constraints to the content model.

Formally, the structure model builds a collection of
conditional distributions, P (T |H) where each produc-

tion is of the form H → T .

Figure 1: An illustration of the structure model.

The structure model is shown schematically in Fig-
ure 1. The bottom row of Figure 1 shows a sequence
of POS tags which we call the sentence skeleton. This
skeleton is the output of the structure model and is used
as a constraint for the content model as discussed above.

If we do not stop the model at the POS tag level then
we obtain the structure model we described above plus
a unigram content model (i.e. it is constrained only to
select a word from the correct POS category). This comes
almost for free with our implementation because of the
way the Stanford Parser produces parse trees. We use this
approach to generate sentences from the structure model
during the evaluation.

Combined Model We have described how each model
is built from the input data and have discussed how to
generate samples from each model. Algorithm 1 de-
scribes the process for producing a sentence from the
combined model.

Algorithm 1: Generating from the combined model
Data: S – Structure Model
Data: C – Content Model
begin

sentence← []
skeleton← S.generateSentenceSkeleton()
for tag ∈ skeleton do

next← C.generateWord(t, tail(C))
sentence.append((next, t))

end
return sentence

end

5.2.3 Realization
In our system the realization phase is a very simple

post process, and is implemented as a series of regu-
lar expressions which are applied to the generated sen-
tences. The realizer is responsible for ensuring that sen-
tences are capitalized properly, that punctuation is posi-
tioned correctly with respect to the surrounding words

(e.g. word , word is transformed to word, word),
and a variety of other aesthetic transformations.

6 Evaluation

6.1 JGAAP

We evaluate our system using a stylometric tool known as
JGAAP2 (Juola, 2006). JGAAP implements a wide vari-
ety of standard stylometric tests for authorship attribu-
tion and provides a unified framework for running analy-
ses. We first describe the general analysis workflow that
JGAAP supports and then provide specific information
on the various features and metrics used in our evalua-
tion.

JGAAP is a tool designed for performing authorship
attribution. This is an appropriate tool to use to evaluate
our system since our goal is to mimic the style of a given
author. We consider our mimicry to have been success-
ful if JGAAP attributes our generated document to the
author whose works were used to train the model which
produced it.

To preform authorship attribution with JGAAP we
must provide the system with a representative set of doc-
uments for each reference author, as well as a set of un-
labeled documents. The result of running JGAAP is an
assignment of each of the unlabeled documents to exactly
one of the reference authors. The JGAAP workflow has
three steps:

1. Canonicalization In this step the raw text of each
document is processed into a standard form. JGAAP
provides a variety of canonicalization filters, we
chose to use the normalize whitespace and unify
case filters throughout our analysis.

2. Feature Extraction In this step the canonicalized
documents are turned into feature vectors, which
JGAAP calls event sets. We evaluate our system
using a variety of different features which are de-
scribed in Section 6.2.

3. Analysis In this step the feature vectors for each
unlabeled document are compared to each of the
reference documents and the closest match is se-
lected. We experimented with several different met-
rics for comparing feature sets and these metrics are
described in Section 6.3.

6.2 Features

JGAAP supports a wide range of feature sets. We se-
lected the following subset to use in our evaluation:

2JGAAP can be obtained at: http://server8.
mathcomp.duq.edu/jgaap/w/index.php/Main_
Page

words Each document is described by counts of individ-
ual word occurrences.

word bigrams Each document is described by counts of
bigram occurrences.

word tetragrams Each document is described by counts
of 4-gram occurrences.

hapax legomena Each document is described by the set
of words which occur only once.

word lengths Each document is described by the distri-
bution of word lengths.

common words Each document is described by the
words which occur most frequently.

syllables per word Each document is described by a
distribution over the number of syllables per word.

word stems Each document is described by the collec-
tion of word stems which it contains.

6.3 Analysis
In this section we describe the various metrics we used
to compare document feature vectors. Some of these
metrics are appropriate for comparing vectors of feature
counts directly and others require distributions over these
features. When distributions are required it should be
assumed that we are referring to empirical distributions
which are obtained by normalizing the corresponding
feature count vectors. When referring to random vari-
ables we will use capital letters to denote distributions
and lowercase letters to denote mass functions.

Kullback Leibler The KL divergence is used to quantify
the similarity of two probability distributions. Given
two distributions,

KL(P ||Q) =
∑
x

p(x) log

(
p(x)

q(x)

)
which can be interpreted as the expected difference
in log likelihood of between P (x) and Q(x).

Manhattan The Manhattan distance between two vec-
tors is the 1-norm of the difference between them. It
is defined as

M(x,y) =
∑
i

|xi − yi| .

KS The KS distance uses the test statistic from a two
sample Kolmogrov-Smirnov test to compare two
distributions. Given two discrete distributions this
statistic is

K(P,Q) = max
x
|P (x)−Q(x)| .

words word bigrams word tetragrams hapax legomena word lengths common words syllables per word word stems

0.5

1

True Author Detection

Figure 2: Authorship attribution performance when using no generated data. Each cluster of bars shows a different
feature set and within each cluster individual bars represent different analysis methods. Error bars show one standard
deviation above and below the mean. The bars for each analysis method are arranged from left to right in the same
order they appear in Section 6.3.

