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R&Rsys we'll cover in this course  

Environment 

Problem 

Query 

Planning 

Deterministic Stochastic 

Constraint 
Satisfaction Search 

Arc 
Consistency 

Search 

Search 

Logics 

STRIPS 

Vars +  
Constraints 

SLS 

Value Iteration 

Var. Elimination 
Belief Nets 

Decision Nets 

Markov Processes 

Var. Elimination 

Approx. Inference 

Temporal. Inference 

Static 

Sequential 

Representation 

Reasoning 

Technique 
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Key points Recap 

• We model the environment as a set of random vars 
 

• Why the joint is not an adequate representation ?  
 
“Representation, reasoning and learning” are 

“exponential” in the number of variables 
 

Solution: Exploit marginal&conditional independence  

 
 
 
But how does independence allow us to simplify the 

joint? 
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Belief Nets: Burglary Example 
There might be a burglar in my house 

 

The anti-burglar alarm in my house may go off 

 

I have an agreement with two of my neighbors,  John and 
Mary, that they call me if they hear the alarm go off when I 
am at work 

 

Minor earthquakes may occur and sometimes they set off 
the alarm.  

 

 

Variables: 
 

Joint has                 entries/probs 

 



CPSC 502, Lecture 8 Slide 6 

Belief Nets: Simplify the joint 
• Typically order vars to reflect causal knowledge 

(i.e., causes before effects) 
• A burglar (B) can set the alarm (A) off 

• An earthquake (E) can set the alarm (A) off 

• The alarm can cause Mary to call (M) 

• The alarm can cause John to call (J) 

 

 

• Apply Chain Rule 

 

 

• Simplify according to marginal&conditional 
independence 
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Belief Nets: Structure + Probs 

• Express remaining dependencies as a network 
• Each var is a node 

• For each var, the conditioning vars are its parents 

• Associate to each node corresponding conditional 
probabilities 

 

• Directed Acyclic Graph (DAG)  
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Burglary: complete BN 

B E P(A=T | B,E) P(A=F | B,E) 

T T .95 .05 

T F .94 .06 

F T .29 .71 

F F .001 .999 

P(B=T) P(B=F ) 

.001 .999 

P(E=T) P(E=F ) 

.002 .998 

A P(J=T | A) P(J=F | A) 

T .90 .10 

F .05 .95 

A P(M=T | A) P(M=F | A) 

T .70 .30 

F .01 .99 
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Burglary  Example: Bnets inference 

(Ex1) I'm at work,  

• neighbor John calls to say my alarm is ringing,  

• neighbor Mary doesn't call.  

• No news of any earthquakes.  

• Is there a burglar? 

(Ex2) I'm at work,  

• Receive message that neighbor John called ,  

• News of minor earthquakes.  

• Is there a burglar? 

 
 

 

 

Our BN can answer any probabilistic query that can 
be answered by processing the joint! 
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Bayesian Networks – Inference Types 

Diagnostic 

Burglary 

Alarm 

JohnCalls 

P(J) = 1.0 

P(B) = 0.001 

0.016 

Burglary 

Earthquake 

Alarm 

Intercausal 

P(A) = 1.0 

P(B) = 0.001 

0.003 

P(E) = 1.0 

JohnCalls 

Predictive 

Burglary 

Alarm 

P(J) = 0.011 

0.66 

P(B) = 1.0 

Revised probability 

Mixed 

Earthquake 

Alarm 

JohnCalls 

P(M) = 1.0 

P(E) = 1.0 

P(A) = 0.003 

 0.033 
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BNnets: Compactness 

B 
E P(A=T | B,E) P(A=F | B,E) 

T T .95 .05 

T F .94 .06 

F T .29 .71 

F F .001 .999 

P(B=T) P(B=F ) 

.001 .999 

P(E=T) 
P(E=F ) 

.002 .998 

A P(J=T | A) P(J=F | A) 

T .90 .10 

F .05 .95 

A P(M=T | A) P(M=F | A) 

