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Today Oct 4 

Finish R&R systems in deterministic environments 

• Logics 

• Reasoning with individuals and relations 

• Full Propositional Logics and First-Order Logics 

 

• Start R&R systems in Stochastic environments 

• Bayesian Networks Representation 

 

 

 

 

 



CPSC 502, Lecture 7 Slide 3 

R&Rsys we'll cover in this course  

Environment 

Problem 

Query 

Planning 

Deterministic Stochastic 

Constraint 
Satisfaction Search 

Arc 
Consistency 

Search 

Search 

Logics 

STRIPS 

Vars +  
Constraints 

SLS 

Value Iteration 

Var. Elimination 
Belief Nets 

Decision Nets 

Markov Processes 

Var. Elimination 

Approx. Inference 

Temporal. Inference 

Static 

Sequential 

Representation 

Reasoning 

Technique 
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Logics: Big Picture 
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Representation and Reasoning in 

Complex domains 
• In complex domains 

expressing knowledge 

with propositions can be 

quite limiting 

 
up_s2   
up_s3 
ok_cb1 
ok_cb2 
live_w1 
connected_w1_w2 
 
 

up( s2 )   
up( s3 )  
ok( cb1 )  
ok( cb2 )  
live( w1) 
connected( w1 , w2 )  

• It is often natural to 

consider individuals and 

their properties 

 

There is no notion that 

 up_s2   
up_s3 
 
 
 

live_w1 
connected_w1_w2 
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What do we gain…. 

 

 

 

By breaking propositions into relations applied to 

individuals? 

 

• Express knowledge that holds for set of individuals 

(by introducing variables ) 

 live(W) <- connected_to(W,W1) ∧  live(W1) ∧  
  wire(W) ∧ wire(W1). 

• We can ask generic queries (i.e., containing variables) 

?  connected_to(W, w1) 
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Datalog: a relational rule language 

A variable is a symbol starting with an upper case letter 

   X    Y 

A constant is a symbol starting with lower-case letter or a 

sequence of digits. 

   alan      w1 

A predicate symbol is a symbol starting with lower-case letter. 

   in           part-of               live 

A term is either a variable or a constant. 

It expands the syntax of PDCL…. 
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Datalog Syntax (cont’) 
An atom  is a symbol of the form p or p(t1 …. tn) where p is a 

predicate symbol and  ti  are terms 

          sunny      in(alan, X) 

A definite clause is either an atom (a fact) or of the form: 

        h   ←  b1 ∧… ∧ bm  

where h  and the bi are atoms (Read this as ``h  if b.'') 

A knowledge base is a set of definite clauses 
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Datalog: Top Down Proof 

Extension of TD for PDCL. 

How do you deal with variables? 

Example:  in(alan, r123). 

part_of(r123,cs_building). 

in(X,Y) <- part_of(Z,Y) & in(X,Z). 

yes <- in(alan, cs_building). 

Query:  in(alan, cs_building). 
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Datalog: queries with variables 

in(alan, r123). 

part_of(r123,cs_building). 

in(X,Y) <- in(X,Z). & part_of(Z,Y)  

Yes(X1) <- in(alan, X1). 

Query:  in(alan, X1). 
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Logics: Big Picture 
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Today Oct 4 

Finish R&R systems in deterministic environments 

• Logics 

• Reasoning with individuals and relations 

• Full Propositional Logics and First-Order Logics 

 

• Start R&R systems in Stochastic environments 

• Bayesian Networks Representation 
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Full Propositional Logics  
DEFs.  

Literal: an atom or a negation of an atom 

Clause:  is a disjunction of literals 

Conjunctive Normal Form (CNF): a conjunction of clauses 

INFERENCE: 

• Convert all formulas in KB and             in CNF 

• Apply Resolution Procedure (at each step combine two 

clauses containing complementary literals into a new 

one) 

• Termination 

• No new clause can be added 

• Two clause resolve into an empty clause 
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Propositional Logics: Satisfiability (SAT problem) 

Does a set of formulas have a model? Is there an 

interpretation in which all the formulas are true? 

(Stochastic) Local Search Algorithms can be used for 

this task! 

