
Practice and Exploration of Ontology Creation Algorithms

Tianyu Li
University of British Columbia, Vancouver, BC, Canada

lty419@cs.ubc.ca

Abstract

Ontology creation from unstrcutred text is a
meaningful and challenging problem. In or-
der to see what kind of ontology is produced
when applying different algorithms on special-
ized domain corpus, we select two represen-
tative approaches, one is Guided Hierarchical
Clustering and the other is lexico-syntactic pat-
tern based, which corresponds to two main
stream directions in this field. In particular, we
do not set constraints for the length of extracted
concepts in the hope of discovering richer on-
tology. Applying these two methods to a Civil
Engineering dataset, we evaluate their result in
terms of precision and taxonomic metrics. Out-
put relationships are examined and analyzed,
to support our idea while providing lessons for
implementation of pattern based ontology ex-
traction.

1 Introduction
An ontology in computer science is a specification of con-
ceptualizations of a domain of interest that are shared by
a group of people (Biemann, 2005). There is no universal
standard with respect to the components of an ontology.
However, a common ontology will at least include con-
cepts and hierarchical relationships among them, which
actually form the taxonomic backbone of an ontology.

Building ontology from un-structured or semi-
structured text can bridge the gap between human-
readable data and machine-readable knowledge in a spe-
cific area. It benefits the navigation and discovery of
information, and can be used in many other tasks as a
knowledge base. As we all know, a hand-crafted ontology
of words like WordNet 1 has limited coverage, especially

1http://wordnet.princeton.edu/

in specialized field, where jargons and terminologies can
have very different meanings from their dominant senses
in general domain. Also it takes a lot of human effort
and expert interference to build an ontology from a cor-
pus of any new domain manually, which makes the prob-
lem of automating the ontology extraction process very
meaningful. This problem is essentially challenging as it
requires good understanding of the text and smart appli-
cation of state-of-art Natural Language Processing tech-
niques .

Rather than just looking for ISA relationships between
pairs of terms, taking some time on pondering how to ex-
tract concepts with their semantic relationships and rep-
resent them at appropriate level of abstractness is worth-
while. However, current methods of creating ontology
from text, usually bypass or simplify this problem by fo-
cusing on single-word-term or very short phrases. They
will fail to capture many meaningful and distinct con-
cepts in this domain that we will see in the remainder
of the paper. The resulting ontology is usually trivial or
redundant from the general thesaurus, which will be re-
flected in our experiments. In this project, we take a first
step towards this direction by trying out a simple pattern-
based approach on a Civil Engineering data set, and ob-
serving the extracted pairs of phrases having ISA rela-
tionships between each other. A representative algorithm
in previous work is applied and compared as well. In this
sense, this paper is more like a case study of different on-
tology extraction algorithms on text of specific domain.

The following sections are structured like this: Section
2 classifies and describes related work. Section 3 intro-
duces the two methods that we implemented in detail. We
discuss the implementation details in Section 4 and show
the experiment results and lessons learned in Section 5.
Finally we conclude the work and propose future direc-
tion.

2 Related Work
In Biemann’s (2005) survey of ontology learning algo-
rithms, he classifies ontologies into three kinds:

• A Formal Ontology is a conceptualization whose
categories are distinguished by axioms and defini-
tions.They are stated in logic that can support com-
plex inferences and computations.

• Prototype-based Ontologies are distinguished by
typical instances or prototypes rather than axioms
and definitions in logic.

• Terminological Ontologies are partially specified
by subtype-supertype relations and describe con-
cepts by concept labels or synonyms.

YAGO (Suchanek et al., 2007) is a system that au-
tomatically extracts facts from Wikipedia2and unifying
them with WordNet. It defines an ontology language by
extending an existing one called RDFS, and produces a
formal ontology using Wikipedia individuals and cate-
gories and WordNet synsets as basic components of con-
cepts. YAGO heavily depends on the hierarchical struc-
ture within WordNet and can be considered as enrich-
ing WordNet with Wikipedia entities. It is usually too
hard to produce a formal ontology if the task is to ex-
tract it from the text and build it from scratch, especially
when the automatic building process is actually used as
a first step for further refining steps (we have to admit
none of these current automatic algorithms can produce
high-quality ontologies that can be used in practice right
away). Most state-of-art approaches aim at constructing
ISA-related concept hierarchies, that either fall into the
Prototype-based Ontology or the Terminological Ontol-
ogy field.

