
Training a sentence planner for spoken dialogue

using boosting

Marilyn A. Walker,�¤ Owen C. Rambow,�*

and Monica Rogati§w

�AT&T Labs – Research, Florham Park, NJ, U.S.A.
�University of Pennsylvania, Philadelphia, PA, U.S.A.
§Carnegie Mellon University, Pittsburgh, PA, U.S.A.

Abstract

In the past few years, as the number of dialogue systems has increased,
there has been an increasing interest in the use of natural language
generation in spoken dialogue. Our research assumes that trainable
natural language generation is needed to support more flexible and
customized dialogues with human users. This paper focuses on methods
for automatically training the sentence planning module of a spoken
language generator. Sentence planning is a set of inter-related but
distinct tasks, one of which is sentence scoping, i.e., the choice of
syntactic structure for elementary speech acts and the decision of how to
combine them into one or more sentences. The paper first presents
SPOT, a trainable sentence planner, and a new methodology for
automatically training SPOT on the basis of feedback provided by
human judges. Our methodology is unique in neither depending on
hand-crafted rules nor on the existence of a domain-specific corpus.
SPOT first randomly generates a candidate set of sentence plans and
then selects one. We show that SPOT learns to select a sentence plan
whose rating on average is only 5% worse than the top human-ranked
sentence plan. We then experimentally evaluate SPOT by asking human
judges to compare SPOT’s output with a hand-crafted template-based
generation component, two rule-based sentence planners, and two
baseline sentence planners. We show that SPoT performs better than the
rule-based systems and the baselines, and as well as the hand-crafted
system.

� 2002 Published by Elsevier Science Ltd.

1. Natural language generation in dialogue systems

The past several years have seen a large increase in commercial spoken dialogue sys-
tems. These systems typically utilize system-initiative dialogue strategies, with system

Computer Speech and Language (2002) 16, 409–433
doi: 10.1016/S0885-2308(02)00027-X
Available online at http://www.idealibrary.com on

¤E-mail: walker@research.att.com
*Present address: Columbia Univeristy, New York, NY, U.S.A. E-mail: rambow@cs.columbia.edu
wE-mail: mrogati+@cs.cmu.edu

0885-2308/02/$35 � 2002 Published by Elsevier Science Ltd.

utterances highly scripted for style and register and recorded by voice talent. However
several factors argue against the continued use of these simple techniques for producing
the system side of the conversation. First, the quality of text-to-speech systems has
improved to the point of being a viable alternative to pre-recorded prompts (Beutnagel,
Conkie, Schroeter, Stylianou, & Syrdal, 1999). Second, there is a perceived need for
spoken dialogue systems to be more flexible and support user initiative, but this also
requires greater flexibility for system utterance generation. Finally, dialogue systems
that support complex planning are being developed, and these are likely to require more
sophisticated system output.

As we move away from systems with pre-recorded prompts, there are two possible
approaches to producing system utterances. The first is TEMPLATE-BASED generation,
in which system utterances are produced from hand-crafted string templates with
variables that are instantiated by the dialogue manager. Most current research systems
use template-based generation because it is conceptually fairly easy to produce high
quality output that is specific to each dialogue situation. However, while little or no
linguistic training is needed to write templates, it is a tedious and time-consuming task:
one or more templates must be written for each combination of goals and discourse
contexts, and linguistic issues such as subject–verb agreement and determiner–noun
agreement must be encoded in an ad hoc fashion each time the situation arises. Fur-
thermore, there is abundant anecdotal evidence that maintenance of the collection of
templates becomes a software engineering problem as the complexity of the dialogue
system increases.

The second approach is NATURAL LANGUAGE GENERATION (NLG), which cus-
tomarily divides the generation process into three modules (Levelt, 1989; Rambow &
Korelsky, 1992):

• During text planning, a high-level communicative goal is broken down into a struc-
tured representation of atomic communicative goals, i.e., goals that can be attained
with a single communicative act (in language, by uttering a single clause). The atomic
communicative goals may be linked by rhetorical relations which show how attaining
the atomic goals contributes to attain the high-level goal.

• During sentence planning, abstract linguistic resources are chosen to achieve the
atomic communicative goals. This includes choosing meaning-bearing lexemes, and
how the meaning-bearing lexemes are connected through abstract grammatical con-
structions. As a side-effect, sentence planning also determines sentence boundaries:
this happens when syntactic means are chosen which combine linguistic resources
for several communicative goals into one sentence (a process known as aggregation).
There need not be, and usually is not, a one-to-one relation between elementary com-
municative goals and sentences in the final text.

• During realization, the abstract linguistic resources chosen during sentence planning
are transformed into a surface linguistic utterance by adding function words (such as
auxiliaries and determiners), inflecting words, and determining word order. This
phase is not a planning phase in that it only executes decisions made previously.

The proposed architecture for a spoken dialogue system that incorporates NLG is
shown in Figure 1. NLG promises improved system output by allowing the Prosody
Assignment component to have access to all of the previous levels of representation.
NLG also promises portability across application domains and dialogue situations by
focusing on the development of rules for each generation module that are general and

410 M. A. Walker et al.

domain-independent. However, the quality of the output for a particular domain, or a
particular situation in a dialogue, may be inferior to that of a template-based system
without considerable investment in domain-specific rules or domain-tuning of general
rules. Furthermore, since rule-based systems use sophisticated linguistic representa-
tions, this handcrafting requires linguistic knowledge.

Recently, several different techniques for automatically training different modules of
an NLG system have been proposed (Bangalore & Rambow, 2000; Langkilde &
Knight, 1998; Mellish, Knott, Oberlander, & O’Donnell, 1998; Walker, 2000). These
hold the promise that the complex step of customizing NLG systems by hand can be
automated, while avoiding the need for tedious hand-crafting of templates. The re-
search reported in this paper concerns developing a trainable SENTENCE PLANNING

module for AT&T’s mixed-initiative DARPA Communicator system for travel plan-
ning, AMELIA (Levin et al., 2000; Walker et al., 2001), In AMELIA, the sentence
planner must be able to generate sentence plans for a large number of combinations of
communicative goals arising in many different contexts.

In this paper, we propose a new model of sentence planning called SPOT. In SPOT,
the sentence planner is automatically trained, using feedback from two human judges,
to choose the best from among different options for realizing a set of communicative
goals.

We evaluate the performance of the learning component of SPOT, and show that
SPOT learns to select sentence plans whose rating on average is only 5% worse than the
top human-ranked sentence plan. While this evaluation shows that SPOT has indeed
learned from the human judges, it does not show that using only two human judgments
is sufficient to produce more broadly acceptable results, nor does it show that SPOT
performs as well as optimized hand-crafted template or rule-based systems. In order to
explore this issue, we conducted a second set of experiments to evaluate SPOT. Because
SPOT is trained on data from AT&Ts DARPA Communicator system AMELIA, we
can directly compare SPOT to the hand-crafted, template-based generation component
of AMELIA. In order to perform an extensive comparison, we also implemented
several RULE-BASED sentence-planners and several BASELINE sentence-planners. One
baseline, which we call NO AGGREGRATION, simply produces a single sentence for each
communicative goal. Another baseline, which we call RANDOM, randomly makes de-
cisions about how to combine communicative goals into sentences. We directly com-
pare these different approaches in an evaluation experiment in which 60 human subjects
were asked to compare the quality of each system’s output by rating it on a scale of 1–5.
We show that SPOT performs better than both rule-based systems and as well as

Realizer
Sentence

Planner

Text

Manager
Dialog

Natural Language Generation

Planner
Prosody

Utterance
User

Utterance
System

Assigner

TTS

Natural Language Understanding ASR

Figure 1. Architecture of a dialogue system with natural language generation.

Training a sentence planner 411

AMELIA’s hand-crafted template-based system. These four systems outperform the
baseline sentence planners.

In the remainder of the paper, Section 2 describes the sentence planning task in more
detail. We then describe the sentence plan generator (SPG) in Section 3, the sentence
plan ranker (SPR) in Section 4, and the results of training in Section 5. The evaluation
experiment is described in Section 6. The sentence planners used in the evaluation are
described in Sections 6.1 and Section 6.2. Section 6.3 then presents the evaluation re-
sults. We delay the discussion of related work to Section 7 when we can compare it with
our approach. Section 8 summarizes our results and discusses future work.

