Introduction to

Artificial Intelligence (AI)

Computer Science cpsc502, Lecture 7

Oct, 4, 2011

Today Oct 4

Finish R&R systems in deterministic environments

- Logics
 - Reasoning with individuals and relations
 - Full Propositional Logics and First-Order Logics
- Start R&R systems in Stochastic environments
 - Bayesian Networks Representation

N

R&Rsys we'll cover in this course

Logics: Big Picture

Datalog First Order Logic $p(X) \leftarrow q(X) \wedge r(X, Y)$ (Y)pr (X,X)qYEXY $r(X,Y) \leftarrow S(Y)$ $P(\partial_1,\partial_2)$ $S(a_1), q(a_2)$ $-q(\partial_5)$ PDCL Propositional Logic PESAT $7(p \vee q) \longrightarrow (r \wedge s \wedge f)_{f}$ rESNgnp P, rSlide 4 CPSC 502, Lecture 7

Representation and Reasoning in Complex domains

- In complex domains expressing knowledge with propositions can be quite limiting
- It is often natural to consider individuals and their properties

 up_s_2 $up(s_2)$ $up(\bar{s_3})$ $up \bar{s_3}$ $ok(Cb_1)$ OK Cb1 $ok(cb_2)$ ok cb₂ live W1 $live(\bar{w_1})$ connected $W_1 W_2$ connected(w_1, w_2) There is no notion that the system up_{s_2} ore about the up are about the same property WI *live_w*₁ w_1 *connected_w*₁*w*₂ up_s₂ up_s₃ some CPSC 502. Lecture 7 Slide 5

What do we gain....

By breaking propositions into relations applied to individuals?

 Express knowledge that holds for set of individuals (by introducing variables)

 $live(W) <- connected_to(W,W1) \land live(W1) \land wire(W) \land wire(W1).$

• We can ask generic queries (i.e., containing variables)

Datalog: a relational rule language

It expands the syntax of PDCL....

A variable is a symbol starting with an upper case letter X Y

A constant is a symbol starting with lower-case letter or a sequence of digits.

alan w1

A term is either a variable or a constant.

A predicate symbol is a symbol starting with lower-case letter. in part-of live

Data	alog Syntax (cont') propositions
An atom is a symbol predicate symbol	of the form p or $p(t_1 \dots t_n)$ where p is a and t_i are terms
sunny	in(alan, X)

A definite clause is either an atom (a fact) or of the form:

$$h \leftarrow b_1 \wedge \ldots \wedge b_m$$

where *h* and the b_i are atoms (Read this as ``*h* if *b*.")

A knowledge base is a set of definite clauses

 $M(X,Y) \in M(X,Z) \land prA-of(Z,Y)$

Datalog: Top Down Proof

Extension of TD for PDCL.

How do you deal with variables?

Example: in(alan, r123). $part_of(r123, cs_building)$. $in(X,Y) <- part_of(Z,Y) & in(X,Z)$. Query: in(alan, cs_building). $ges <- in(alan, cs_building)$. $ges <- in(alan, cs_building)$.

Datalog: queries with variables

n(alan, r123). part_of(r123,cs_building). one answer in(X,Y) <- in(X,Z). & part_of(Z,Y)</pre> -123 $Yes(x_1) \leftarrow In(\partial \partial n, Z) \& port - of(Z \times 1)$ in(alan, X1). Query Yes(X1) <- in(alan, X1 yes (cs_building)

Logics: Big Picture

Datalog First Order Logic $p(X) \leftarrow q(X) \wedge r(X, Y)$ (Y)pr (X,X)qYEXY $r(X,Y) \leftarrow S(Y)$ $P(\partial_1,\partial_2)$ $S(a_1), q(a_2)$ $-q(\partial_5)$ PDCL Propositional Logic PESAT $7(p \vee q) \longrightarrow (r \wedge s \wedge f)_{f}$ rESNGNP P, rSlide 11 CPSC 502, Lecture 7