Biemann (2005) also concludes three main directions
for the approaches to ontology learning from unstruc-
tured text.

1. Use Harris’ distributional hypothesis, which states
that similar words tend to occur in similar con-
texts. They employ different kinds of clustering
algorithms to build synset-like concept, which is a
group of similar words.

2. Use patterns such as Heart Patterns (Hearst,
1992) that explicitly grasp a certain relation be-
tween words. They (Pennacchiotti and Pantel,
2006) (Sanderson and Croft, 1999) usually follow
an iterative process with bootstrapping, but can still
suffer from low recall.

3. Using the World Wide Web either as additional re-
source or as the main source of information is often
a possibility to avoid data sparseness problem.

2http://www.wikipedia.org/

Some algorithms, such as (Cimiano and Staab,
2005) (Caraballo, 1999), try to combine all or some of
the above clues to achieve richer and more reasonable re-
sult.

Most of the clustering-based algorithms produce
prototype-based ontology, which poses another problem:
how to label each group of word so that it can be easily
understood and used. Some other work, including (Za-
vitsanos et al., 2010), use topic modeling based method
to extract concepts and represent concepts as latent topics
which are distributions of words. However, for the prac-
tice use and evaluation consideration, we will focus on
those methods producing terminological ontology, which
consists of terms rather than latent topics or word clus-
ters.

3 Practices of Clustering and Pattern
Based Algorithms

As we mentioned in last section, clustering based and
pattern based approaches are two mainstream methods of
learning ontology from text. In order to see their perfor-
mance on a domain-specific corpus, we implement two
algorithms and apply them to an architecture data set,
which consists all kinds of documents produced during
the civil engineering process. The Guided Hierarchi-
cal Clustering algorithm is a clustering based method,
while the other is just a simple implementation of lexico-
syntactic patterns first proposed by Hearst (Hearst, 1992).
In the remainder of these section, we will introduce the
two algorithms in detail.

3.1 Guided Hierarchical Clustering
The Guided Hierarchical Clustering algorithm (Cimiano
and Staab, 2005)is a representative state-of-art algorithm
as it combines all three directions in ontology learning,
as we mentioned in Section 1. It relies on the distribu-
tional similarity of terms with respect to an underlying
corpus. For each term, they extract syntactic surface de-
pendencies by matching regular expressions over part-of-
speech tags. The similarity between terms can be calcu-
lated between the vectors of dependency features includ-
ing adjective modifiers, prepositional phrase modifiers,
noun phrases in subject or object position, and etc.

With the similarities between pairs of terms, an ag-
glomerative clustering algorithm is driven by hypernyms
acquired by other means. Particularly, the author exploits
hypernyms extracted from WordNet, and from match-
ing lexico-syntactic patterns indicating a hypernym-
relationship in the corpus as well as search engine doc-
uments.Figure 1 shows the architecture of the system.

The guided clustering algorithm works like this:

1. For a list of terms to be placed in the ontology, cal-
culate the similarity between each pair of terms and

sort them.

2. Pick a pair of terms with highest similarity in the
remaining list of pairs to be clustered, if either of
them is not placed in the ontology. Try to put
them in the right position of the growing ontol-
ogy based on the their common hypernym evidences
found from WordNet, matched patterns in Corpus
and matched patterns in WWW, following some pre-
defined rules. Otherwise, the pair get clustered.

3. Place the clustered pairs and single terms that do not
get into the ontology in the most appropriate posi-
tion to make sure the resulting ontology is a con-
nected hierarchy.