2. The sentence planning task

The term ‘‘sentence planning’’ comprises many distinct tasks and many ways of or-
ganizing these tasks have been proposed in the literature. In general, the role of the
sentence planner is to choose abstract linguistic resources (meaning-bearing lexemes,
syntactic constructions) for a text plan. For example, consider the required capabilities
of a sentence planner for AMELIA as illustrated in Dialogue D1.

(D1) System1: Welcome. . . What airport would you like to fly out of?
User2: I need to go to Dallas.
System3: Flying to Dallas. What departure airport was that?
User4: from Newark on September the 1st.
System5: What time would you like to travel on September the 1st to

Dallas from Newark?
Utterance System1 requests information about the caller’s departure airport, but in
User2, the caller takes the initiative to provide information about her destination. In
System3, AMELIA’s goal is to implicitly confirm the destination (because of the pos-
sibility of error in the speech recognition component), and request information (for the
second time) of the caller’s departure airport. In User4, the caller provides this infor-
mation but also provides the month and day of travel. Given AMELIA’s current di-
alogue strategy, the communicative goals for its next turn are to implicitly confirm all
the information that the user has provided so far, i.e., the departure and destination
cities and the month and day information, as well as to request information about the
time of travel that has not yet been provided by the user. The system’s representation of
its communicative goals for utterance System5 is in Figure 2. The job of the sentence
planner is to decide among the large number of potential realizations of these com-
municative goals. Some example alternative realizations are in Figure 3. The meaning
of the human ratings and RankBoost scores in Figure 3 are discussed below.

In order to train SPOT, we reconceptualize the task of the sentence planner as
consisting of two distinct phases. In the first phase, the sentence-plan-generator (SPG)
generates a potentially large sample of possible sentence plans for a given text-plan
input. In the experiments reported below the sentence-plan-generator (SPG) generates
12–20 possible sentence plans for a given input text plan. Each speech act in the text
plan is assigned a canonical lexico-structural representation (called a DSyntS – Deep
Syntactic Structure (Mel�ccuk, 1988). The sentence plan is a tree recording how these
elementary DSyntS are combined into larger DSyntSs; the DSyntS for the entire input
text plan is associated with the root node of the tree. In the second phase, the sentence-
plan-ranker (SPR) ranks the sample sentence plans generated by the SPG, and then
selects the top-ranked output to input to the surface realizer RealPro (Lavoie &

412 M. A. Walker et al.

Rambow, 1997). It would also be consistent with our model for SPOT to pass a list of
N-best sentence plans along with their rankings to the surface realizer and prosodic
assignment components (Bulyko & Ostendorf, 2001). Given one or more sentence-plans
to rank, the SPR uses rules automatically learned from training data, using techniques
similar to (Collins, 2000; Freund, Iyer, Schapire, & Singer, 1998). The method we
propose for training a sentence planner is unique in neither depending on hand-crafted
rules, nor on the existence of a text or speech corpus in the domain of the sentence
planner obtained from the interaction of a human with a system or another human. The
architecture is summarized in Figure 4.

3. The sentence plan generator

The research presented here is primarily concerned with creating a trainable SPR. A
strength of our approach is the ability to use a very simple SPG, as we explain below.
The basis of our SPG is a set of clause-combining operations that incrementally
transform a list of elementary predicate-argument representations (the DSyntSs

Figure 2. The text plan (communicative goals) for utterance System5 in dialogue
D1.

Figure 3. Alternative sentence plan realizations for the text plan for utterance
System5 in dialogue D1. H, human rating, RB, RankBoost score.

Figure 4. Architecture of SPoT.

Training a sentence planner 413

corresponding to elementary speech acts, in our case) into a single lexico-structural
representation, by combining these representations using the following combining
operations. Examples can be found in Figure 5. Since the combination of clauses de-
pends to a certain extent on language-specific syntax, the ‘‘semantic’’ representations
must already be quite close to a lexical-structural representation, and we use a lexical
predicate-argument structure, namely the ‘‘Deep-Syntactic Structure’’ (DSyntS) of
Meaning-Text Theory (Mel�ccuk, 1988).
• MERGE. Two identical main matrix verbs can be identified if they have the same
arguments; the adjuncts are combined.

• MERGE-GENERAL. Same as MERGE, except that one of the two verbs may be
embedded.

• SOFT-MERGE. Same as MERGE, except that the verbs need only to be in a relation of
synonymy or hyperonymy (rather than being identical).

• SOFT-MERGE-GENERAL. Same as MERGE-GENERAL, except that the verbs need
only to be in a relation of synonymy or hyperonymy.

• CONJUNCTION. This is standard conjunction with conjunction reduction.
• RELATIVE-CLAUSE. This includes participial adjuncts to nouns.
• ADJECTIVE. This transforms a predicative use of an adjective into an adnominal
construction.

• PERIOD. Joins two complete clauses with a period.
These operations are not domain-specific and are similar to those of previous aggre-
gation components (Danlos, 2000; Rambow & Korelsky, 1992; Shaw, 1998), although
the various MERGE operations are, to our knowledge, novel in this form.

In addition, we use a rule which does not combine two clauses but instead modifies a
single clause:
• RANDOM-CUEWORD adds a cueword randomly from among All right, now, OK, or

and.
The result of applying the operations is a sentence plan tree (or sp-tree for short), which
is a binary tree with leaves labeled by all the elementary speech acts from the input text

Figure 5. List of clause combining operations with examples from our domain; an
explanation of the operations is given in Section 3.

414 M. A. Walker et al.

plan, and with its interior nodes labeled with clause-combining operations. The sp-tree
is inspired by Lavoie & Rambow (1998). The representations used by Danlos (2000),
Gardent & Webber (1998), Stone & Doran (1997) are similar, but do not (always)
explicitly represent the clause-combining operations as labeled nodes. In our repre-
sentation of the sp-tree, each node is also associated with a DSyntS: the leaves (which
correspond to elementary speech acts from the input text plan) are linked to a canonical
DSyntS for that speech act (by lookup in a hand-crafted dictionary). It would also be
consistent with our approach for a set of DSyntSs to be associated with each speech act,
rather than a single DSyntS as in these experiments.

The interior nodes are associated with DSyntSs by executing their clause-combining
operation on their two daughter nodes. (A PERIOD node results in a DSyntS headed by
a period and whose daughters are the two daughter DSyntSs.) If a clause combination
fails, the sp-tree is discarded (for example, if we try to create a relative clause of a
structure which already contains a period). As a result, the DSyntS for the entire turn is
associated with the root node. This DSyntS can be sent to RealPro, which returns a
sentence (or several sentences, if the DSyntS contains period nodes). The SPG is de-
signed in such a way that if a DSyntS is associated with the root node, it is a valid
structure which can be realized.

Figure 3 shows some of the realizations of alternative sentence plans generated by
our SPG for utterance System5 in Dialogue D1. Sp-trees for alternatives 0, 5, and 8 are
in Figures 6–8. For example, consider the sp-tree in Figure 8. Node soft-merge-general
merges an implicit-confirmation of the destination city and the origin city. The row
labelled SOFT-MERGE in Figure 5 shows the result of applying the soft-merge operation
when Args 1 and 2 are implicit confirmations of the origin and destination cities. Figure
9 illustrates the relationship between the sp-tree and the DSyntS for alternative 8. The
labels and arrows show the DSyntSs associated with each node in the sp-tree (in Figure
8), and the diagram also shows how structures are composed into larger structures by
the clause-combining operations.

Figure 6. Alternative 0 sentence plan tree.

Figure 7. Alternative 5 sentence plan tree.

Training a sentence planner 415

The complexity of most sentence planners arises from the attempt to encode con-
straints on the application of, and ordering of, the operations, in order to generate a
single high quality sentence plan. In our approach, we do not need to encode such
constraints. Rather, we generate a random sample of possible sentence plans for each
text plan, up to a pre-specified maximum number of sentence plans, by randomly se-
lecting among the operations according to some probability distribution. Here the
probability distribution is hand-crafted based on assumed preferences for operations
such as SOFT-MERGE and SOFT-MERGE-GENERAL over CONJUNCTION and PERIOD.
This allows us to bias the SPG to generate plans that are more likely to be high quality,
while generating a relatively smaller sample of sentence plans. We could also train
in two phases where the goal of the first phase would be to learn this probability
distribution.