T .70 .30 

F .01 .99 
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BNets: Compactness 

In General: 

A CPT for boolean Xi with k boolean parents has 2 k    rows for 
the combinations of parent values 

Each row requires one number pi  for Xi = true 
(the number for  Xi = false is just 1-pi ) 

 

If each on the n variable has no more than k parents, the 

complete network requires      O(n 2 k) numbers 

 

For k<< n, this is a substantial improvement,  

• the numbers required  grow linearly with n, vs. O(2 n) for 
the full joint distribution 
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Realistic BNet: Liver Diagnosis    
Source: Onisko et al., 1999 



CPSC 502, Lecture 8 Slide 14 

Realistic BNet: Liver Diagnosis    
Source: Onisko et al., 1999 



CPSC 502, Lecture 8 Slide 15 

BNets: Construction General Semantics 

The full joint distribution can be defined as the product of 
conditional distributions: 

 P (X1, … ,Xn) = πi = 1  P(Xi | X1, … ,Xi-1)  (chain rule)   

 

Simplify according to marginal&conditional independence 
 

 
 

                                     

n 

• Express remaining dependencies as a network 
• Each var is a node 

• For each var, the conditioning vars are its parents 

• Associate to each node corresponding conditional 
probabilities 

 
 P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi)) 

 

    

n 
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BNets: Construction General Semantics 

(cont’) 
n 

 P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi)) 

 

    

 
 

• By construction: Every node is independent from its 
non-descendants given it parents 
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Or, blocking paths for probability propagation. Three ways in 

which a path between X to Y can be blocked, (1 and 2 given 

evidence E ) 

 

Additional Conditional Independencies 

Z 

Z 

Z 

X Y E 

Note that, in 3, X and Y become dependent as soon as I get 

evidence on Z or on any of its descendants 

1 

2 

3 
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3 Configuration blocking dependency (belief propagation) 

Z 

Z 

Z 

X Y E 
1 

2 

3 
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Today Oct 6 

 

• R&R systems in Stochastic environments 

• Bayesian Networks Representation 

• Bayesian Networks Exact Inference 

• Bayesian Networks Approx. Inference 
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Bnet Inference: General 

• Suppose the variables of the belief network are X1,…,Xn. 

• Z is the query variable 

•Y1=v1, …, Yj=vj are the observed variables (with their values) 

• Z1, …,Zk are the remaining variables 

 

• What we want to compute:  ),,|( 11 jj vYvYZP  
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),,,( 11 jj vYvYZP  
 

• We can actually compute:  
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What do we need to compute? 
Remember conditioning and marginalization… 

P(L | S = t , R = f) 

 

L 

 

S R P(L, S=t, R=f ) 

t t f 

f t f 

Do they have to 
sum up to one? 

L 

 

S R P(L | S=t, R=f ) 

t t f 

f t f 
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Variable Elimination Intro 

• Suppose the variables of the belief network are X1,…,Xn. 

• Z is the query variable 

•Y1=v1, …, Yj=vj are the observed variables (with their values) 

• Z1, …,Zk are the remaining variables 

 

• What we want to compute:  ),,|( 11 jj vYvYZP  
 

• We just showed before that what we actually need to 
compute is  

),,,( 11 jj vYvYZP  

 This can be computed in terms of operations between 

factors (that satisfy the semantics of probability) 
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Factors 
• A factor is a representation of a function from a 

tuple of random variables into a number. 
• We will write factor f  on variables X1,… ,Xj  as     

 

• A factor denotes one or more (possibly partial) 
distributions over the given tuple of variables 

 

X Y Z val 

t t t 0.1 

t t f 0.9 

t f t 0.2 

f(X,Y,Z) t f f 0.8 

f t t 0.4 

f t f 0.6 

f f t 0.3 

f f f 0.7 

Distribution 
 

• e.g., P(X1, X2)  is a factor f(X1, X2) 
 

• e.g., P(X1, X2, X3 = v3)  is a factor  

       f(X1, X2) X3 = v3 

  

• e.g.,  P(Z | X,Y) is a factor 
             f(Z,X,Y) 
 
• e.g., P(X1, X3 = v3 | X2)  is a factor  

      f(X1, X2 ) X3 = v3 
 
            
 

Partial distribution 

Set of Distributions 

Set of  partial 
Distributions 
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Manipulating Factors: 
We can make new factors out of an existing factor 

 

• Our first operation: we can assign some or all of the 
variables of a factor. 