Evaluation Function: number of unsatisfied clauses 

WalkSat: One of the simplest and most effective algorithms: 

Start from a randomly generated interpretation 

• Pick an unsatisfied clause 

• Pick a proposition to flip (randomly 1 or 2) 

1. To minimize # of unsatisfied clauses 

2. Randomly 
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Full First-Order Logics (FOLs) 
We have constant symbols, predicate symbols and function 

symbols 

So interpretations are much more complex (but the same 

basic idea – one possible configuration of the world) 

INFERENCE: 

• Semidecidable: algorithms exists that says yes for 

every entailed formulas, but  no algorithm exists that 

also says no for every non-entailed sentence 

• Resolution Procedure can be generalized to FOL 

 

 

constant symbols => individuals, entities   

predicate symbols => relations 

function symbols => functions 
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Today Oct 4 

Finish R&R systems in deterministic environments 

• Logics 

• Reasoning with individuals and relations 

• Full Propositional Logics and First-Order Logics 

 

• Start R&R systems in Stochastic environments 

• Bayesian Networks Representation 
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R&Rsys we'll cover in this course  

Environment 

Problem 

Query 

Planning 

Deterministic Stochastic 

Constraint 
Satisfaction Search 

Arc 
Consistency 

Search 

Search 

Logics 

STRIPS 

Vars +  
Constraints 

SLS 

Value Iteration 

Var. Elimination 
Belief Nets 

Decision Nets 

Markov Processes 

Var. Elimination 

Approx. Inference 

Temporal. Inference 

Static 

Sequential 

Representation 

Reasoning 

Technique 
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Intro to Probability (Motivation) 

• Will it rain in 10 days? Was it raining 98 days 
ago? 

• Right now, how many people are in this building 
(DMP)? At UBC? ….Yesterday? 

• AI agents (and humans ) are not 

omniscient 

 

• And the problem is not only predicting the 

future or “remembering” the past 
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Intro to Probability (Key points) 

• Are agents all ignorant/uncertain to the same 

degree? 

 

• Should an agent act only when it is certain 

about  relevant knowledge?  

• (not acting usually has implications) 

 

• So agents need to represent and reason 

about their ignorance/ uncertainty 
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Probability as a formal measure of 

uncertainty/ignorance 

• Belief in a proposition f  (e.g., it is snowing outside, 
there are 321 people in this bldg) can be measured 

in terms of a number between 0 and 1 – this is the 

probability of f 

• The probability f is 0 means that f is believed to be 

definitely false 

• The probability f is 1 means that f is believed to be 

definitely true 

• Using 0 and 1 is purely a convention. 
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Random Variables 

• A random variable is a variable like the ones we 

have seen in CSP and Planning, but the agent can 

be uncertain about its value. 

• As usual  

• The domain of a random variable X, written dom(X), is 

the set of values X can take 

• values are mutually exclusive and exhaustive  

 

 
Examples (Boolean and discrete) 
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Random Variables (cont’) 

• Assignment X=x  means X has value x 

 

• A proposition is a Boolean formula made from 

assignments of values to variables  

Examples 

 

• A tuple of random variables <X1 ,…., Xn> is a 

complex random variable with domain.. 
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Probability Distributions 

• A probability distribution P on a random variable X is 

a function dom(X) - >  [0,1] such that  x -> P(X=x) 

cavity? 

#-of-people-in-DMP? 
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Joint Probability Distributions P(<X1 ,…., Xn> ) 

• Probability distribution over the variable Cartesian 

product of multiple random variables 

• Think of a joint distribution over n variables as an n-

dimensional table 

• Each entry, indexed by X1 = x1,…., Xn= xn  corresponds 

to  P(X1 = x1  ….  Xn= xn ) 

• The sum of entries across the whole table is 1 

cavity toothache catch µ(w) 

T T T .108 

T T F .012 

T F T .072 

T F F .008 

F T T .016 

F T F .064 

F F T .144 

F F F .576 
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Joint Prob. Distribution (JPD): Example2 

3 binary random variables: P(H,S,F) 
 

• H   dom(H)={h, h}   has heart disease,  does not have… 

• S   dom(S)={s, s}   smokes,  does not smoke 

• F   dom(F)={f, f}    high fat diet,  low fat diet 

.015 .007 

.21 .51 

.005 .003 

.07 .18 

s  s s  s 

f  f 

h 

 h 
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Marginalization 

P(H,S)? 

P(H) 

P(S) 





)(

),,(),(
Fdomx

xFSHPSHP

.015 .007 

.21 .51 

.005 .003 

.07 .18 

s  s s  s 

f  f 

h 

 h 

.02 .01 

.28 .69 
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Conditional Probability 

P(H,S) P(H) 

P(S) 

)(

),(
)|(

HP

HSP
HSP 

.02 .01 

.28 .69 

s  s 

h 

 h 

.03 

.97 

.30 .70 

P(S|H) 

.666 .333 

.29 .71 

s  s 

h 

 h 

P(H|S) 
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Recap Conditional Probability (cont.) 

)(

),(
)|(

HP

HSP
HSP 

• It is not a probability distributions but….. 