K will be identically zero if the two distributions are
the same.

Histogram This histogram distance between two vectors
is the squared L2 norm of the difference between
them,

H(x,y) =
∑
i

(xi − yi)
2 .

Intersection The intersection distance treats the two fea-
ture count vectors as sets and computes

D = 1− |A ∩B|
|A ∪B|

.

Naı̈ve Bayes The naı̈ve bays metric uses a naı̈ve bayes
classifier to assign authorship.

Cosine The cosine distance between two vectors is the
their inner product normalized by their lengths,

C(x,y) =
x · y
||x||||y||

.

Canberra The canberra distance is similar in flavor to
the Manhattan distance but involves normalizing
each term in the summation

D(x,y) =
∑
i

|xi − yi|
|xi|+ |yi|

.

Random Random distances are assigned between docu-
ments. This is useful only as a baseline metric.

7 Results
We preform the evaluation described in Section 6 on four
different data sets. The first is a reference data set where
we removed labels from some of the training documents
and ran JGAAP to assign authorship to each of them.
This evaluation provides an important baseline for as-
sessing the usefulness of the different evaluation meth-
ods on our data set. The other data sets we used are data
generated from the structure model, data generated from
the content model, and data generated from the combined
model. In all cases we used the entire training set as ref-
erence documents for JGAAP.

For each model type, we trained one model for each
author using the available training data. We then use each
of these models to generate 5000 sentences and use these
generated documents as the unlabelled data in the input
to JGAAP. The goal is to have each unlabelled document
attributed to the author who was used to train the model
which generated it. We report the average success on this
task for each model averaged over 10 runs. In all cases
when training the content model we used 3-grams.

The results from of baseline evaluation are shown in
Figure 2. From this figure we can see that all of the fea-
ture sets preform similarly, with the notable exceptions
of word lengths and syllables per word which appear to
under preform the others. Much more striking in Fig-
ure 2 is that several of the analysis methods preform very
poorly. Notably, naı̈ve bayes appears among the poorest
performers across all feature types, performing no better

words word bigrams word tetragrams hapax legomena word lengths common words syllables per word word stems

0.5

1

Content Model Detection

Figure 3: Authorship attribution performance when using only the content model. Each cluster of bars shows a
different feature set and within each cluster individual bars represent different analysis methods. Error bars show one
standard deviation above and below the mean. The bars for each analysis method are arranged from left to right in the
same order they appear in Section 6.3.

words word bigrams word tetragrams hapax legomena word lengths common words syllables per word word stems

0.5

1

Structure Model Detection

Figure 4: Authorship attribution performance when using only the structure model. Each cluster of bars shows a
different feature set and within each cluster individual bars represent different analysis methods. Error bars show one
standard deviation above and below the mean. The bars for each analysis method are arranged from left to right in the
same order they appear in Section 6.3.

in general than random assignment. The best performing
measures are Manhattan, KS and histogram with Kull-
back Leibler only marginally worse.

Figure 3 shows the results of our evaluation on data
generated from the content model. In this case we see a
pattern of high and low performing analysis methods sim-
ilar to the baseline, which is encouraging because it indi-
cates that much of the inter-analysis method variation in
performance can be attributed to variation in performance
on the source data and is thus not an artifact of our model.
This pattern is quite consistent, with the notable excep-
tion of the Kullback Leibler measure when the syllables
per word feature is used. Although this pair preforms
relatively poorly in the baseline, documents generated by
the content model are attributed to their progenitor with
100% accuracy in this case.

A feature of Figure 3 which differs markedly from the
baseline is that there are several feature-analysis method
pairs for which the attribution is successful 100% of the
time. This phenomenon is present in the evaluation of all
of our models; however, it never happens in the baseline
evaluation. This phenomenon can likely be attributed to
the relative richness in vocabulary available to an author
compared to what is available to our system. All the mod-
els we use can only produce words (and word patterns)
which they have seen before, while a human author is un-
der no such restriction. This dearth of variation means
that patterns in the training data reoccur more frequently
in the generated data than between different works by the

same author.
Figure 4 shows the results of our evaluation on data

generated from the structure model. If we compare this
performance to the performance of the content model
alone we see a drop in performance on the word bigrams
and word tetragrams features. This is not surprising,
since the structure model on its own models only uni-
gram distributions over parts of speech while the content
model is able to select each word using information from
the surrounding context. Performance using other feature
sets is very similar to the performance shown by the con-
tent model.

Finally, Figure 5 shows the results of our evaluation on
data generated by the combined model. Although the per-
formance looks very similar to the previous two models
we can notice some interesting points. If we look at the
performance with the word bigrams and word tetragrams
features we see that the performance of the combined
model more closely matches the baseline evaluation than
the structure model alone. This shows that adding content
information to the structure model is able to better cap-
ture sequence information than the structure model alone.
This is not surprising when we consider how the models
work, but it is nice to see this phenomenon reflected in
our results.