X Y Z val 

t t t 0.1 

t t f 0.9 

t f t 0.2 

f(X,Y,Z): t f f 0.8 

f t t 0.4 

f t f 0.6 

f f t 0.3 

f f f 0.7 

What is the result of  
assigning   X= t   ? 

f(X=t,Y,Z) 

f(X, Y, Z)X = t 
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Summing out a variable example 

B A C val 

t t t 0.03 

t t f 0.07 

f t t 0.54 

f t f 0.36 

f3(B,A,C): t f t 0.06 

t f f 0.14 

f f t 0.48 

f f f 0.32 

A C val 

t t 

Bf3(A,C): t f 

f t 

f f 

Our second operation: we can sum out  a variable, 

say X1  with domain {v1, …,vk} , from factor f(X1, …,Xj), 
resulting in a factor on X2, …,Xj  defined by: 
 

  ),,,(),,,(,, 212112

1

jkjj

X

XXvXfXXvXfXXf  
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Multiplying factors 

A B C val 

t t t 

t t f 

t f t 

f1(A,B)× f2(B,C): t f f 

f t t 

f t f 

f f t 

f f f 

A B Val 

t t 0.1 

f1(A,B): t f 0.9 

f t 0.2 

f f 0.8 

B C Val 

t t 0.3 

f2(B,C): t f 0.7 

f t 0.6 

f f 0.4 

•Our third operation: factors can be multiplied  together. 
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Factors Summary 

• A factor is a representation of a function from a tuple of random 
variables into a number. 

• f(X1,… ,Xj). 

• We have defined three operations on factors: 

1.Assigning one or more variables 

• f(X1=v1, X2, …,Xj)  is a factor on X2, …,Xj , also written as 
f(X1, …, Xj)X1=v1 

 
2.Summing out variables 

• (X1
 f)(X2, .. ,Xj) = f(X1=v1, X2, ,Xj) + … + f(X1=vk, X2, ,Xj) 

 

3.Multiplying factors 

• f1(A, B) f2 (B, C) = (f1 × f2)(A, B, C)  
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Variable Elimination Intro 
• If we express the joint as a factor, 

 

f (Z,  Y1…,Yj ,   Z1…,Zj   ) 

 

• We can compute P(Z,Y1=v1, …,Yj=vj)  by  ?? 

•assigning Y1=v1, …, Yj=vj  

•and summing out the variables Z1, …,Zk 

 
1

11 ,,1111 ),..,,,..,,(),,,(
Z

vYvYkj

Z

jj jj

k

ZZYYZfvYvYZP 

Are we done? 
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Variable Elimination Intro (1) 

• We can express the joint factor as a product of 

factors 

• Using the chain rule and the definition of a Bnet, we 

can write P(X1, …, Xn) as 

 



n

i

ii pXXP
1

)|(




n

i

ii pXXf
1

),(





1 11 ,,1

11 ),(),,,(
Z vYvY

n

i

ii

Z

jj

jjk

pXXfvYvYZP




f(Z,  Y1…,Yj ,   Z1…,Zj   ) 

 
1

11 ,,1111 ),..,,,..,,(),,,(
Z

vYvYkj

Z

jj jj

k

ZZYYZfvYvYZP 
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Variable Elimination Intro (2) 

1. Construct a factor for each conditional probability.  

2. In each factor assign the observed variables to 
their observed values. 

3. Multiply the factors 

4. For each of the other variables Zi ∈ {Z1, …, Zk }, 
sum out Zi  

Inference in belief networks thus reduces to 

computing “the sums of products….” 