4. The sentence-plan-ranker

The sentence-plan-ranker SPR takes as input a set of sentence plans generated by the
SPG and ranks them. In order to train the SPR we applied the machine learning
program RankBoost (Freund et al., 1998), to learn from a labelled set of sentence-plan

Figure 8. Alternative 8 sentence plan tree.

Figure 9. Alternative 8 DSyntS (not all linguistic features are shown).

416 M. A. Walker et al.

training examples a set of rules for scoring sentence plans. Our motivation for treating
sentence planning as a ranking problem is that it seems clear that, for many generation
problems, there is no single correct answer, but rather a partial order of acceptability
for many different solutions. In the remainder of the section, we describe how we train
the SPR. Section 4.1 first describes the training data and how it was collected. Section
4.2 presents the RankBoost algorithm. Section 4.3 describes the process for auto-
matically generating the feature sets used as input to RankBoost and the features
themselves.

4.1. Examples and feedback

To apply RankBoost, we require a set of example sp-trees, each of which have been
rated, and encoded in terms of a set of features (see below). We started with a corpus of
100 text plans generated in context in 25 dialogues by the AMELIA dialogue system.
We modified the dialogue manager of AMELIA to generate text plans by writing out a
text-plan to the logfile for each communicative goal that AMELIA achieved by sending
a template to the TTS engine. We then extracted the text plans that were generated in
context from the logfiles to produce a set of 100 text plans. We then ran the SPG,
parameterized to generate at most 20 distinct sp-trees for each text plan. Since not all
text plans have 20 valid sp-trees (while some have many more), this resulted in a corpus
of 1868 sentence plans. These 1868 sp-trees, realized by RealPro, were then rated by two
judges (the first two authors of this paper), who are native speakers, in the context of
the transcribed original dialogues (and therefore also with respect to their adequacy
given the communicative goals for that turn). The judges were asked to indicate their
degree of agreement with the statement: The system’s utterance is easy to understand,
well-formed, and appropriate to the dialogue context on a scale from 1 to 5. The ratings
given by the judges were then averaged to provide a rating between 1 and 5 for each
sentence plan alternative. Figure 10 shows that the rankings assigned to the sentence
plans were normally distributed with a range from 1 to 5; the mean was 2.86 and the

Figure 10. Human rankings for all 1868 sentence plans.

Training a sentence planner 417

median was 3. Approximately 97% of the text plans had at least one sentence-plan
output that was ranked 4 or higher. This, along with the normal distribution, indicates
that the sentence plan generator had the capability to generate high quality sentence
plans, but that it is not trivial to do so by random selection of operations. Each sp-tree
provided an example input to RankBoost, and each corresponding rating was the
feedback for that example.

4.2. RankBoost

RankBoost is a member of a family of boosting algorithms (Schapire, 1999). The
boosting algorithm for ranking is described in detail elsewhere (Freund et al., 1998): for
completeness, we give a brief description in this section. To train the SPR each example
x is represented by a set of m indicator functions hsðxÞ for 1 � s � m. The indicator
functions are calculated by thresholding the feature values (counts) described in Section
4.3. For example, one such indicator function might be

h100ðxÞ ¼
1 if dsynt-traversal-pronounðxÞ;

� 2;
0 otherwise:

8<
: :

So h100ðxÞ ¼ 1 if the number of pronouns in x is � 2. A single parameter as is associated
with each indicator function, and the ‘‘ranking score’’ for an example x is then cal-
culated as

FðxÞ ¼
X
s

ashsðxÞ:

This score is used to rank competing sp-trees of the same text plan in order of their
‘‘goodness.’’ The training examples are used to set the parameter values as. The human
judgments are converted into a training set of ordered pairs of examples x; y, where x
and y are candidates for the same sentence, and x is strictly preferred to y. More for-
mally, the training set T is

T ¼ fðx; yÞjx; y are realizations for the same text plan; x is preferred to y by

human judgmentsg:

Thus each text plan with 20 candidates could contribute up to ð20 	 19Þ=2 ¼ 190 such
pairs: in practice, fewer pairs could be contributed due to different candidates getting
tied scores from the annotators.

Training is the process of setting the parameters as to minimize the following loss
function:

Loss ¼
X

ðx;yÞ2T
e�ðFðxÞ�FðyÞÞ:

It can be seen that as this loss function is minimized, the values for ðFðxÞ � FðyÞÞ where
x is preferred to y will be pushed to be positive, so that the number of ranking errors
(cases where ranking scores disagree with human judgments) will tend to be reduced.
Initially all parameter values are set to zero. The optimization method then greedily

418 M. A. Walker et al.

picks a single parameter at a time – the parameter which will make the most impact on
the loss function – and updates the parameter value to minimize the loss. The result is
that substantial progress is typically made in minimizing the error rate, with relatively
few non-zero parameter values. Freund et al. show that under certain conditions the
combination of minimizing the loss function while using relatively few parameters leads
to good generalization on test data examples (Schapire, 1999). Empirical results for
boosting (including ours) have shown that in practice the method is highly effective
(Freund et al., 1998).

4.3. Features used by RankBoost

RankBoost, like other machine learning programs of the boosting family, can handle a
very large number of features. Therefore, instead of carefully choosing a small number
of features by hand which may be useful, we generated a very large number of features
and let RankBoost choose the relevant ones. In total, we used 3291 features in training
the SPR. Features were discovered from the actual sentence plan trees that the SPG
generated through the feature derivation process described below, in a manner similar
to that used by Collins (2000). The motivation for the features was to represent in a
declarative way control decisions that were taken by the randomized SPG during the
construction of the sp-tree. To encourage the learning of general rules, we avoided
features specific to particular text plans by discarding those that occurred fewer than 10
times.

Features are derived from two sources: the sp-trees and the DSyntSs associated with
the root nodes of sp-trees. The feature names are prefixed with ‘‘sp-’’ or ‘‘dsynt-’’ de-
pending on the source. There are two types of features: local and global. Local features
record structural configurations local to a particular node, i.e., that can be described
with respect to a single node (such as its ancestors, its daughters, etc.). The value of the
feature is the number of times this configuration is found in the sp-tree or DSyntS. Each
type of local feature also has a corresponding parameterized or lexicalized version,
which is more specific to aspects of the particular dialogue in which the text plan was
generated.1 Global features record properties of the entire tree. Features and examples
are discussed below.

Traversal features. For each node in the tree, features are generated that record the
preorder traversal of the subtree rooted at that node, for all subtrees of all depths (up to
the maximum depth). Feature names are constructed with the prefix ‘‘traversal-,’’ fol-
lowed by the concatenated names of the nodes (starting with the current node) on the
traversal path. As an example, consider the sp-tree in Figure 6. Feature SP-TRA-

VERSAL-SOFT-MERGE*IMPLICIT-CONFIRM*IMPLICIT-CONFIRMVERSAL-SOFT-MERGE*IMPLICIT-CONFIRM*IMPLICIT-CONFIRM has value 1, since it
counts the number of subtrees in the sp-tree in which a soft-merge rule dominates two
implicit-confirm nodes. In the DSyntS tree for alternative 8 (Figure 9), feature DSYNT-

TRAVERSALTRAVERSAL-PRONOUN, which counts the number of nodes in the DSyntS tree la-
belled PRONOUN (explicit or empty), has value 4.

Sister features. These features record all consecutive sister nodes. Names are con-
structed with the prefix ‘‘sisters-,’’ followed by the concatenated names of the sister
nodes. As an example, consider the sp-tree shown in Figure 8, and the DSyntS tree

1
Lexicalized features could be useful in learning lexically specific restrictions on aggregation (for example, for
verbs such as meet).