Unfortunately when we look from the other direction,
that is we try to assess how the content model has bene-
fited from the addition of structural information, the evi-
dence for improvement is less apparent. In fact we find no

words word bigrams word tetragrams hapax legomena word lengths common words syllables per word word stems

0.5

1

Combined Model Detection

Figure 5: Authorship attribution performance when using the combined model. Each cluster of bars shows a different
feature set and within each cluster individual bars represent different analysis methods. Error bars show one standard
deviation above and below the mean. The bars for each analysis method are arranged from left to right in the same
order they appear in Section 6.3.

evidence that the addition of the structure model provides
any benefit beyond using the content model in isolation.

8 Lessons Learned
Two major lessons learned during the implementation of
this report are:

Representation Matters The implementation that was
built for this report stores all of its data in python dictio-
naries. While this is handy for fast development it makes
the implementation difficult to extend because, e.g., the
representation used in each of the content and structure
models is very tailored for how data is used in those par-
ticular models in isolation. Building the combined model,
which should have been a simple task of sticking the
two existing models together, actually ended up requir-
ing that we reimplement the functionality of the structure
and content models to allow them to work together.

This difficulty with representation means that the code
contains two implementations of the functionality in the
structure and content models, one for using the models
in isolation and another for the combined model. In ret-
rospect, a more robust data storage management mecha-
nism would have been very useful.

Parse Trees are Complicated When designing the
structure model we made the assumption that the prob-
ability of a production is independent of its position in
the parse tree. As we mentioned, this is known to be false
but our expectation was that there would still be suffi-
cient information in the structure model to benefit over a
pure content model. Our analysis found that this is not
the case for the low level features we examined. We also
looked at the distribution of sentence lengths for some
selected models3 and found that the distribution of sen-
tence lengths in our generated data does not match well
with the sentence length distributions of the author used
to train the model.

Our simple structure model appears to not only be in-
correct (which was known from the beginning) but it is
also insufficient to capture the type of information we in-
tended it to encode.

9 Directions for Future Work
The evaluation in this report focused on fine grain fea-
tures like the occurrence of individual words (unigrams,
bigrams, etc). This analysis is not ideal since it is
not clear that it properly tests the utility of the struc-
ture model. A more thorough evaluation would consider
higher level features as well, such as the distribution of
sentence lengths. The reason for not including this type
of analysis in this report is purely pragmatic: JGAAP

3There results were not included in the analysis since the
examination we preformed was very ad-hoc.

does not implement these type of analyses and we were
not able to find any sufficiently powerful alternative tool
with which to preform the evaluations. Future work on
this type of problem should include analysis which inte-
grates high level features. This is especially important
since, as we mentioned in the previous section, our ad-
hoc examination of sentence length distributions reveals
that our models do not mimic this feature well. This
weakness is not apparent in the analysis presented in Sec-
tion 6.3.

An obvious step beyond what was covered in this re-
port is the integration of semantics into the generated text.
There are two ways to approach this problem, one is to try
to learn the semantics of the training texts and create a
model to mimic them, or another is to devise a method to
specify the semantics through an external process. This
second method has more potential for application, since
it could, in principle, be attached to the output of any
semantic engine in order to realize text in a given style;
however, the problem of semantics is extremely difficult
in general and nothing in this report suggests an obvious
starting point for either approach.

References
S Argamon and M Koppel. 1998. Routing documents ac-

cording to style. In Proceedings of First International,
60(4):455–60, Oct.

Michael Brennan and Rachel Greenstadt. 2009. Practi-
cal attacks against authorship recognition techniques.
Innovative Applications of Artificial Intelligence.

Aidan Finn and Nicholas Kushmerick. 2006. Learning to
classify documents according to genre. Journal of the
American Society for Information Science and Tech-
nology, 57(11):1506–1518, Sep.

P. Juola. 2006. Authorship attribution. Foundations and
Trends in information Retrieval, 1(3):233–334.

Gary Kacmarcik and Michael Gamon. 2006. Ob-
fuscating document stylometry to preserve author
anonymity. Proceedings of the COLING/ACL on Main
conference poster sessions -, pages 444–451.

D. Klein and C.D. Manning. 2003. Accurate unlexical-
ized parsing. In Proceedings of the 41st Annual Meet-
ing on Association for Computational Linguistics-
Volume 1, pages 423–430. Association for Computa-
tional Linguistics.

Harold Somers and Fiona Tweedie. 2010. Authorhsip at-
tribution and pastiche. Computers and the Humanities,
37(4):407–429.

K. Toutanova and C.D. Manning. 2000. Enriching the
knowledge sources used in a maximum entropy part-
of-speech tagger. In Proceedings of the 2000 Joint
SIGDAT conference on Empirical methods in natural
language processing and very large corpora, pages
63–70. Association for Computational Linguistics.

Özlem Uzuner and Boris Katz. 2005. A comparative
study of language models for book and author recog-
nition. Natural Language Processing-IJCNLP 2005,
pages 969–980.

A Appendix: Source code and pointer to
corpus

The best place to find the source code and corpus
used in this report is to access the github reposi-
tory directly at https://github.com/mdenil/
cpsc503_project.