Figure 1: System Overview of Guided Hierarchical Clus-
tering Algorithm (Cimiano and Staab, 2005)

Here we introduce the lexico-syntactic patterns used
by this algorithm and in our algorithm. These patterns
are first proposed by Hearst (1992) and augmented by
many following papers. Seven of them are listed below.
(1) NP0 such as NP1, NP2, ..., NPn−1 (and|or) NPn

(2) such NP0 as NP1, NP2, ..., NPN (and|or) NPn

(3) NP1, NP2, ..., NPn (and|or) other NP0

(4) NP0, (including|especially) NP1, NP2, ..., NPn−1

(and|or) NPn

These four are originally from the Hearst paper while the
following three are extended ones.
(5)NP1 is NP0

(6)NP1, another NP0

(7)NP0 like NP1

In these patterns, NP stands for a noun phrase. We
can derive that for all NPi, 1 ≤ i ≤ n, isa(NPi, NP0).
However this paper and many other papers use the in-
ferred rule that removes modifiers of any noun phrase,
NPi, 1 ≤ i ≤ n, isa(head(NPi), head(NP0)), in order

to apply these patterns on single-word terms or very short
phrases.

3.2 Pattern-based Extraction of Concepts and
Semantic Relations

As we have seen in the last section, the way of removing
all modifiers when applying the Hearst pattern are em-
ployed by many other papers such as (Caraballo, 1999).
It does improve the recall when you are checking if a
pair of terms appear in this kind of patterns, especially
the low recall is always a shortcoming of pattern-based
approaches. However, Hearst (1992) did mention in her
paper that how much modification is desirable depends
on the target domain.For building up a basic, general-
domain thesaurus, single-word nouns and very common
compounds are most appropriate. For a specialized do-
main, more modified terms are necessary. In our archi-
tecture dataset, we will lose a lot of concepts if we just fo-
cus on single-word or very common compounds as many
concepts cannot be described in one or two words. For
example, ”finishes which may radiate noise” and ”retar-
dants with bromine or chlorine” are snippets from our
document that represent very concrete concepts. It would
be meaningful if any ontology learning algorithm can dis-
cover these knowledge, instead of just finding general
word ”finish” and ”retardant”. In our minds, a good on-
tology for a specialized domain should be rich enough to
have actual use, while not being too specific that cannot
be applied elsewhere. Even the standard of a good on-
tology is a philosophy problem, we move ahead to the di-
rection of ”rich ontology” by extracting instances of these
lexico-syntactic patterns without setting the constrains on
the length of terms. We use the same list of patterns but
in different ways, which we will see in next section.

4 Implementation Details

In this section, we discuss the details and issues coming
up during the process of implementation and evaluation.

4.1 Data Set Description and Preprocessing

The dataset used in this case study is called
AEC(Architecture, Engineering and Construction)
data. Belonging to the ARTIFACT Project 3 in Data
Management Lab of UBC, it contains all kinds of data
generated the process of civil engineering, such as
scheduling data, 3D design data, meeting notes and
reports. The files are in PDF format and text is mixed
with graphs. Since we only want to work on the text
part, we apply the following preprocessing step, which is
shared by the two algorithms.

1. Convert the PDF file to txt format using the A-PDF

3http://www.cs.ubc.ca/labs/db/research.php/artifact

Text Extractor Command line (PTCMD). 4. This
step introduces a lot of noise because of the imper-
fect accuracy of the program and the fact that text is
mixed with graphs.

2. Apply a set of regular expression based processing
methods to remove noises from the text. This part
is implemented in Java and the rules are customized
to this data set after observing abnormal data in the
corpus.

3. Detect the sentence boundaries within processed
text and chunk the text into sentences using Ling-
Pipe5 tool kit, which is a Java library for a set of
NLP tasks.

After this step, we get 59,497 sentences in total.

4.2 Applying GHC to AEC Data
We get the author’s algorithm package for the Guided Hi-
erarchical Clustering algorithm from his website 6. In
order to prepare the input to the algorithm as required,
we tag the whole corpus with TreeTagger 7. It is recom-
mended by the user. We stick to it to keep the consistency
of the tag set used in the algorithm, even though this tag-
ger is not capable of handling larger input one time which
means we have to do tagging in batch.