1 11 ,,1

11 ),(),,,(
Z vYvY

n

i

ii

Z

jj

jjk

pXXfvYvYZP
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Key Simplification Step 

P(G,D=t) = A,B,C, f(A,G) f(B,A) f(C,G) f(B,C) 
 

P(G,D=t) = A f(A,G) B f(B,A) C f(C,G) f(B,C) 
 

I will add to the online slides a complete 

example of VE 
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Another Simplification before starting VE 
• All the variables from which the query is conditional 

independent given the observations can be pruned from 

the Bnet 
 

e.g., P(G | H=v1, F= v2, C=v3). 
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Variable elimination example 

Compute P(G | H=h1 ). 

• P(G,H) = A,B,C,D,E,F,I P(A,B,C,D,E,F,G,H,I) 
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Variable elimination example 
Compute P(G | H=h1 ). 

•  P(G,H) = A,B,C,D,E,F,I P(A,B,C,D,E,F,G,H,I) 

 

Chain Rule + Conditional Independence: 

 P(G,H) = A,B,C,D,E,F,I P(A)P(B|A)P(C)P(D|B,C)P(E|C)P(F|D)P(G|F,E)P(H|G)P(I|G) 
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Variable elimination example (step1) 
Compute P(G | H=h1 ). 

•  P(G,H) = A,B,C,D,E,F,I P(A)P(B|A)P(C)P(D|B,C)P(E|C)P(F|D)P(G|F,E)P(H|G)P(I|G) 
 

 

Factorized Representation: 

 P(G,H) = A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f7(H,G) f8(I,G) 

 • f0(A) 
 

• f1(B,A) 
 

• f2(C) 
 

• f3(D,B,C) 
 

• f4(E,C) 
 

• f5(F, D) 
 

• f6(G,F,E) 
 

• f7(H,G) 
 

• f8(I,G) 
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Variable elimination example (step 2) 
Compute P(G | H=h1 ). 

Previous state:  

  P(G,H) = A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f7(H,G) f8(I,G) 

Observe H : 

 P(G,H=h1) = A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G)  

• f9(G) 
 

• f0(A) 
 

• f1(B,A) 
 

• f2(C) 
 

• f3(D,B,C) 
 

• f4(E,C) 
 

• f5(F, D) 
 

• f6(G,F,E) 
 

• f7(H,G) 
 

• f8(I,G) 
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Variable elimination example (steps 3-4) 
Compute P(G | H=h1 ). 

Previous state:  

 P(G,H) = A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G)  

Elimination ordering A, C, E, I, B, D, F : 

  P(G,H=h1) = f9(G) F D f5(F, D) B I f8(I,G) E f6(G,F,E) C f2(C) f3(D,B,C) f4(E,C) A f0(A) f1(B,A)  

• f9(G) 
 

 

 

 

 

 

 

 

 

 

• f0(A) 
 

• f1(B,A) 
 

• f2(C) 
 

• f3(D,B,C) 
 

• f4(E,C) 
 

• f5(F, D) 
 

• f6(G,F,E) 
 

• f7(H,G) 
 

• f8(I,G) 
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Variable elimination example(steps 3-4) 
Compute P(G | H=h1 ). Elimination ordering A, C, E, I, B, D, F. 

Previous state:  

 P(G,H=h1) = f9(G) F D f5(F, D) B I f8(I,G) E f6(G,F,E) C f2(C) f3(D,B,C) f4(E,C) A f0(A) f1(B,A)  

 Eliminate A: 

 P(G,H=h1) = f9(G) F D f5(F, D) B f10(B) I f8(I,G) E f6(G,F,E) C f2(C) f3(D,B,C) f4(E,C)  

• f9(G) 
 

• f10(B) 
 

 

 

 

 

 

 

 

 

 

• f0(A) 
 

• f1(B,A) 
 

• f2(C) 
 

• f3(D,B,C) 
 

• f4(E,C) 
 

• f5(F, D) 
 

• f6(G,F,E) 
 

• f7(H,G) 
 

• f8(I,G) 
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Variable elimination example(steps 3-4) 
Compute P(G | H=h1 ). Elimination ordering A, C, E, I, B, D, F. 