Training a sentence planner 419

shown in Figure 9. Feature DSYNT-SISTERS-PRONOUN-ON1 counts the number of
times the lexical items PRONOUN and ON1 are sisters in the DSyntS tree; its value is 1
in Figure 9. Another example is feature SP-SISTERS-IMPLICIT-CONFIRM*IMPLICIT-

CONFIRMCONFIRM, which describes the configuration of all implicit confirms in the sp-trees in;
its value is 2 for all three sp-trees in Figures 6–8.

Ancestor features. For each node in the tree, these features record all the initial
subpaths of the path from that node to the root. Feature names are constructed with
the prefix ‘‘ancestor-’’, followed by the concatenated names of the nodes (starting with
the current node). For example, the feature SP-ANCESTOR*IMPLICIT-CONFIRM-ORIG-

CITY*SOFT-MERGE-GENERAL*SOFT-MERGE- GENERALCITY*SOFT-MERGE-GENERAL*SOFT-MERGE- GENERAL counts the number of times
that two soft-merge-general nodes dominate an implicit confirm of the origin city; its
value is 1 in the sp-trees of Figures 6 and 7, but 0 in the sp-tree of Figure 8.

Leaf features. These features record all initial substrings of the frontier of the sp-tree,
which consists of elementary speech acts. Names are prefixed with ‘‘leaf-,’’ and are then
followed by the concatenated names of the frontier nodes (starting with the current
node). The value is always 0 or 1. For example, the sp-trees of Figures 6–8 have value 1
for features LEAF-IMPLICIT-CONFIRM AND LEAF-IMPLICIT-CONFIRM*IMPLICIT-

CONFIRMCONFIRM, representing the first two sequences of speech acts on the leaves of the tree.
Figure 6 sp-tree has value 1 for features LEAF-IMPLICIT-CONFIRM*IMPLICIT-CON-

FIRM*REQUEST LEAF-IMPLICIT-CONFIRM*IMPLICIT-CONFIRM*REQUEST*IM-FIRM*REQUEST, and LEAF-IMPLICIT-CONFIRM*IMPLICIT-CONFIRM*REQUEST*IM-

PLICIT-CONFIRMPLICIT-CONFIRM. Each of these has a corresponding parameterized feature, e.g. for
LEAF-IMPLICIT-CONFIRM LEAF-LEAF-IMPLICIT-CONFIRM, there is a corresponding parameterized feature of LEAF-

IMPLICIT-CONFIRM-ORIG-CITYIMPLICIT-CONFIRM-ORIG-CITY.
Global features. The global sp-tree features record, for each sp-tree and for each

operation labeling a non-frontier node (i.e., rule such as CONJUNCTION or MERGE-

GENERALGENERAL): (1) the minimal number of leaves (elementary speech acts) dominated by a
node labeled with that rule in that tree (MIN); (2) the maximal number of leaves
dominated by a node labeled with that rule (MAX); and (3) the average number of
leaves dominated by a node labeled with that rule (AVG). For example, the sp-tree for
alternative 8 in Figure 8 has value 2 for SOFT-MERGE-GENERAL-MAX-MIN, and -AVG,
but a PERIOD-MAX of 5, PERIOD-MIN of 2 and PERIOD-AVG of 3.5.

5. Experimental results

To train and test the SPR we partitioned the corpus into five disjoint folds and per-
formed 5-fold cross-validation, in which at each fold, 80% of the examples were used
for training an SPR and the other unseen 20% was used for testing. The folds were
created by randomly choosing text plans that are input to SPOT. Thus each fold
contains all the sentence plans for a given text plan. This method ensures that every
example occurs once in the test set. We evaluate the performance of the trained SPR on
the test sets of text plans by comparing for each text plan:

• BEST: The score of the top human-ranked sentence plan(s);
• SPOT: The score of SPOT’s selected sentence plan;
• RANDOM: The score of a sentence plan randomly selected from the alternate sen-
tence plans.

Figure 11 shows the cumulative distributions of scores for the highest ranked sp-tree
for each of the 100 text plans, according to the human judges, according to SPOT, and

420 M. A. Walker et al.

according to random choice. Table I provides a summary of the means and standard
deviations. The human rankings provide a topline for SPOT (since SPOT is choosing
among options ranked by the humans, it cannot possibly do better), while the random
scores provide a baseline. The BEST distribution shows that 97% of text plans had at
least one sentence plan ranked 4 or better. The RANDOM distribution approximates
the distribution of rankings for all sentence plans for all examples; the straight diagonal
line shows that this is a normal distribution.

Because each text plan is used in some fold of 5-fold cross-validation as a test ele-
ment, we assess the significance of the ranking differences with a paired t-test of SPOT
to BEST and SPOT to RANDOM.

A paired t-test of SPOT to BEST shows that there are significant differences in
performance (t ¼ 4:9, p < 0:005). Perfect performance would have meant that there
would be no significant difference. However, the mean of BEST is 4.82 as compared
with the mean of SPOT of 4.56, for a mean difference of 0.26 on a scale of 1–5 where
scores closer to 5 are better. This is only a 5% difference in performance. Figure 11 also
shows that the main differences are in the lower half of the distribution of rankings. The
figure indicates that both BEST and SPOT have more than 50 out of 100 sentence plans
with a score of 5. In other words, both distributions have a median of 5.

TABLE I. Results, in comparison to topline and random baseline

Features used Mean score SD
BEST 4.82 .40
SPoT 4.56 .68
RANDOM 2.76 .95

1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

90

100

Score

N
um

be
r

of
 p

la
ns

 w
ith

 th
at

 s
co

re
 o

r
m

or
e

BEST
SPOT
RANDOM

Figure 11. Distribution of rankings for BEST, SPOT, and RANDOM.

Training a sentence planner 421

A paired t-test of SPOT to RANDOM shows that there are also significant differ-
ences in performance (t ¼ 18:2, p < 0:005). The median of the RANDOM distribution
is 2.50 as compared to SPOT’s median of 5.0. The mean of RANDOM is 2.76, as
compared to the mean of SPOT of 4.56, for a mean difference of 1.8 on a scale of 1 to 5.
The performance difference in this case is 36%, showing a large difference in the per-
formance of SPOT and RANDOM.

We then examined the rules that SPOT learned in training and the resulting Rank-
Boost scores. Figure 3 shows, for each alternative sentence plan, the BEST rating used
as feedback to RankBoost and the score that RankBoost gave that example when it was
in the test set in a fold. Recall that RankBoost focuses on learning relative scores, not
absolute values, so the scores are normalized to range between 0 and 1.

Figure 12 shows some of the rules that were learned on the training data, that were
then applied to the alternative sentence plans in each test set of each fold in order to
rank them. We include only a subset of the rules that had the largest impact on the score
of each sp-tree. We discuss some particular rule examples here to help the reader un-
derstand how SPOT’s SPR works, but leave it to the reader to examine the thresholds
and feature values in the remainder of the rules and sum the increments and decre-
ments.

Rule (1) in Figure 12 states that an implicit confirmation as the first leaf of the sp-tree
leads to a large (.94) increase in the score. Thus all three of our alternative sp-trees

Figure 12. Rules with the largest impact on the final RankBoost score. as rep-
resents the increment or decrement associated with satisfying the condition. The
columns A0, A5, and A8 give the values of the feature for alternatives 0, 5, and 8.

422 M. A. Walker et al.

shown in Figures 6–8 accrue this ranking increase. Rules (2) and (5) state that the
occurrence of 2 or more PRONOUN nodes in the DSyntS reduces the ranking by 0.85,
and that 3 or more PRONOUN nodes reduces the ranking by an additional 0.34.
Alternative 8 is above the threshold for both of these rules; alternative 5 is above the
threshold for Rule (2) and alternative 0 is always below the thresholds. Rule (6) on the
other hand increases only the scores of alternatives 0 and 5 by 0.33 since alternative 8 is
below the threshold for that feature.

Note also that the quality of the rules in general seems to be high. Although we
provided multiple instantiations of features, some of which included parameters or
lexical items that might identify particular discourse contexts, most of the learned rules
utilize general properties of the sp-tree and the DSyntS. This is probably partly due to
the fact that we eliminated features that appeared fewer than 10 times in the training
data, but also partly due to the fact that boosting algorithms in general appear to be
resistant to overfitting the data (Freund et al., 1998).