As for the input terms to be placed in the ontology,
the author does not clarify on what criteria we could se-
lect the terms. So we follow a simple and reasonable
strategy, that we pick all terms with one of these POS
tags(”NP”,”NPS”,”NN”,”NNS”) and order these poten-
tial nouns by their frequency in the corpus. Then we se-
lect the top 100 terms excluding the stop words and use
the GHC algorithm to organized them into an ontology.

As for the algorithm setting, the only parameters are
the combinations of three hypernym evidences. We can-
not run the part that employing a search engine to check if
a pair of terms have ISA relationships with each other, as
it requires the Google Search API key, which Google has
stopped to provide. We just use the ”WordNet + Hearst
Pattern in Corpus” combination, since it is one of the best
setting according to the author’s experiments.

4.3 Ontology Extraction from AEC Data by Pure
Patterns

The GHC algorithm finds the instances of these patterns
in Section 2, by matching each Part-of-Speech tagged
sentence with regular expressions. They use hand-crafted
rules over combinations of tags to determine if a text
segment is a NP. For example, (DT \ t(\w+))?(JJ \

4http://www.a-pdf.com/text/cmd.htm
5http://alias-i.com/lingpipe/
6http://www.cimiano.de/doku.php?id=olp
7http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger

t(\w+))?((NN(S?) \ t([a − z]+) \ s?)+) is used to
determine a non-recursive NP. This kind of strategy has
these constraints:

1. The inaccuracy of POS tagging will influence the
pattern matching, and the effect can be chain-
reaction that fail the matching on a whole sentence.

2. The strict matching may fail to capture some pat-
tens that hidden in the proposed patterns. For exam-
ple, we find this pattern “including but not limited
to” that matches the Pattern (4) with the common
connector “including”, but will get excluded if we
strictly require a NP immediately following the con-
nector “including”.

3. Simple rules over POS tags cannot identify some
NPs that having complex modification structures,
which can be an obstacle for discovering rich on-
tology as we suggested in Section 1.

In order to overcome these limitations, we relax the
matching rule by first only matching lexical connectors,
then extract the corresponding NPs from the text seg-
ments surrounding those connectors or in between, by
feeding those text in a parser. We believe that a proba-
bilistic parser like Stanford Parser 8 can do a better job
on determining a NP, than hand-crafted rules over POS
tags. For example, for Pattern (1), we extract three text
segments, which are on the left of “such as”, between
“such as” and “and | or”, and on the right of “and | or” re-
spectively. Then we extract a NP from the first segment, a
list of NPs from the second segment and another NP from
the third one by analyzing the parse tree of each segment.

As the extracted text segment is always accompanies
with unwanted text from other parts(other clauses or
predicates) of the sentence, we use some heuristic rules
to extract corresponding NPs from the parse tree. We
conclude four cases depending on the different positions
these NPs lie in and list them as below:

1. Leading NP: corresponds to NP0 in Pattern
(1)(4)(7) and NP1 in Pattern (5)(6). Extracting them
by in the parse tree identifying the minimum NP
containing the word immediately preceding the con-
nectors.

2. Leading NP List: corresponds to the list
NP1, NP2, ..., NPn in Pattern (3). First get
the largest NP containing the word immediately
preceding the connectors, then split the clauses
separated by commas in the corresponding text.

3. Trailing NP: corresponds to NPn in Pat-
tern(1)(2)(4), NP0 in Pattern (3)(5)(6) and

8http://nlp.stanford.edu/software/lex-parser.shtml

NP1 in pattern (7). We extract them by identifying
from the parse tree the maximal NP containing the
word immediately following the connectors.

4. Center NP List: corresponds to the list
NP1, NP2, ..., NPn − 1 in Pattern (1)(2)(4).
For the clauses immediately following or preceding
the connectors, we extract largest NP from each of
them, for other clauses in between, we return as
they are.

5 Evaluation Results and Lessons Learned
In this section, we show our experiment results by pre-
senting and analyzing ontologies produced by two algo-
rithms respectively. We also do comparisons in terms
of precision and taxonomic metrics including depth and
number of children. Then we conclude some lessons
learned from implementing pure pattern based method
and analyzing the negative examples.