Previous state:  

 P(G,H=h1) = f9(G) F D f5(F, D) B f10(B) I f8(I,G) E f6(G,F,E) C f2(C) f3(D,B,C) f4(E,C) 

 Eliminate C: 

 P(G,H=h1) = f9(G) F D f5(F, D) B f10(B) I f8(I,G) E f6(G,F,E) f12(B,D,E) 

 

• f9(G) 

 

• f10(B) 

 

•f12(B,D,E) 
 
 

 

 

 

 

 

 

 

 

 

• f0(A) 
 

• f1(B,A) 
 

• f2(C) 
 

• f3(D,B,C) 
 

• f4(E,C) 
 

• f5(F, D) 
 

• f6(G,F,E) 
 

• f7(H,G) 
 

• f8(I,G) 
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Variable elimination example(steps 3-4) 
Compute P(G | H=h1 ). Elimination ordering A, C, E, I, B, D, F. 

Previous state:  

 P(G,H=h1) = f9(G) F D f5(F, D) B f10(B) I f8(I,G) E f6(G,F,E) f12(B,D,E) 

 Eliminate E: 

 P(G,H=h1) =f9(G) F D f5(F, D) B f10(B) f13(B,D,F,G) I f8(I,G) 

• f9(G) 

 

• f10(B) 

 

•f12(B,D,E) 

 

•f13(B,D,F,G) 
 
 

 

 

 

 

 

 

 

 

 

• f0(A) 
 

• f1(B,A) 
 

• f2(C) 
 

• f3(D,B,C) 
 

• f4(E,C) 
 

• f5(F, D) 
 

• f6(G,F,E) 
 

• f7(H,G) 
 

• f8(I,G) 
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Variable elimination example(steps 3-4) 
Compute P(G | H=h1 ). Elimination ordering A, C, E, I, B, D, F. 

Previous state:  P(G,H=h1) = f9(G) F D f5(F, D) B f10(B) f13(B,D,F,G) I f8(I,G) 

 

 Eliminate I: 

 P(G,H=h1) =f9(G) f14(G) F D f5(F, D) B f10(B) f13(B,D,F,G) 

• f9(G) 

 

• f10(B) 

 
•f12(B,D,E) 

 

•f13(B,D,F,G) 

 

•f14(G) 
 

 

 

 

 

 

• f0(A) 
 

• f1(B,A) 
 

• f2(C) 
 

• f3(D,B,C) 
 

• f4(E,C) 
 

• f5(F, D) 
 

• f6(G,F,E) 
 

• f7(H,G) 
 

• f8(I,G) 
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Variable elimination example(steps 3-4) 
Compute P(G | H=h1 ). Elimination ordering A, C, E, I, B, D, F. 

 

Previous state:  P(G,H=h1) = f9(G) f14(G) F D f5(F, D) B f10(B) f13(B,D,F,G) 

 Eliminate B: 

 P(G,H=h1) = f9(G) f14(G) F D f5(F, D) f15(D,F,G) 

• f9(G) 

 

• f10(B) 

 

•f12(B,D,E) 

 

•f13(B,D,F,G) 

 
•f14(G) 
 

• f15(D,F,G) 
 
 

 

 

 

 

 

• f0(A) 
 

• f1(B,A) 
 

• f2(C) 
 

• f3(D,B,C) 
 

• f4(E,C) 
 

• f5(F, D) 
 

• f6(G,F,E) 
 

• f7(H,G) 
 

• f8(I,G) 
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Variable elimination example(steps 3-4) 
Compute P(G | H=h1 ). Elimination ordering A, C, E, I, B, D, F. 