In order to examine this issue further, we conducted a second set of experiments in
which we partitioned the features and trained and tested SPOT on subsets of the
original feature set. We were primarily interested in exploring the generalization po-
tential of the SPR to other dialogue situations, but we were also interested in which
types of features contributed most to performance. Thus we considered two orthogonal
partitions of the features. The first partition divides the features into sentence-planning
features (those from the sp-tree) and syntactic features (those from the DSyntS tree).
The second partition divides the features into three sets according to their level of
domain and task dependence. Domain-independent features are features whose names
include only closed-class lexical items, e.g. in, or names of the sentence plan tree op-
erations, e.g. merge. Domain-dependent, task-independent features are those whose
names include open class lexical items specific to this domain, e.g. travel or the names of
the role slots, e.g. destination city. Domain-dependent, task-dependent features are
features whose names include the value of a role filler for the domain, e.g. Albuquerque.

We ran a second set of experiments using these partitions, with results shown in
Table II. We compared the SPR’s performance at selecting a high ranking option for
each feature partition shown in the table to the performance using all the features, and
to other feature sets using t-tests with the modified Bonferroni statistic for multiple
comparisons (Wilks, 1962). Because RankBoost uses a greedy algorithm, it is possible
for a subset of a feature set to perform better than the whole feature set. The results
indicated that the DOMAIN-INDEPENDENT feature set (Row 3) performs as well as all

TABLE II. Results for subsets of features, and (for the sake of
comparison), for BEST

Features used Mean score SD
BEST 4.82 .40
ALLALL (¼ SPOT) 4.56 .68
DOMAIN-INDEPENDENTDOMAIN-INDEPENDENT 4.55 .69
SP-DOMAIN-INDEPENDENTSP-DOMAIN-INDEPENDENT 4.52 .74
TASK-INDEPENDENTTASK-INDEPENDENT 4.20 .99
TASK-DEPENDENTTASK-DEPENDENT 3.90 1.19
SPSP 4.41 .90
DSYNTSDSYNTS 4.13 1.17

Training a sentence planner 423

the features (t ¼ :168, p ¼ :87), and that both the TASK INDEPENDENT (t ¼ 6:25,
p < 0:00001) and the TASK DEPENDENT (t ¼ 4:58, p < 0:00001) feature sets perform
worse. The sentence planning features SP also perform worse than all the features
(t ¼ 2:54, p < :04), but better than the DSyntS features (t ¼ p ¼ 2:56, p < :04). The
DSyntS features perform worse than all the features (t ¼ 4:19, p < 0:00001). The do-
main-independent subset of the sp features (SP-DOMAIN-INDEPENDENT) also performs
as well as all the features (t ¼ :68, p ¼ 1:0).

6. Evaluation of SPoT

The evaluation discussed in the previous section shows that SPOT has indeed learned
from the human judges. However, it does not show that using only two human judg-
ments is sufficient to produce more broadly acceptable results, nor does it show that
SPOT performs as well as optimized hand-crafted template or rule-based systems. In
order to explore this issue, we conducted a second set of experiments to evaluate SPOT.
Because SPOT is trained on data from AT&Ts DARPA Communicator system AM-
ELIA, we can directly compare SPOT to the hand-crafted, template-based generation
component of AMELIA. In order to perform an extensive comparison, we also im-
plemented several RULE-BASED sentence-planners and several BASELINE sentence-
planners. One baseline, which we call NO AGGREGRATION, simply produces a single
sentence for each communicative goal. Another baseline, which we call RANDOM,
randomly makes decisions about how to combine communicative goals into sentences.
We directly compare these different approaches in an experiment in which 60 human
subjects rank the outputs of these different generators in the context of a spoken dia-
logue. An example output for each system for the text plan in Figure 2 is in Figure 13.
We described SPOT above in detail and describe the RULE-BASED and BASELINE

sentence planners in Sections 6.1 and 6.2.
The most important comparison is that between SPOT and the current generation

component of AMELIA. Like most working research spoken dialogue systems, AM-
ELIA uses hand-crafted, template-based generation. Its output is created by choosing

Figure 13. Sample outputs for System5 of Dialogue D1 for each type of
generation system used in the evaluation experiment.

424 M. A. Walker et al.

string templates for each elementary speech act, using a large choice function which
depends on the type of speech act and various context conditions. Values of template
variables (such as origin and destination cities) are instantiated by the dialogue man-
ager. The string templates for all the speech acts of a turn are heuristically ordered and
then appended to produce the output. In order to produce output that is not highly
redundant, string templates would need to be written for every possible combination of
speech acts in a text plan. We refer to the output generated by AMELIA using this
approach as the TEMPLATE output.

The experiment required human subjects to read five dialogues of real interactions
with AMELIA. At 20 points over the five dialogues, AMELIA’s actual utterance
(TEMPLATE) is augmented with a set of variants; each set of variants included a rep-
resentative generated by SPOT, and representatives of the four comparison sentence
planners. At times two or more of these variants coincided, in which case sentences were
not repeated and fewer than six sentences were presented to the subjects. The order of
the sentences was randomized (though all subjects saw the same order). The subjects
rated each variation on a 5-point Likert scale, by stating the degree to which they
agreed with the statement The system’s utterance is easy to understand, well-formed, and
appropriate to the dialogue context. Sixty colleagues not involved in this research
completed the experiment. In this evaluation technique the human subject is essentially
an overhearer of the original conversation and makes judgements based on his or her
overhearer status (Clark & Wilkes-Gibbs, 1986).

The remainder of this section describes the five sentence planners that we compare in
more detail. SPOT, the two rule-based systems, and the two baseline sentence planners
are all NLG based sentence planners. We described SPOT above. In all of the NLG
sentence planners, each speech act is assigned a canonical lexico-structural represen-
tation (called a DSyntS – Deep Syntactic Structure (Mel�ccuk, 1988), as described for
SPOT above. The basis of all the NLG systems are the clause-combining operations
described in Section 3, and all of the NLG systems utilize the RealPro Surface realizer
(Lavoie & Rambow, 1997). We exclude issues of lexical choice from this study, and
restrict our attention to the question of how elementary structures for separate ele-
mentary speech acts are assembled into extended discourse. Each of the sentence
planners used in the evaluation experiment vary how the sp-tree is constructed. Section
6.1 describes the baselines, RANDOM and NOAGG. Section 6.2 describes the rule-based
sentence planners, RBS and ICF.

6.1. Baseline sentence planners

In one obvious baseline system, the sp-tree is constructed by applying only the PERIOD

operation: each elementary speech act is realized as its own sentence. This baseline,
NOAGG, was suggested by Hovy & Wanner (1996). For NOAGG, we order the com-
municative acts from the text plan as follows: implicit confirms precede explicit
confirms precede requests. Figure 13 includes a NOAGG output for the text plan in
Figure 2.

The second baseline sentence planner simply applies combination rules randomly in
the same way as the SPG described in Section 3, but stops when it has generated a single
valid sentence plan. The resulting sentence planner we refer to as RANDOM. Figure 13
includes a RANDOM output for the text plan in Figure 2.

Training a sentence planner 425

6.2. Two rule-based sentence planners

It has not been the object of our research to construct a rule-based sentence planner by
hand, be it domain-independent or optimized for our domain. Our goal is to compare
the SPOT sentence planner with a representative rule-based system. We decided against
using an existing off-the-shelf rule-based system, since it would be too complex a task to
port it to our application. Instead, we constructed two reasonably representative rule-
based sentence planners. This task was made easier by the fact that we could reuse
much of the work done for SPOT, in particular the data structure of the sp-tree and the
implementation of the clause-combining operations. We developed the two systems by
applying heuristics for producing good output, such as preferences for aggregation.
However there were no guidelines for ordering the combinations of speech acts that we
see in the text plans for spoken dialogue systems. Since it was not clear which ordering
would be optimal across all text plans, we constructed two rule-based systems that
differ only in the initial ordering of the communicative acts in the input text plan.