For each output pair of terms/concepts, we determine if
the ISA relationship is valid manually, given the context
containing this pair as a reference. Since many terms and
phrases are very domain-specific, we use some external
resources such as search engine to identify their senses,
ensuring we make as few mistakes as possible.

5.1 Resulting Ontology Produced by the GHC
As the output size of GHC is controllable, (determined by
the terms to be clustered), we only generate the ontology
consisting of the top 100 terms with highest frequency in
the corpus, in order to ease the manual validation. Figure
2 shows the ontology produced by the GHC, and only
validated relationships are included.

Figure 2: Resulting Ontology Produced by the GHC

What surprises us is the precision performance, only
39 pairs out of 100 are valid even including the trivial

pairs from the ”root” to any terms, is way lower than
the author’s report average value in this setting, which
is above 0.6. The possible reasons are: the data set is
smaller than those data sets author experimented on, so
that both syntactic features and pattern evidences will
suffer from the sparsity problem; the selection of terms
is not fine tuned that high-frequency terms do not neces-
sarily clustered together.

Also the ontology learnt this way can be criticized for
being too general. Relationships like ”floor ISA area”,
”fan ISA device” and ”concrete ISA material” are valid
yet too trivial in a professional point of view, as they
can easily found in general thesaurus like WordNet. The
whole algorithm is just doing word sense disambiguation
in this sense.

According to our experience of applying the GHC al-
gorithm may not able to discover rich concepts and inter-
esting relationships between them, especially when the
data set is relative small. Clustering algorithms based
on distributional similarity tend to suffer from sparse fea-
tures.

5.2 Concept Pairs Extracted by Patterns
The seven patterns generate 652 pairs of concepts with
279 valid pairs, which is better than expectation as we do
not apply any post-processing on the data. It is not hard
to imagine even a simple strategy that extends a pair of
concepts using the ISA transitivity like this: for NP1 ISA
NP0, add head(NP1) ISA head(NP0) and NP1 ISA
head(NP0), can boost the recall largely. Not to mention
the trivial ISA relationships between a NP and its head
word. The current recall is also good enough, as it is
generated by a small data set, while ontologies used in
many domain-specific tasks are not very large.

The performances of the seven patterns do varies,
which reflects their different levels of effectiveness. Pat-
tern (1) achieves best performance with a precision of
0.56 while Pattern (2) and (6) fail to find any valid in-
stances. This confirms our intuitive guess that Pattern
(1) is a strong indication of ISA relationship while some
other patterns will suffer from their inherent rarer fre-
quency (or we can say lower prior frequency). As a mat-
ter of fact, the precision of pattern-based approach can
be even higher as most negative examples are resulting
from wrong selection of NPs, we will see in a following
section.

Here are some example relationships found by pat-
tern based algorithms, apparently they are contain richer
knowledge and novel in the sense you cannot find them
easily in a general domain ontology or determine them by
our common sense.

• TCPP ISA retardants with bromine or chlorine

• vinyl flooring ISA a flooring surface

• backflow prevention stations ISA equipment in-
tended to change the pressure of the fluid

• Vulkem 245 ISA pre-approved sealant

The first and fourth relationship actually contains named
entities, so that we can easily distinguish them as In-
stanceOf relation from ISA if we use an entity recog-
nizer. The third one is also worth noticing that the parent
concept here is accompanied with long modifiers which
makes the concept rich and complex. This leaves us a
problem, which Hearst (1992) also proposed without giv-
ing a clear answer, that how to represent these concepts
with enough modifiers that can identify them yet concise
enough as we don’t want to have an ontology too specific
that we cannot use elsewhere. Hearst mentioned that we
can safely remove those modifiers that only express sub-
jectivity of the speaker but not property of the concept,
such as ”beautiful”, ”important” and etc.

5.3 Comparison
We compare the performance of these two algorithms in
terms of precision and taxonomic metrics including max-
imum depth, average depth and average number of chil-
dren. We only consider the precision of GHC without
counting the relationship involving ”root” because it is
trivial and the pattern based algorithm does not produce
”root”. We do not have metric recall as we are not sup-
posed to know all ISA relationships embedded in this cor-
pus, and we can not really have fair comparison for recall
when we control the output size of GHC algorithm. The
reasons we use these taxonomic metrics are:

1. Maximum depth and average depth of the taxon-
omy: the deeper the average depth of the taxonomy,
the more complex the relationships.