 

Previous state:  P(G,H=h1) = f9(G) f14(G) F D f5(F, D) f15(D,F,G) 

 Eliminate D: 

 P(G,H=h1) =f9(G) f14(G) F f16(F, G) 

• f9(G) 

 

• f10(B) 

 

•f12(B,D,E) 

 

•f13(B,D,F,G) 

 
•f14(G) 
 

• f15(D,F,G) 
 

• f16(F, G) 
 
 

 

 

 

• f0(A) 
 

• f1(B,A) 
 

• f2(C) 
 

• f3(D,B,C) 
 

• f4(E,C) 
 

• f5(F, D) 
 

• f6(G,F,E) 
 

• f7(H,G) 
 

• f8(I,G) 
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Variable elimination example(steps 3-4) 
Compute P(G | H=h1 ). Elimination ordering A, C, E, I, B, D, F. 

 

Previous state: P(G,H=h1) = f9(G) f14(G) F f16(F, G) 

 Eliminate F: 

 P(G,H=h1) = f9(G) f14(G)  f17(G) • f9(G) 

 

• f10(B) 

 

•f12(B,D,E) 

 

•f13(B,D,F,G) 

 
•f14(G) 
 

• f15(D,F,G) 
 

• f16(F, G) 
 

• f17(G) 
 

• f0(A) 
 

• f1(B,A) 
 

• f2(C) 
 

• f3(D,B,C) 
 

• f4(E,C) 
 

• f5(F, D) 
 

• f6(G,F,E) 
 

• f7(H,G) 
 

• f8(I,G) 
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Variable elimination example (step 5) 
Compute P(G | H=h1 ). Elimination ordering A, C, E, I, B, D, F. 

 

Previous state: P(G,H=h1) = f9(G) f14(G)  f17(G) 

 Multiply remaining factors: 

 P(G,H=h1) = f18(G) 
• f9(G) 

 

• f10(B) 

 
•f12(B,D,E) 

 

•f13(B,D,F,G) 

 

•f14(G) 
 

• f15(D,F,G) 

 
• f16(F, G) 
 

• f17(G) 
 

• f18(G) 
 
 
 

 

• f0(A) 
 

• f1(B,A) 
 

• f2(C) 
 

• f3(D,B,C) 
 

• f4(E,C) 
 

• f5(F, D) 
 

• f6(G,F,E) 
 

• f7(H,G) 
 

• f8(I,G) 
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Variable elimination example (step 6) 

Compute P(G | H=h1 ). Elimination ordering A, C, E, I, B, D, F. 

Previous state:  

 P(G,H=h1) = f18(G) 

Normalize: 

 P(G | H=h1) = f18(G) / g ∈ dom(G) f18(G)  
• f9(G) 

 

• f10(B) 

 
•f12(B,D,E) 

 

•f13(B,D,F,G) 

 

•f14(G) 
 

• f15(D,F,G) 

 
• f16(F, G) 
 

• f17(G) 
 

• f18(G) 
 
 
 

 

• f0(A) 
 

• f1(B,A) 
 

• f2(C) 
 

• f3(D,B,C) 
 

• f4(E,C) 
 

• f5(F, D) 
 

• f6(G,F,E) 
 

• f7(H,G) 
 

• f8(I,G) 
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Today Oct 6 

 

• R&R systems in Stochastic environments 

• Bayesian Networks Representation 

• Bayesian Networks Exact Inference 

• Bayesian Networks Approx. Inference 

 

 

 

 

 

 



Approximate Inference 

 

 Basic idea: 

 Draw N samples from a sampling distribution S 

 Compute an approximate posterior probability 

 Show this converges to the true probability P 
 

 Why sample? 