In the first rule-based system, RBS (for ‘‘Rule-Based System’’), we order the speech
acts with explicit confirms first, then requests, then implicit confirms. Note that explicit
confirms and requests do not co-occur in our data set. The second rule-based system is
identical, except that implicit confirms come first rather than last. This system we call
ICF (for ‘‘Rule-based System with Implicit Confirms First’’).

In the initial step of both RBS and ICF, we take the two leftmost members of the
text plan and try to combine them using the following preference ranking of the
combination operations: ADJECTIVE, the MERGEs, CONJUNCTION, RELATIVE-

CLAUSE ERIODCLAUSE, PERIOD. The first operation to succeed is chosen. This yields a binary sp-tree
with three nodes, which becomes the current sp-tree. As long as the root node of the
current sp-tree is not a PERIOD, we iterate through the list of remaining speech acts on
the ordered text plan, combining each one with the current sp-tree using the preference-
ranked operations as just described. The result of each iteration step is a binary, left-
branching sp-tree. However, if the root node of the current sp-tree is a PERIOD, we start
a new current sp-tree, as in the initial step described above. When the text plan has been
exhausted, all partial sp-trees (all of which except for the last one are rooted in PERIOD)
are combined in a left-branching tree using PERIOD. Cue words are added as follows:
(1) The cue word now is attached to utterances beginning a new subtask; (2) The cue
word and is attached to utterances continuing a subtask; (3) The cue words alright or
okay are attached to utterances containing implicit confirmations (Hirschberg & Lit-
man, 1993). Figure 13 includes an RBS and an ICF output for the text plan in Figure 2.
In this case ICF and RBS differ only in the verb chosen as a more general verb during
the SOFT-MERGE operation.

We illustrate the RBS procedure with an example for which ICF works similarly.
For RBS, the text plan in Figure 2 is ordered so that the request is first. For the request,
the DSyntS can be paraphrased as What time would you like to leave?. Then, the first
implicit-confirm is translated by lookup into a DSyntS which on its own could generate
Leaving in September. We first try the ADJECTIVE aggregation operation, but since
neither tree is a predicative adjective, this fails. We then try the MERGE family.
MERGE-GENERAL succeeds, since the tree for the request has an embedded node la-
beled leave. The resulting DSyntS can be paraphrased as What time would you like to
leave in September?, and is attached to the new root node of the resulting sp-tree. The
root node is labeled MERGE-GENERAL, and its two daughters are the two speech acts.

426 M. A. Walker et al.

The implicit-confirm of the day is added in a similar manner (adding another left-
branching node to the sp-tree), yielding a DSyntS that can be paraphrased asWhat time
would you like to leave on September the 1st? (using some special-case attachment for
dates within MERGE). We now try and add the DSyntS for the implicit-confirm, whose
DSyntS might generate Going to Dallas. Here, we again cannot use ADJECTIVE, nor
can we use MERGE or MERGE-GENERAL, since the verbs are not identical. Instead, we
use SOFT-MERGE-GENERAL, which identifies the leave node with the go root node of
the DSyntS of the implicit-confirm. When soft-merging leave with go, fly is chosen as a
generalization, resulting in a DSyntS that can be generated as What time would you like
to fly on September the 1st to Dallas? The sp-tree has added a layer but is still left-
branching. Finally, the last implicit-confirm is added to yield a DSyntS that is realized
as What time would you like to fly on September the 1st to Dallas from Newark?

6.3. Evaluation results

All 60 subjects completed the experiment in a half hour or less. The experiment resulted
in a total of 1200 judgments for each of the systems being compared, since each subject
judged 20 utterances by each system. We first discuss overall differences among the
different systems and then make comparisons among the four different types of systems:
(1) TEMPLATE, (2) SPOT, (3) two rule-based systems, and (4) two baseline systems. All
statistically significant results discussed here had p values of less than .01.

A comparison of the average ratings of BEST and SPOT in Table I with those in
Table III shows that that the 60 human subjects gave overall lower ratings to BEST and
SPOT than the two expert judges. This difference may be due to individual variation, or
to the fact that the judges were explicitly attempting to use the full range of values when
giving feedback for training. In any case, the fact that our learning method is based on
ranking differences rather than absolute values means that only relative ranking is
important.

We then turned to the question of whether differences in human ratings (score) were
predictable from the type of system that produced the utterance being rated. A one-way
ANOVA with system as the independent variable and score as the dependent variable
showed that there were significant differences in score as a function of system. The
overall differences are summarized in Table III.

As Table III indicates, some system outputs received more consistent scores than
others, e.g. the standard deviation for TEMPLATE was much smaller than RANDOM.
The ranking of the systems by average score is TEMPLATE, SPOT, ICF, RBS, NOAGG,
and RANDOM. Posthoc comparisons of the scores of individual pairs of systems using
the adjusted Bonferroni statistic revealed several different groupings.

TABLE III. Summary of overall results for all systems evaluated

System Mean score SD
TEMPLATETEMPLATE 3.94 1.11
SPoT 3.88 1.27
BEST 3.76 1.29
RBS 3.38 1.43
ICF 3.50 1.43
No aggregation 3.01 1.22
Random 2.66 1.45

Training a sentence planner 427

The highest ranking systems were TEMPLATE and SPOT, whose ratings were not
statistically significantly different from one another. This shows that it is possible to
match the quality of a hand-crafted system with a trainable one, which should be more
portable, more general and require less overall engineering effort.

The next group of systems were the two rule-based systems, ICF and RBS, which
were not statistically different from one another. However SPOT was statistically better
than both of these systems (p < :01). Figure 14 shows that SPOT got more high
rankings than either of the rule-based systems. In a sense this may not be that sur-
prising, because as (Hovy & Wanner, 1996) point out, it is difficult to construct a rule-
based sentence planner that handles all the rule interactions in a reasonable way.
Features that SPoT’s SPR uses allow SPOT to be sensitive to particular discourse
configurations or lexical collocations. In order to encode these in a rule-based sentence
planner, one would first have to discover these constraints and then determine a way of
enforcing them. However the SPR simply learns that a particular configuration is less
preferred, resulting in a small decrement in ranking for the corresponding sp-tree. This
flexibility of incrementing or decrementing a particular sp-tree by a small amount may
in the end allow it to be more sensitive to small distinctions than a rule-based system.

Along with the TEMPLATE and RULE-BASED systems, SPOT also scored better than
the baseline systems NOAGG and RANDOM. This is also somewhat to be expected,
since the baseline systems were intended to be the simplest systems constructable.
However it would have been a possible outcome for SPOT to not be different than
either system, e.g. if the sp-trees produced by RANDOM were all equally good, or if the
aggregation rules that SPOT learned produced output less readable than NOAGG.
Figure 14 shows that the distributions of scores for SPOT vs. the baseline systems are
very different, with SPOT skewed towards higher scores.

Figure 14. Chart comparing distribution of human ratings for SPOT, RBS, ICF,
NOAGG, and RANDOM.

428 M. A. Walker et al.

Interestingly NOAGG also scored significantly better than RANDOM (p < :01), and
the standard deviation of its scores was smaller (see Table III). Remember that RAN-

DOMDOM’s sp-trees often resulted in arbitrarily ordering the speech acts in the output. While
NOAGG produced long redundant utterances, it placed the initiative taking speech act
at the end of the utterance in its most natural position, possibly resulting in a preference
for NOAGG over RANDOM. Another reason to prefer NOAGG could be its predict-
ability.

7. Related work

Machine learning approaches to natural language generation have only recently begun
to be applied and there are many open issues with respect to the appropriate models
and algorithms. To our knowledge, there is no other work reporting a machine learning
approach to the problem of sentence scoping, but other work has explored automati-
cally training other modules of a generator. A similar architecture to the one we pro-
pose for sentence planning was suggested for stochastic generation in general by
Oberlander & Brew (2000). There has been little work to date on using machine
learning approaches for text planning. Duboue & McKeown (2001) describe algorithms
to estimate content ordering constraints for descriptions in the medical domain. Jordan
& Walker (2000) applied rule induction to select the content of nominal expressions,
comparing the output of the learner with what a human had originally said in a human–
human dialogue.