2. Average number of children: a high average number
of children represents a rich taxonomy.

We build the validated ontology by creating an edge from
each parent concept to the child concept, and using a
common ”root” to connect all concepts which no other
concepts pointing to them. In this way we can get a Di-
rected Acyclic Graph, so that the depth and children met-
rics can be calculated.

Figure 3 4 5 show the results for each metric respec-
tively. The actual numbers are presented in Table 1.

We can see that pattern-based algorithm outperforms
GHC in terms of precision and get competitive depth
and number of children. It is understandable the pattern-
based algorithm does not do better on taxonomic metrics,
as the ontology is made up of very preliminary output as
we discussed in last section. The GHC has stable per-
formance as for taxonomic metrics, since its goal is to
build a connected ontology. We can actually consider

Figure 3: Precision of GHC and Pattern Based Algorithm
Result

Figure 4: Maximum Depth and Average Depth of GHC
and Pattern Based Algorithm Result

the well-structured ontology produced by GHC as a ba-
sis, and enrich this trivial ontology with longer concepts
found by pattern-based algorithm. This kind of combi-
nation makes use of strong points from both approaches,
and looks promising.

We also compare the performance of each pattern, with
Pattern(2) and (6) omitted as they produce non valid re-
lationships. Among all these patterns, Pattern (1) and (3)
are the best ones. However we cannot assume these two
patterns are better ones, because it might not be the case
for other corpus. The prior confidence and frequency of
any pattern can only estimated from corpus that are large
enough.

5.4 Lessons learned
According to our analysis of negative examples in
pattern-based algorithm output, we can conclude the fac-
tors that influence the extraction quality other than the
inherent confidence of each rule.

• Wrong Sentence Boundary: the data after a series

Figure 5: Average Number of Children of GHC and Pat-
tern Based Algorithm Result

of pre-processing is still not noisy-free. The fail-
ure of sentence boundary detection will concatenate
an irrelevant text segment that should have belonged
to another sentence to the one we are extracting NP
from. This kind of noise will confuse the parser by
giving wrong result.

• Partial Parsing: As we discussed in Section 4, we
feed the text segment into the parser instead of the
whole sentence. We do this due to the consideration
of length limitation the parser has.There is no docu-
ment about its actual limitation but it does give error
when parsing some whole sentences. However, a
partial parsing sometimes fails to give correct pars-
ing result without the grasp of the whole sentence
structure. Here is an example, ”X-ray all concrete
walls, partitions, shafts, slabs and other concrete or
concrete block assemblies prior to coring.” When
the text segment ”concrete block assemblies prior to
coring” will be determined as a NP, while ”prior to
coring” is actually a prepositional phrase that mod-
ifies the verb ”X-ray” in the whole sentence. So we
consider parsing the whole sentence in future work,
as it is the best way to match lexico-syntactic pat-
terns and extract desired NPs. We’ll try to overcome
the length limitation either by doing better sentence
chunking or switching to a better parser.

• Greedy or Not: when extracting the leading NP, in
the parse tree we identify the minimum NP contain-
ing the word immediately preceding the connectors.
This kind of non-greedy NP matching works for this
sentence, “Provisions of shading devices, such as
overhangs or vertical fins, to let in quality natural
light but exclude undesired direct sun light should be
considered .”, where “shading devices” is the parent
concept that get specified, not “provision of shading
devices”. But it won’t work for the sentence, “The

work shall be carried out in accordance with the au-
thorities having jurisdiction, including Ministry of
Environment and the Workers Compensation Board
of British Columbia and by contractors experienced
in this specialty .”, where “the authorities having ju-
risdiction” is desired rather than “jurisdiction”. This
paradox seems to imply that we cannot simply use
uniform strategy (greedy or non-greedy) for all pat-
terns. Through our observation, the leading NP in
Pattern (4) favors greedy matching while the one in
Pattern (1) prefers non-greedy matching.