• One for each configuration of the conditioning var(s) 
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 Chain Rule 

)(

),(
)|(

HP

HSP
HSP 

)(

),(
)|(

SP

HSP
SHP 

)(

)()|(
)|(

HP

SPSHP
HSP 

),,( FSHP

Bayes Theorem 
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Do you always need to revise your beliefs? 

NO  when your knowledge of Y’s value doesn’t affect 

your belief in the value of X 

DEF. Random variable X is marginal independent of 

random variable Y if, for all xi  dom(X), yk  dom(Y), 

   P( X= xi | Y= yk) = P(X= xi ) 
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Marginal Independence: Example 

X and Y are independent  iff: 

 

P(X|Y) = P(X)    or P(Y|X) = P(Y)     or P(X, Y) = P(X) P(Y) 

  

That is new evidence Y(or X) does not affect current belief in 

X (or Y) 

Ex:   P(Toothache, Catch, Cavity, Weather) 

 = P(Toothache, Catch, Cavity. 

 

JPD requiring  32   entries is reduced to two smaller ones ( 8   
and    4   ) 
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Conditional Independence 

With marg. Independence, for n independent 
random vars, O(2n) → 

 

 

 
 

 

Absolute independence is powerful but when you 
model a particular domain, it is rare 

Dentistry is a large field with hundreds of variables, 

few of which are independent (e.g.,Cavity, Heart-
disease).  

What to do? 
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Look for weaker form of independence 

P(Toothache, Cavity, Catch) 

 

Are Toothache and Catch marginally independent? 

 

 

BUT If I have a cavity, does the probability that the probe 
catches depend on whether I have a toothache? 

(1)P(catch | toothache, cavity) = 
 

What if I haven't got a cavity? 

(2) P(catch | toothache,cavity) = 

 

• Each is directly caused by the cavity, but neither 

has a direct effect on the other 
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Conditional independence 

In general, Catch is conditionally independent of Toothache given 
Cavity: 

P(Catch | Toothache,Cavity) = P(Catch | Cavity) 

 

Equivalent statements: 

P(Toothache | Catch, Cavity) = P(Toothache | Cavity) 

 

P(Toothache, Catch | Cavity) =  

    P(Toothache | Cavity) P(Catch | Cavity) 
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Proof of equivalent statements 
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Conditional Independence: Formal Def. 

DEF. Random variable X is conditionally independent of 

random variable Y given random variable Z if, for all 

xi  dom(X), yk  dom(Y), zm  dom(Z) 

   P( X= xi | Y= yk , Z= zm ) = P(X= xi | Z= zm ) 

That is, knowledge of Y’s value doesn’t affect your 

belief in the value of X, given a value of Z 

Sometimes, two variables might not be marginally 
independent. However, they become independent 
after we observe some third variable 

Slide 37 CPSC 502, Lecture 7 



Conditional independence: Use 

Write out full joint distribution using chain rule: 

 P(Cavity, Catch, Toothache) 

 = P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity) 

 = P(Toothache |      ) P(Catch | Cavity) P(Cavity) 

 

 

 how many probabilities? 

 

The use of conditional independence often reduces the size of the 
representation of the joint distribution from exponential in n to 
linear in n.  n is the number of vars 

 

Conditional independence is our most basic and robust form of 
knowledge about uncertain environments. 
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Key points Recap 

• We model the environment as a set of random vars 
 

• Why the joint is not an adequate representation ?  
 
“Representation, reasoning and learning” are 

“exponential” in the number of variables 
 

Solution: Exploit marginal&conditional independence  

 
 
 
But how does independence allow us to simplify the 

joint? 
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Today Oct 4 

Finish R&R systems in deterministic environments 

• Logics 

• Reasoning with individuals and relations 

• Full Propositional Logics and First-Order Logics 

 

• Start R&R systems in Stochastic environments 

• Bayesian Networks Representation 
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Belief Nets: Burglary Example 
There might be a burglar in my house 

 

The anti-burglar alarm in my house may go off 

 

I have an agreement with two of my neighbors,  John and 
Mary, that they call me if they hear the alarm go off when I 
am at work 

 

Minor earthquakes may occur and sometimes the set off the 
alarm.  