Mellish et al. (1998) conducted a set of experiments using reinforcement learning (i.e.
genetic algorithms) to determine the selection of utterances and their sequence when
describing items in a museum collection. This project combines aspects of text planning
and sentence planning since content selection is part of text planning, and the linear
ordering of a set of communicative goals is typically considered a sentence planning
problem. They showed that given an appropriate feedback function, this method could
learn selection and sequencing rules, however they did not evaluate the system’s output
by soliciting human judgments or comparing to human performance as we do here.

Other related work deals with discourse-related aspects of sentence planning such as
cue word placement and selection (Di Eugenio, Moore, & Paolucci, 1997; Moser &
Moore, 1995), clearly a crucial task whose integration into our approach we leave to
future work.

There have also been a number of studies on using statistical methods for surface
realization and prosody prediction. In surface realization, the focus has been on fil-
tering a potential set of syntactic forms for a complete utterance using corpus proba-
bilities to filter the possibilities (Bangalore & Rambow, 2000; Knight &
Hatzivassiloglou, 1995; Langkilde, 1998; Langkilde & Knight, 1998; Varges, 2001),
although there has also been research on selection of the form of a nominal expression
using a classifier trained on a corpus of nominal expressions (Cheng, Poesio, Henschel,
& Mellish, 2001; Poesio, 2000). Classifiers have also been trained on corpora labelled
for TOBI accents to predict the appropriate prosody to output; these prosodic pre-
dictors have used various types of input features such as rhetorical structure, semantic
features and syntactic features (Hitzeman, Black, Taylor, Mellish, & Oberlander, 1998;
Pan & McKeown, 1998).

In addition, some work on stochastic generation has been done within a template-
based generation paradigm. Walker et al. use reinforcement learning to learn to select

Training a sentence planner 429

among a set of templates to achieve the communicative goals of summarizing or
reading a set of email messages (Walker, 2000; Walker, Fromer, & Narayanan, 1998).
Oh & Rudnicky (2000) use n-gram models and Ratnaparkhi (2000) uses maximum
entropy to choose templates, using hand-written rules to score different candidates.
Other work using reinforcement learning in spoken dialogue management focuses on
selecting which of a set of communicative goals should be attempted at a particular
state in the dialogue (Levin & Pieraccini, 1997; Litman, Kearns, Singh, & Walker, 2000;
Singh, Kearns, Litman, & Walker, 2000).

This paper also presented our evaluation of SPOT. Previous work on evaluation of
natural language generation has utilized three different approaches to evaluation
(Mellish & Dale, 1998). The first approach is a subjective evaluation methodology such
as we use here, where human subjects rate NLG outputs produced by different sources
(Bangalore, Rambow, & Whittaker, 2000; Callaway & Lester, 2001; Lester & Porter,
1997). Other work has evaluated template-based spoken dialogue generation with a
task-based approach, i.e. the generator is evaluated with a metric such as task com-
pletion or user satisfaction after dialogue completion (Reiter, Robertson, Lennox, &
Osman, 2001; Walker, 2000). This approach can work well when the task only involves
one or two exchanges, when the choices have large effects over the whole dialogue, or
the choices vary the content of the utterance. Because sentence planning choices realize
the same content and only affect the current utterance, we believed it important to get
local feedback. A final approach focuses on subproblems of natural language genera-
tion such as the generation of referring expressions. For this type of problem it is
possible to evaluate the generator by the degree to which it matches human perfor-
mance (Poesio, 2000; Yeh & Mellish, 1997). When evaluating sentence planning, this
approach does not make sense because many different realizations may be equally
good. As mentioned above, this is the primary motivation for treating sentence plan-
ning as a ranking problem, and it is possible that other generation problems would
benefit by treatment as a ranking problem as well.

8. Discussion

We have presented SPOT, a trainable sentence planner. SPOT re-conceptualizes the
sentence planning task as consisting of two distinct phases: (1) a very simple sentence
plan generator SPG that generates multiple candidate sentence plans using weighted
randomization; and (2) a sentence plan ranker SPR that can be trained from examples
via human feedback, whose job is to rank the candidate sentence plans and select the
highest ranked plan. Our results show that:

• SPOT’s SPR selects sentence plans that on average are only 5% worse than the sen-
tence plan(s) selected as the best by human judges.

• SPOT’s SPR selects sentence plans that on average are 36% better than a random
SPR that simply selects randomly among the candidate sentence plans.

We validated these results in an independent experiment in which 60 subjects eval-
uated the quality of different realizations for a given turn. (Recall that our trainable
sentence planner was trained on the scores of only two human judges.) To our
knowledge, this is the first reported experimental comparison of a trainable technique
that shows that the quality of system utterances produced with trainable components
can compete with hand-crafted or rule-based techniques. This evaluation revealed that

430 M. A. Walker et al.

the choices made by SPOT were not statistically distinguishable from the choices ranked
at the top by the two human judges. More importantly, they were also not statistically
different from the current hand-crafted template-based output of the AT&T Commu-
nicator system, which has been developed and fine-tuned over an extended period of
time (whereas SPOT is based on judgments that took about three person-days to make).
In addition, we expect SPOT to be more easily and quickly tuned to a new domain than
template-based generation: the training materials for the SPOT sentence planner can be
collected from subjective judgments from a small number of judges with little or no
linguistic knowledge. The evaluation also showed that SPOT was rated better than two
rule-based versions of our SPG which we developed as baselines. All systems outper-
formed the random choice.

However, this experiment did not show that trainable sentence planners produce,
in general, better-quality output than template-based or rule-based sentence planners.
That would be impossible: given the nature of template and rule-based systems, any
quality standard for the output can be met given sufficient person-hours, elapsed time,
and software engineering acumen. Our principal goal, rather, is to show that the quality
of the TEMPLATE output, for a currently operational dialogue system whose template-
based output component was developed, expanded, and refined over about 18 months,
can be achieved using a trainable system, for which the necessary training data was
collected in three person-days. Furthermore, we wished to show that a representative
rule-based system based on current literature, without massive domain-tuning, cannot
achieve the same level of quality. We hope to extend SPoT and integrate it into
AMELIA.

In future work, we intend to build on the work reported in this paper in several ways.
First, we believe that we could utilize additional features as predictors of the quality of
a sentence plan. These include features based on the discourse context, and features that
encode relationships between the sp-tree and the DSyntS. We will also expand the
capabilities of the SPG to cover additional sentence planning tasks in addition to
sentence scoping, and duplicate the methods described here to retrain SPOT for our
extended SPG.

We thank Michael Collins and Rob Schapire for their help, comments, and en-
couragement, and Noemie Elhadad and three anonymous reviewers for very useful
feedback. This work was partially funded by DARPA under contract MDA972-99-3-
0003. This work was completed while the second author was at AT&T Labs Research.

References

Bangalore, S. & Rambow, O. (2000). Exploiting a probabilistic hierarchical model for generation. In
COLING, Saarbucken, Germany.

Bangalore, S., Rambow, O. & Whittaker, S. (2000). Evaluation metrics for generation. Proceedings of the First
International Natural Language Generation Conference (INLG2000), Mitzpe Ramon, Israel.

Beutnagel, M., Conkie, A., Schroeter, J., Stylianou, Y. & Syrdal, A. (1999). The AT&T next-generation text-
to-speech system. In Meeting of ASA/EAA/DAGA in Berlin, Germany.

Bulyko, I. & Ostendorf, M. (2001). Joint prosody prediction and unit selection for concatenative speech
synthesis. In ICASSP 2001.

Callaway, C. & Lester, J. (2001). Narrative prose generation. Proceedings of the Seventeenth International
Joint Conference on Artificial Intelligence.

Cheng, H., Poesio, M., Henschel, R. & Mellish, C. (2001). Corpus-based np modifier generation. Proceedings
of the North American Meeting of the Association for Computational Linguistics.

Clark, H. H. & Wilkes-Gibbs, D. (1986). Referring as a collaborative process. Cognition 22, 1–39.

Training a sentence planner 431

Collins, M. (2000). Discriminative reranking for natural language parsing. Proceedings of the International
Conference on Machine Learning (ICML).

Danlos, L. (2000). G-TAG: A lexicalized formalism for text generation inspired by tree adjoining grammar. In
Tree Adjoining Grammars: Formalisms Linguistic Analysis and Processing (A. Abeill�ee and O. Rambow,
Eds),. CSLI Publications.