• When There Are Too Many “and”s: “and” is an
important connectors in all four Hearst patterns as
it links NP with other NPs. But this sentence
show what the real word looks like: “District en-
ergy controls, including demand and supply moni-
toring and flow sensing and metering.” The bolded
“and”connects noun modifiers within a NP, rather
than playing a role of connectors in the pattern. No
concrete ideas are proposed to solve this problem
yet.

• More strict or relax constraints: As we mentioned in
Section 4, patterns like “including but not limited to”
will be lost if we follow strict pattern matching. But
when we use somewhat relaxed matching, we get
pattern like ”such NP as to ...”, which has nothing
to do with ISA relationship. This is also the reason
the Pattern 2 fails to produce any valid result when it
claims to find 25 pairs. We might need to reconsider
the constraints.

6 Conclusion and Future Work

Many state-of-art algorithms for ontology learning from
text focus on organize single-word terms or common
compounds into hierarchy, which usually result in gen-
eral yet trivial ontology; the practice value is in ques-
tion especially for a specialized domain. We propose
that it is necessary to discover richer concepts in order
to achieve a richer ontology. We follow a very classi-
cal pattern-based approach, without setting constrains on
the length of extracted concept. Applying the pattern in-
stance extraction on a Civil Engineering data set, we get
very meaningful output concepts. Meanwhile, a repre-
sentative guided clustering algorithm is practiced on the
same data set. According to our comparison, our pattern
based approach outperforms the guided hierarchical clus-
tering algorithm in terms of precision, and achieves com-
petitive taxonomic metrics. We also point out the output
pattern instances are full of potential, either being post-
processed or integrated with a general ontology produced
by the hierarchical clustering algorithm, which are possi-
ble directions for future work. We re-ask the question that

how to represent concepts with long or complex modifi-
cation structures at appropriate level of abstractness with-
out losing the rich information they contain. This is an
interesting and challenging problem, especially in today
when building web of concepts are appealing. Finally
we analyze the output data and conclude many valuable
lessons from the practice of pattern instance extraction,
which can never be learnt if no case study like this is
done.

References
Biemann, C. 2005. Ontology learning from text: A sur-

vey of methods. LDV Forum, 20(2):75–93.

Caraballo, S.A. 1999. Automatic construction of a
hypernym-labeled noun hierarchy from text. In Pro-
ceedings of the 37th annual meeting of the Association
for Computational Linguistics on Computational Lin-
guistics, 120–126.

Cimiano, P. and Staab, S. 2005. Learning concept hi-
erarchies from text with a guided hierarchical cluster-
ing algorithm. In ICML workshop on Learning and
Extending Lexical Ontologies with Machine Learning
Methods.

Hearst, M.A. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings
of the 14th conference on Computational linguistics,
2(1992), 539–545.

Pennacchiotti, M. and Pantel, P. 2006. A bootstrapping
algorithm for automatically harvesting semantic rela-
tions. In Proceedings of Inference in Computational
Semantics.

Sanderson, M. and Croft, B. 1999. Deriving concept hi-
erarchies from text. In Proceedings of the 22nd annual
international ACM SIGIR , 206–213.

Suchanek, F.M. and Kasneci, G. and Weikum, G. 2007.
Yago: a core of semantic knowledge. Proceedings of
the 16th international conference on World Wide Web,
697–706.

Zavitsanos, E. and Paliouras, G. and Vouros, G.A. and
Petridis, S. 2010. Learning subsumption hierarchies
of ontology concepts from texts. In Web Intelligence
and Agent Systems, 8, 1(2010), 37–51.

Table 1: Metrics and Taxonomic Metrics of GHC and Pattern Based Algorithm Result
GHC All Patterns Pattern 1 Pattern 3 Pattern 4 Pattern 5 Pattern 7

Precision 0.37 0.43 0.56 0.49 0.32 0.17 0.375
Validated Pairs 34 279 99 117 55 5 3

All Pairs 93 652 177 240 172 30 8
Max Depth 3 3 2 3 2 2 2
AVG Depth 1.809 1.734 1.696 1.717 1.699 1.5 1.5

AVG Children 3.4 2.374 2.39 2.367 2.318 1 1