 Inference: getting a sample is faster than computing 
the right answer (e.g. with variable elimination) 

 

50 CPSC 502, Lecture 8 



Prior Sampling 

 

Cloudy 

Sprinkler Rain 

WetGrass 

Cloudy 

Sprinkler Rain 

WetGrass 
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+c 0.5 

-c 0.5 

+c 
 

+s 0.1 

-s 0.9 

-c 
 

+s 0.5 
-s 0.5 

+c 
 

+r 0.8 

-r 0.2 

-c 
 

+r 0.2 
-r 0.8 

+s 
 
 
 

+r 
 

+w 0.99 
-w 0.01 

-r 
 

+w 0.90 

-w 0.10 

-s 
 
 
 

+r 
 

+w 0.90 

-w 0.10 

-r 
 

+w 0.01 
-w 0.99 

Samples: 

+c, -s, +r, +w 

-c, +s, -r, +w 

… 
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Example 

 We’ll get a bunch of samples from the BN: 

 +c, -s, +r, +w 

 +c, +s, +r, +w 

 -c, +s, +r,  -w 

 +c, -s, +r, +w 

 -c,  -s,  -r, +w 

 If we want to know P(W) 

 We have counts <+w:4, -w:1> 

 Normalize to get P(W) = <+w:0.8, -w:0.2> 

 This will get closer to the true distribution with more samples 

 Can estimate anything else, too 

 What about P(C| +w)?   P(C| +r, +w)?  P(C| -r, -w)? 

what’s the drawback?  Can use fewer samples ? 

Cloudy 

Sprinkler Rain 

WetGrass 

C 

S R 

W 
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Rejection Sampling 

 Let’s say we want P(C) 

 No point keeping all samples around 

 Just tally counts of C as we go 

 

 Let’s say we want P(C| +s) 

 Same thing: tally C outcomes, but 

ignore (reject) samples which don’t 

have S=+s 

 This is called rejection sampling 

 It is also consistent for conditional 

probabilities (i.e., correct in the limit) 

 +c, -s, +r, +w 

 +c, +s, +r, +w 

 -c, +s, +r,  -w 

 +c, -s, +r, +w 

 -c,  -s,  -r, +w 

Cloudy 

Sprinkler Rain 

WetGrass 

C 

S R 

W 
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Likelihood Weighting 

 Problem with rejection sampling: 
 If evidence is unlikely, you reject a lot of samples 

 You don’t exploit your evidence as you sample 

 Consider P(B|+a) 

 

 

 

 Idea: fix evidence variables and sample the rest 

 

 

 

 Problem: sample distribution not consistent! 

 Solution: weight by probability of evidence given parents 

Burglary Alarm 

Burglary Alarm 

55 

 -b,  -a 

 -b,  -a 

 -b,  -a 

 -b,  -a 

+b, +a 

 -b  +a 

 -b, +a 

 -b, +a 

 -b, +a 

+b, +a 
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Likelihood Weighting 

 

56 

+c 0.5 

-c 0.5 

+c 
 

+s 0.1 

-s 0.9 

-c 
 

+s 0.5 
-s 0.5 

+c 
 

+r 0.8 

-r 0.2 

-c 
 

+r 0.2 
-r 0.8 

+s 
 
 
 

+r 
 

+w 0.99 
-w 0.01 

-r 
 

+w 0.90 

-w 0.10 

-s 
 
 
 

+r 
 

+w 0.90 

-w 0.10 

-r 
 

+w 0.01 
-w 0.99 

Samples: 

+c, +s, +r, +w 

… 

Cloudy 

Sprinkler Rain 

WetGrass 

Cloudy 

Sprinkler Rain 

WetGrass 
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Likelihood Weighting 

 Likelihood weighting is good 

 We have taken evidence into account as 

we generate the sample 

 E.g. here, W’s value will get picked 

based on the evidence values of S, R 

 More of our samples will reflect the state 

of the world suggested by the evidence 

  Likelihood weighting doesn’t solve 

all our problems 

 Evidence influences the choice of 

downstream variables, but not upstream 

ones (C isn’t more likely to get a value 

matching the evidence) 

 We would like to consider evidence 

when we sample every variable 58 

Cloudy 

Rain 

C 

S R 

W 
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Markov Chain Monte Carlo 

 Idea: instead of sampling from scratch, create samples 

that are each like the last one. 
 