Today Oct 4

Finish R&R systems in deterministic environments

- Logics
 - Reasoning with individuals and relations
 - Full Propositional Logics and First-Order Logics
- Start R&R systems in Stochastic environments
 - Bayesian Networks Representation

Full Propositional Logics

Literal: an atom or a negation of an atom $P \neg q$ **Clause:** is a disjunction of literals $p \lor \neg r \lor q$ Conjunctive Normal Form (CNF): a conjunction of clauses INFERENCE: KBEXX formula (P) (qv7r) (qvp)

- Convert all formulas in KB and
 In CNF
- Apply Resolution Procedure (at each step combine two clauses containing complementary literals into a new pvg rvig -> pvr one)
- Termination

DEFs.

- KBXX • No new clause can be added
- Two clause resolve into an empty clause $KB \rightarrow \propto$

Propositional Logics: Satisfiability (SAT problem)

- Does a set of formulas have a model? Is there an interpretation in which all the formulas are true?
- (Stochastic) Local Search Algorithms can be used for this task!
- Evaluation Function: number of unsatisfied clauses
- WalkSat: One of the simplest and most effective algorithms:
- Start from a randomly generated interpretation
- Pick an unsatisfied clause
- Pick a proposition to flip (randomly 1 or 2)
 - 1. To minimize # of unsatisfied clauses
 - 2. Randomly

Full First-Order Logics (FOLs)

We have constant symbols, predicate symbols and function symbols

So interpretations are much more complex (but the same basic idea – one possible configuration of the world) constant symbols => individuals, entities predicate symbols => relations function symbols => functions

INFERENCE:

- Semidecidable: algorithms exists that says yes for every entailed formulas, but no algorithm exists that also says no for every non-entailed sentence
- Resolution Procedure can be generalized to FOL

Today Oct 4

Finish R&R systems in deterministic environments

- Logics
 - Reasoning with individuals and relations
 - Full Propositional Logics and First-Order Logics
- Start R&R systems in Stochastic environments
 - Bayesian Networks Representation

R&Rsys we'll cover in this course

Intro to Probability (Motivation)

- Will it rain in 10 days? Was it raining 98 days ago?
- Right now, how many people are in this building (DMP)? At UBC? Yesterday?
- Al agents (and humans ③) are not omniscient (Know everything)
 they are ignorant
- And the problem is not only predicting the future or "remembering" the past

Intro to Probability (Key points)

- Are agents all ignorant/uncertain to the same degree? No subsective
- Should an agent act only when it is certain about relevant knowledge?
- (not acting usually has implications)
- So agents need to represent and reason about their ignorance/ uncertainty

Probability as a formal measure of uncertainty/ignorance

- Belief in a proposition <u>f</u> (e.g., *it is snowing outside, there are 321 people in this bldg*) can be measured in terms of a number between 0 and 1 this is the probability of <u>f</u>
 - The probability *f* is 0 means that *f* is believed to be definitely false
 - The probability *f* is 1 means that *f* is believed to be definitely true
 - Using 0 and 1 is purely a convention.

Random Variables

- A random variable is a variable like the ones we have seen in CSP and Planning, but the agent can be uncertain about its value.
- As usual
 - The domain of a random variable X, written dom(X), is the set of values X can take
 - values are mutually exclusive and exhaustive
- Examples (Boolean and discrete)

#-of-people-In-DMP [0-104]

Random Variables (cont')

A tuple of random variables <X₁,..., X_n> is a complex random variable with domain..