 

 

Variables: 
 

Joint has                 entries/probs 
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Belief Nets: Simplify the joint 
• Typically order vars to reflect causal knowledge 

(i.e., causes before effects) 
• A burglar (B) can set the alarm (A) off 

• An earthquake (E) can set the alarm (A) off 

• The alarm can cause Mary to call (M) 

• The alarm can cause John to call (J) 

 

 

• Apply Chain Rule 

 

 

• Simplify according to marginal&conditional 
independence 
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Belief Nets: Structure + Probs 

• Express remaining dependencies as a network 
• Each var is a node 

• For each var, the conditioning vars are its parents 

• Associate to each node corresponding conditional 
probabilities 

 

• Directed Acyclic Graph (DAG)  
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Burglary: complete BN 

B E P(A=T | B,E) P(A=F | B,E) 

T T .95 .05 

T F .94 .06 

F T .29 .71 

F F .001 .999 

P(B=T) P(B=F ) 

.001 .999 

P(E=T) P(E=F ) 

.002 .998 

A P(J=T | A) P(J=F | A) 

T .90 .10 

F .05 .95 

A P(M=T | A) P(M=F | A) 

T .70 .30 

F .01 .99 
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Burglary  Example: Bnets inference 

(Ex1) I'm at work,  

• neighbor John calls to say my alarm is ringing,  

• neighbor Mary doesn't call.  

• No news of any earthquakes.  

• Is there a burglar? 

(Ex2) I'm at work,  

• Receive message that neighbor John called ,  

• News of minor earthquakes.  

• Is there a burglar? 

 
 

 

 

Our BN can answer any probabilistic query that can 
be answered by processing the joint! 
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Bayesian Networks – Inference Types 

Diagnostic 

Burglary 

Alarm 

JohnCalls 

P(J) = 1.0 

P(B) = 0.001 

0.016 

Burglary 

Earthquake 

Alarm 

Intercausal 

P(A) = 1.0 

P(B) = 0.001 

0.003 

P(E) = 1.0 

JohnCalls 

Predictive 

Burglary 

Alarm 

P(J) = 0.011 

0.66 

P(B) = 1.0 

Mixed 

Earthquake 

Alarm 

JohnCalls 

P(M) = 1.0 

P(E) = 1.0 

P(A) = 0.003 

 0.033 
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BNnets: Compactness 

B 
E P(A=T | B,E) P(A=F | B,E) 

T T .95 .05 

T F .94 .06 

F T .29 .71 

F F .001 .999 

P(B=T) P(B=F ) 

.001 .999 

P(E=T) 
P(E=F ) 

.002 .998 

A P(J=T | A) P(J=F | A) 

T .90 .10 

F .05 .95 

A P(M=T | A) P(M=F | A) 

T .70 .30 

F .01 .99 
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BNets: Compactness 

In General: 

A CPT for boolean Xi with k boolean parents has 2 k    rows for 
the combinations of parent values 

Each row requires one number pi  for Xi = true 
(the number for  Xi = false is just 1-pi ) 

 

If each on the n variable has no more than k parents, the 

complete network requires      O(n 2 k) numbers 

 

For k<< n, this is a substantial improvement,  

• the numbers required  grow linearly with n, vs. O(2 n) for 
the full joint distribution 
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Realistic BNet: Liver Diagnosis    
Source: Onisko et al., 1999 
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Realistic BNet: Liver Diagnosis    
Source: Onisko et al., 1999 
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Also Do exercises 6.A and 6.B 
http://www.aispace.org/exercises.shtml 

 

 

 

TODO for this Thur 

Read Chp 6 of textbook up to Rejection 

Sampling included 

  

http://www.aispace.org/exercises.shtml
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BNets: Construction General Semantics 

The full joint distribution can be defined as the product of 
conditional distributions: 

 P (X1, … ,Xn) = πi = 1  P(Xi | X1, … ,Xi-1)  (chain rule)   

 

Simplify according to marginal&conditional independence 
 

 
 

                                     

n 

• Express remaining dependencies as a network 
• Each var is a node 

• For each var, the conditioning vars are its parents 

• Associate to each node corresponding conditional 
probabilities 

 
 P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi)) 

 

    

n 
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BNets: Construction General Semantics 

(cont’) 
n 

 P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi)) 

 

    

 
 

• Every node is independent from its non-descendants 
given it parents 
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Lecture Overview 

• Belief Networks 

• Build sample BN 

• Intro Inference, Compactness, Semantics 

• More Examples 
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Other Examples: Fire Diagnosis 

(textbook Ex. 6.10) 
Suppose you want to diagnose 

whether there is a fire in a 

building 

• you receive a noisy report 
about whether everyone is 
leaving the building. 

• if everyone is  leaving, this may 
have been caused by a fire 
alarm. 

• if there is a fire alarm, it may 
have been caused by a fire or 
by tampering 

• if there is a fire, there may be 
smoke raising from the bldg. 
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Other Examples (cont’) 

• Make sure you explore and understand the 

Fire Diagnosis example (we’ll expand on it to 

study Decision Networks) 

 

• Electrical Circuit example (textbook ex 6.11) 

 

• Patient’s wheezing and coughing example 

(ex. 6.14) 

 

• Several other examples on  
 