 Procedure: resample one variable at a time, conditioned 

on all the rest, but keep evidence fixed.  E.g., for P(b|+c): 

 

 

 Properties: Now samples are not independent (in fact 

they’re nearly identical), but sample averages are still 

consistent estimators! And can be computed efficiently 
 

 What’s the point: both upstream and downstream 

variables condition on evidence. 
59 

+a +c +b +a +c -b -a +c -b 
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Also Do exercises 6.E 
http://www.aispace.org/exercises.shtml 

 

 

 

TODO for this Tue 

Finish Reading  Chp 6 of textbook  
(Skip 6.4.2.5 Importance Sampling 6.4.2.6 Particle Filtering, 

we have covered instead likelihood weighting and MCMC 

methods) 

  

http://www.aispace.org/exercises.shtml
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Or ….Conditional Dependencies 

Z 

Z 

Z 

X Y 

E 

1 

2 

3 
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In/Dependencies  in a Bnet : Example 1 

Is A conditionally 

independent of I given F? 

Z 

Z 

Z 

X Y E 
1 

2 

3 
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In/Dependencies  in a Bnet : Example 2  

Is H conditionally 

independent of E 

given I? 

Z 

Z 

Z 

X Y E 
1 

2 

3 
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Sampling a discrete probability 

distribution 
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Problem and Solution Plan 

• We model the environment as a set of random vars 
 

• Why the joint is not an adequate representation ?  
 
“Representation, reasoning and learning” are 

“exponential” in the number of variables 
 

Solution: Exploit marginal&conditional independence  

 
 
 
But how does independence allow us to simplify the 

joint? 
 



Look for weaker form of independence 

P(Toothache, Cavity, Catch) 

 

Are Toothache and Catch marginally independent? 

 

 

BUT If I have a cavity, does the probability that the probe 
catches depend on whether I have a toothache? 

(1)P(catch | toothache, cavity) = 
 

What if I haven't got a cavity? 

(2) P(catch | toothache,cavity) = 

 

• Each is directly caused by the cavity, but neither 

has a direct effect on the other 
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Conditional independence 

In general, Catch is conditionally independent of Toothache given 
Cavity: 

P(Catch | Toothache,Cavity) = P(Catch | Cavity) 

 

Equivalent statements: 

P(Toothache | Catch, Cavity) = P(Toothache | Cavity) 

 

P(Toothache, Catch | Cavity) =  

    P(Toothache | Cavity) P(Catch | Cavity) 
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Proof of equivalent statements 
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Conditional Independence: Formal Def. 

DEF. Random variable X is conditionally independent of 

random variable Y given random variable Z if, for all 

xi  dom(X), yk  dom(Y), zm  dom(Z) 

   P( X= xi | Y= yk , Z= zm ) = P(X= xi | Z= zm ) 

That is, knowledge of Y’s value doesn’t affect your 

belief in the value of X, given a value of Z 

Sometimes, two variables might not be marginally 
independent. However, they become independent 
after we observe some third variable 
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Conditional independence: Use 

Write out full joint distribution using chain rule: 

 P(Cavity, Catch, Toothache) 

 = P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity) 

 = P(Toothache |      ) P(Catch | Cavity) P(Cavity) 

 

 

 how many probabilities? 

 

The use of conditional independence often reduces the size of the 
representation of the joint distribution from exponential in n to 
linear in n.  n is the number of vars 

 

Conditional independence is our most basic and robust form of 
knowledge about uncertain environments. 
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Approximate Inference 

Sampling / Simulating / Observing 
 

Sampling is a hot topic in machine learning, 
and it’s really simple 

 

Basic idea: 
• Draw N samples from a sampling distribution S 

• Compute an approximate posterior probability 

• Show this converges to the true probability P 

 

Why sample? 
• Learning: get samples from a distribution you don’t know 

• Inference: getting a sample is faster than computing the right 
answer (e.g. with variable elimination) 
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