Assignment X=x means X has value x

 A proposition is a Boolean formula made from assignments of values to variables

Examples

, OB

Probability Distributions

• A probability distribution P on a random variable X is a function $dom(X) \rightarrow [0,1]$ such that $x \rightarrow P(X=x)$ dom(cov(Y)) = [T,F]

cavity? $T \rightarrow .2 P(c_{avity}=T)$ $F \rightarrow .8 P(c_{avity}=F)$

Joint Probability Distributions P(<*X*₁,..., *X*_n>)

- Probability distribution over the variable Cartesian product of multiple random variables
 - Think of a joint distribution over *n* variables as an n-dimensional table
 - Each entry, indexed by X_{1 =} x₁, ..., X_n = x_n corresponds to P(X_{1 =} x₁ ∧ ..., ∧ X_n = x_n)

cavity

• The sum of entries across the whole table is 1

CPSC 502

	toot	thache	⊐ toothache		
	catch	¬ catch	catch	\neg catch	
cavity	.108	.012	.072	.008	
⊐ cavity	.016	.064	.144	.576	

for n Boolean vars

			outon	$\mu(vv)$	
	Т	Т	Т	.108	
	Т	Т	F	.012	
	Т	F	Т	.072	
	Т	F	F	.008	
	F	Т	Т	.016	
	F	Т	F	.064	
, Le	ctureF7	F	Т	.144	
	F	F	F	.576	

toothache catch

11/10/

Joint Prob. Distribution (JPD): Example2

3 binary random variables: P(H,S,F)

- H dom(H)={h, \neg h} has heart disease, does not have...
- S dom(S)={s, ¬s} smokes, does not smoke
- F dom(F)={f, ¬f} high fat diet, low fat diet

Marginalization

Conditional Probability

Recap Conditional Probability (cont.) $\underbrace{P(S \mid H)}_{P(S \mid H)} = \underbrace{P(S, H)}_{P(H)} \qquad P(X_{1}, \dots, X_{N}) \qquad Y_{n} \dots \qquad Y_{k}, \qquad Y_{k} \dots \qquad Y_{$

set of

- It is not a probability distributions but.....
 - prob. bistrib.
- One for each configuration of the conditioning var(s)

Do you always need to revise your beliefs?

- NO when your knowledge of **Y**'s value doesn't affect your belief in the value of **X**
- **DEF.** Random variable **X** is marginal independent of random variable **Y** if, for all $x_i \in \text{dom}(X)$, $y_k \in \text{dom}(Y)$,

$$P(X = x_i | Y = y_k) = P(X = x_i)$$

Marginal Independence: Example

X and Y are independent iff: P(x) = P(x|Y) = P(x|Y) = P(x|Y)

P(X|Y) = P(X) or P(Y|X) = P(Y) or P(X, Y) = P(X) P(Y)

That is new evidence Y(or X) does not affect current belief in X (or Y) Ex: P(*Toothache, Catch, Cavity, Weather*) = P(*Toothache, Catch, Cavity*) P(weather) JPD requiring 32 entries is reduced to two smaller ones (8 and 4) Joint prob. distribution

Conditional Independence

 $P(X_1, \ldots, X_n) = P(X_1) \times \cdots \times P(X_n)$

With marg. Independence, for *n* independent random vars, $O(2^n) \rightarrow O(\alpha)$

Absolute independence is powerful **but** when you model a **particular domain**, it is **rare**

Dentistry is a large field with hundreds of variables, few of which are independent (e.g., *Cavity, Heartdisease*).

What to do?

Look for weaker form of independence

Gity

P(Toothache, Cavity, Catch)

Catch Are Toothache and Catch marginally independent? P(V/) = P(Toothoche)?