Duboue, P. A. & McKeown, K. R. (2001). Empirically estimating order constraints for content planning in
generation. Proceedings of the 39rd Annual Meeting of the Association for Computational Linguistics (ACL/
EACL-2001).

Di Eugenio, B., Moore, J. D. & Paolucci, M. (1997). Learning features that predict cue usage. Proceedings of
the 35th Annual Meeting of the Association of Computational Linguistics, ACL/EACL 97.

Freund, Y., Iyer, R., Schapire, R.E. & Singer, Y. (1998). An efficient boosting algorithm for combining
preferences. In Machine Learning: Proceedings of the Fifteenth International Conference, 1998. Extended
version available from http://www.research.att.com/ schapire.

Gardent, C. & Webber, B. (1998). Varieties of ambiguity in incremental discourse processing. Proceedings of
AMLap-98 (Architectures and Mechanisms for Language Processing), Freiburg, Germany.

Hirschberg, J. & Litman, D. (1993). Empirical studies on the disambiguation of cue phrases. Computational
Linguistics 19(3), 501–530.

Hitzeman, J., Black, A. W., Taylor, P., Mellish, C. & Oberlander, J. (1998). On the use of automatically
generated discourse-level information in a concept-to-speech synthesis system. Proceedings of the
International Conference on Spoken Language Processing, ICSLP98.

Hovy, E. H. & Wanner, L. (1996). Managing sentence planning requirements. Proceedings of the ECAI’96
Workshop Gaps and Bridges: New Directions in Planning and Natural Language Generation.

Jordan, P. &Walker, M. A. (2000). Learning attribute selections for non-pronominal expressions. Proceedings
of the 38th Annual Meeting of the Association for Computational Linguistics (ACL-00), Hong Kong.

Knight, K. & Hatzivassiloglou, V. (1995). Two-level, many-paths generation. Proceedings of the 33rd Annual
Meeting of the Association for Computational Linguistics (ACL’95), pp. 252–260.

Langkilde, I. (1998). Forest-based statistical sentence generation. Proceedings of the 6th Applied Natural
Language Processing Conference and the 1st Meeting of the North American Chapter of the Association of
Computational Linguistics (ANLP-NAACL 2000), pp. 170–177.

Langkilde, I. & Knight, K. (1998). Generation that exploits corpus-based statistical knowledge. Proceedings of
COLING-ACL.

Lavoie, B. & Rambow, O. (1997). A fast and portable realizer for text generation systems. In Proceedings of
the Third Conference on Applied Natural Language Processing, ANLP97, pp. 265–268.

Lavoie, B. & Rambow, O. (1998). A framework for customizable generation of multi-modal presentations. In
COLING-ACL98, Montr�eeal, Canada, ACL.

Lester, J. & Porter, B. (1997). Developing and empirically evaluating robust explanation generators: The
KNIGHT experiments. Computational Linguistics 23-1, 65–103.

Levelt, W. J. M. (1989). Speaking: From Intention to Articulation, MIT Press, Cambridge, MA.
Levin, E. & Pieraccini, R. (1997). A stochastic model of computer-human interaction for learning dialogue

strategies. In EUROSPEECH 97.
Levin, E., Narayanan, S., Pieraccini, R., Biatov, K., Bocchieri, E., DiFabbrizio, G., Eckert, W., Lee, S.,

Pokrovsky, A., Rahim, M., Ruscitti, P. & Walker, M. (2000). The AT&T DARPA communicator mixed-
initiative spoken dialog system. Proceedings of the International Conference on Spoken Language
Processing, ICSLP00.

Litman, D. J., Kearns, M. S., Singh, S. & Walker, M. A. (2000). Automatic optimization of dialogue
management. Proceedings COLING 2000.

Mellish, C. & Dale, R. (1998). Evaluation in the context of natural language generation. Computer Speech and
Language 12(3).

Mellish, C., Knott, A., Oberlander, J. & O’Donnell, M. (1998). Experiments using stochastic search for text
planning. Proceedings of International Conference on Natural Language Generation, pp. 97–108.

Mel�ccuk, I. A. (1988). Dependency Syntax: Theory and Practice, SUNY, Albany, New York.
Moser, M. G. & Moore, J. (1995). Investigating cue selection and placement in tutorial discourse. In ACL 95,

pp. 130–137.
Oberlander, J. & Brew, C. (2000). Stochastic text generation. Philosophical Transactions of the Royal Society

of London, Series A 358, 1373–1385.
Oh, A. H. & Rudnicky, A. I. (2000). Stochastic language generation for spoken dialog systems. Proceedings of

the ANL/NAACL 2000 Workshop on Conversational Systems, ACL, Seattle, pp. 27–32.
Pan, S. & McKeown, K. (1998). Learning intonation rules for concept to speech generation. In COLING-

ACL, 98, Montreal, Canada, pp. 1003–1009.
Poesio, M. (2000). Annotating a corpus to develop and evaluate discourse entity realization algorithms: issues

and preliminary results. Proceedings Language Resources and Evaluation Conference, LREC-2000.
Rambow, O. & Korelsky, T. (1992). Applied text generation. Proceedings of the Third Conference on Applied

Natural Language Processing, ANLP92, pp. 40–47.

432 M. A. Walker et al.

http://www.research.att.com/ schapire

Ratnaparkhi, A. (2000). Trainable methods for surface natural language generation. Proceedings of First
North American ACL, Seattle, USA, May 2000.

Reiter, E., Robertson, R., Lennox, S. & Osman, L. (2001). Using a randomised controlled clinical trial to
evaluate an nlg system. Proceedings of ACL-2001, pp. 434–441.

Schapire, R. E. (1999). A brief introduction to boosting. Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence.

Shaw, J. (1998). Clause aggregation using linguistic knowledge. Proceedings of the 8th International Workshop
on Natural Language Generation, Niagara-on-the-Lake, Ontario.

Singh, S., Kearns, M. S., Litman, D. J. & Walker, M. A. (2000). Empirical evaluation of a reinforcement
learning spoken dialogue system. Proceedings AAAI 2000.

Stone, M. & Doran, C. (1997). Sentence planning as description using tree adjoining grammar. Proceedings of
the 35th Annual Meeting of the Association of Computational Linguistics, ACL/EACL 97, Madrid, Spain,
pp. 198–205.

Varges, S. (2001). Instance-based natural language generation. Proceedings of the North American Meeting of
the Association for Computational Linguistics.

Walker, M., Aberdeen, J., Boland, J., Bratt, E., Garofolo, J., Hirschman, L., Le, A., Lee, S., Narayanan, S.,
Papineni, K., Pellom, B., Polifroni, J., Potamianos, A., Prabhu, P., Rudnicky, A., Sanders, G., Seneff, S.,
Stallard, D. & Whittaker, S. (2001). DARPA communicator dialog travel planning systems: the June 2000
data collection. In EUROSPEECH 2001.

Walker, M. A. (2000). An application of reinforcement learning to dialogue strategy selection in a spoken
dialogue system for email. Journal of Artificial Intelligence Research 12, 387–416.

Walker, M. A., Fromer, J. C. & Narayanan, S. (1998). Learning optimal dialogue strategies: a case study of a
spoken dialogue agent for email. Proceedings of the 36th Annual Meeting of the Association of
Computational Linguistics, COLING/ACL 98, pp. 1345–1352.

Wilks, S. (1962). Mathematical Statistics, Wiley, New York.
Yeh, C.-L. & Mellish, C. (1997). An empirical study on the generation of anaphora in chinese. Computational

Linguistics 23-1, 169–190.

(Received 10 November 2001 and accepted for publication 24 April 2002)

Training a sentence planner 433

	Training a sentence planner for spoken dialogue using boosting
	Natural language generation in dialogue systems
	The sentence planning task
	The sentence plan generator
	The sentence-plan-ranker
	Examples and feedback
	RankBoost
	Features used by RankBoost

	Experimental results
	Evaluation of SPoT
	Baseline sentence planners
	Two rule-based sentence planners
	Evaluation results

	Related work
	Discussion
	Acknowledgements
	References