BUT If I have a cavity, does the probability that the probe catches depend on whether I have a toothache? (1)P(catch / toothache, cavity) = P(cotch | cavity)

What if I haven't got a cavity? (2) $P(catch | toothache, \neg cavity) = P(cstch | \neg conty)$ STOP HERE 04/10/11

• Each is directly caused by the cavity, but neither has a direct effect on the other

toothache

Conditional independence

In general, *Catch* is conditionally independent of *Toothache* given Cavity. P(Catch / Toothache, Cavity) = P(Catch / Cavity) Equivalent statements: P(Toothache / Catch, Cavity) = P(Toothache / Cavity) (*Toothache, Catch* / Cavity) = P(Toothache / Cavity) P(Catch / Cavity) $P(x, y) = P(x) P(y)^{z}$

Proof of equivalent statements P(X|YZ) = P(X|Z) $= \frac{P(x,Y,z)}{P(Y,z)} = \frac{P(x,z)}{P(z)}$ $= \frac{P(x,Z)}{P(z)} = \frac{P(Y,z)}{P(z)} = \frac{P(Y,z)}{P(z)} = \sum_{i=1}^{n} \frac{P(Y,z)}{P(z)}$ XZ $\frac{A}{P(Y,Z)} P(X,Z)$ $\frac{1}{P(Z)} P(Z,Z)$ $P(X,Y|Z) = P(X,Y,Z) \xrightarrow{\text{from}} F$ $\frac{P(Y,Z)}{P(Z)} \quad \frac{P(X,Z)}{P(Z)}$ 2) CPSC 502, Lecture 7 Slide 36

Conditional Independence: Formal Def.

Sometimes, two variables might not be marginally independent. However, they *become* independent after we observe some third variable

DEF. Random variable **X** is conditionally independent of random variable **Y** given random variable **Z** if, for all $x_i \in dom(X), y_k \in dom(Y), z_m \in dom(Z)$ $P(X = x_i | Y = y_k, Z = z_m) = P(X = x_i | Z = z_m)$

That is, knowledge of **Y**'s value doesn't affect your belief in the value of **X**, given a value of **Z**

Conditional independence: Use

Write out full joint distribution using chain rule:

P(Cavity, Catch, Toothache)

= P(*Toothache | Catch, Cavity*) P(*Catch | Cavity*) P(*Cavity*) = P(*Toothache | Cavity*) P(*Catch | Cavity*) P(Cavity)

2 3 7 2

how many probabilities? $2^3 - 1 = 7$

2+2+1 = 5

The use of conditional independence often reduces the size of the representation of the joint distribution from exponential in *n* to linear in *n*. **n is the number of vars**

Conditional independence is our most basic and robust form of knowledge about uncertain environments.

- We model the environment as a set of random vars $X_1 \dots X_n$ $\operatorname{SPD} \mathbb{P}(X_1 \dots X_n)$
- Why the joint is not an adequate representation ?
- "Representation, reasoning and learning" are "exponential" in the number of variables
- **Solution:** Exploit marginal&conditional independence P(X|Y) = P(X) P(X|YZ) = P(X|Z)

But how does independence allow us to simplify the joint?

Today Oct 4

Finish R&R systems in deterministic environments

- Logics
 - Reasoning with individuals and relations
 - Full Propositional Logics and First-Order Logics
- Start R&R systems in Stochastic environments
 - Bayesian Networks Representation

Belief Nets: Burglary Example

There might be a **burglar** in my house

The anti-burglar alarm in my house may go off

I have an agreement with two of my neighbors, John and Mary, that they call me if they hear the alarm go off when I am at work

Minor earthquakes may occur and sometimes the set off the alarm.

Variables: BAMJE N=5Joint has $2^{5}-1$ entries/probs $2^{N}-1$

Belief Nets: Simplify the joint

- Typically order vars to reflect causal knowledge (i.e., causes *before effects*)
 - A burglar (B) can set the alarm (A) off
 - An earthquake (E) can set the alarm (A) off
 - The alarm can cause Mary to call (M)
 - The alarm can cause John to call (J)

• Apply Chain Rule marginal indep-

• Simplify according to marginal&conditional independence

Belief Nets: Structure + Probs $\rightarrow P(B) * P(E) * P(A|B,E) * P(M|A) * P(J|A)$

- Express remaining dependencies as a network
 - Each var is a node
 - For each var, the conditioning vars are its parents
 - Associate to each node corresponding conditional probabilities $E^{P(E)^{c}}$ $P(A|B,E)^{c}$

A

Directed Acyclic Graph (DAG)

P(MA)

Burglary Example: Bnets inference

Our BN can answer any probabilistic query that can be answered by processing the joint!

(Ex1) I'm at work,

- neighbor John calls to say my alarm is ringing,
 - neighbor Mary doesn't call.
- No news of any earthquakes.
 - Is there a burglar?
- (Ex2) I'm at work,
 - Receive message that neighbor John called ,
 - News of minor earthquakes.
 - Is there a burglar?

Bayesian Networks – Inference Types

BNnets: Compactness

P(B=T) F	P(B=F)						P(E=T)	P(E=F)	7
.001	.999	Butalary		(E	orthquake) [.002	.998	
1									
			B	Ε	P(A=T B,E)	<i>P(A</i> =	F <mark>B,E</mark>)		
		\neq	Т	Т	.95		.05	<	
	Alarn	n) [Т	F	.94		.06	< (
			F	Т	.29		.71	\leq	(
			F	F	.001		.999	4	
John Calls VM CU									
					orycans) A	P(M=T	A) P(M	=F <mark>A</mark>)
А	<i>P(J=T A)</i>	P(J=F A)				Т	.70		.30
Т	.90	.10	2		2	F	.01		.99
F	.05	.95		_					
BNet									
2+2+4+1+1=10									
	JP	川=ビー	CPS	SC 502,	Lecture 7			Slide 4	17

BNets: Compactness

Conditional Conditional Probability Table In General:

A CPT for boolean X_i with k boolean parents has 2^k rows for the combinations of parent values

Each row requires one number p_i for $X_i = true$ (the number for $X_i = false$ is just $1-p_i$)

If each on the *n* variable has no more than *k* parents, the complete network requires $O(n 2^k)$ numbers

For *k*<< *n*, this is a substantial improvement,

 the numbers required grow linearly with n, vs. O(2ⁿ) for the full joint distribution

CPSC 502, Lecture 7

Realistic BNet: Liver Diagnosis

Source: Onisko et al., 1999

TODO for this Thur

Read Chp 6 of textbook up to Rejection Sampling included

Also Do exercises 6.A and 6.B http://www.aispace.org/exercises.shtml

BNets: Construction General Semantics

The full joint distribution can be defined as the product of conditional distributions:

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | X_1, \dots, X_{i-1})$$
 (chain rule)

Simplify according to marginal&conditional independence

- Express remaining dependencies as a network
 - Each var is a node
 - For each var, the conditioning vars are its parents
 - Associate to each node corresponding conditional probabilities

$$P(X_1, \ldots, X_n) = \prod_{i=1}^n P(X_i | Parents(X_i))$$

CPSC 502, Lecture 7

BNets: Construction General Semantics (cont')

$$P(X_1, \ldots, X_n) = \Pi_{i=1} P(X_i | Parents(X_i))$$

n

 Every node is independent from its non-descendants given it parents \bigcirc \bigcirc (1)

Lecture Overview

Belief Networks

- Build sample BN
- Intro Inference, Compactness, Semantics
- More Examples

Other Examples: Fire Diagnosis (textbook Ex. 6.10)

- Suppose you want to diagnose whether there is a fire in a building
- you receive a <u>noisy report</u> about whether everyone is <u>leaving the building</u>.
- if everyone is leaving, this may have been caused by a fire alarm.
- if there is a fire alarm, it may have been caused by a fire or by tampering
- if there is a fire, there may be smoke raising from the bldg.

Other Examples (cont')

- Make sure you explore and understand the Fire Diagnosis example (we'll expand on it to study Decision Networks)
- Electrical Circuit example (textbook ex 6.11)

- Patient's wheezing and coughing example (ex. 6.14)
- Several other examples on

