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Today Sept 13 

• Uninformed Search 

• Informed Search 

• …. 

• …. 

 

 

 

 



CPSC 322, Lecture 4 Slide 4 

Simple Planning Agent 

Deterministic, goal-driven agent 

• Agent is given a goal (subset of possible states) 

• Environment changes only when the agent acts 

• Agent perfectly knows: 

•  what actions can be applied in any given state 

•  the state it is going to end up in when an 

action is applied in a given state 

 

 

 

• The sequence of actions and their appropriate 

ordering is the solution 
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Three examples 

 

 

1. Solving an 8-puzzle 

 

2. Vacuum cleaner world 

 

3. A delivery robot planning the route it will take in a 
bldg. to get from one room to another (see 
textbook) 
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Example 2: 8-Puzzle? 

 

 

 

Possible start state Goal state 
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Example: vacuum world 

Possible start state Goal state 
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How can we find a solution? 

• Define underlying search space.  A graph where 

nodes are states and edges are actions. 
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Vacuum world: Search space graph 

states? Where it is dirty and robot location  

actions? Left, Right, Suck 

Possible goal test? no dirt at all locations  
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Search: Abstract Definition 
 

 

 How to search 

• Start at the start state 

• Consider the effect of taking different actions 

starting from states that have been encountered 

in the search so far 

• Stop when a goal state is encountered 

 

To make this more formal, we'll need review the 

formal definition of a graph... 
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A graph consists of a set N of nodes and a set A of ordered 

pairs of nodes, called arcs. 
 

Node n2 is a neighbor of n1 if there is an arc from n1 to n2. That 

is, if  n1, n2   A. 
 

A path is a sequence of nodes n0, n1,..,nk such that  ni-1, ni   

A. 
 

A cycle is a non-empty path such that the start node is the 

same as the end node 
 

A directed acyclic graph (DAG) is a graph with no cycles 
 

Given a set of start nodes and goal nodes, a solution is a path 

from a start node to a goal node.  

Search Graph 
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Examples for graph formal def. 

a 

b c d e 

f g h i j k l n 
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Generic search algorithm: given a graph, start node, and goal 

node(s), incrementally explore paths from the start node(s). 
 

Maintain a frontier of paths from the start node that have 

been explored. 
 

As search proceeds, the frontier expands into the unexplored 

nodes until (hopefully!) a goal node is encountered. 
 

The way in which the frontier is expanded defines the search 

strategy. 

 

For most problems, we can never actually build the whole graph 

 

 

Graph Searching 
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Input: a graph, a start nodes, Boolean procedure goal(n) 
that tests if n is a goal node 

frontier:= [<s>: s is a start node];  

While frontier  is not empty: 

      select and remove path  <no,….,nk> from frontier;  
      If goal(nk)  
              return <no,….,nk>;  

For every neighbor n of nk 

        add <no,….,nk, n> to frontier; 
end 

Generic Search Algorithm 
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Problem Solving by Graph Searching  

Ends of frontier 
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The forward branching factor of a node is the 

number of arcs going out of the node 

 

The backward branching factor of a node is the 

number of arcs going into the node 

 

If the forward branching factor of any node is b 

and the graph is a tree, How many nodes are 

n steps away from the root? 

 

 

Branching Factor 
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Comparing Searching Algorithms: will it find a 

solution? the best one? 

 

 

Def. (complete): A search algorithm is complete if, 

whenever at least one solution exists, the algorithm 

is guaranteed to find a solution within a finite 

amount of time. 
 

Def. (optimal): A search algorithm is optimal if, when 

it finds a solution , it is the best solution 
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Let’s look at two basic search strategies 
 

 

 

Depth First and Breath First Search: 

• To understand key properties of a search strategy 

• They represent the basis for more sophisticated 

(heuristic / intelligent) search 
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Depth-first Search: DFS 
 

 

 

• Depth-first search treats the frontier as a stack 

• It always selects one of the last elements added 

to the frontier. 

Example: 

• the frontier is [p1, p2, …, pr] 

• neighbors of last node of p1 (its end) are {n1, …, nk} 

• What happens? 
• p1 is selected, and its end is tested for being a goal. 

• New paths are created attaching {n1, …, nk} to p1 

• These “replace” p1 at the beginning of the frontier. 

• Thus, the frontier is now [(p1, n1), …, (p1, nk), p2, …, pr] . 

• p2 is only selected when all paths extending p1 have been 

explored. 
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Depth-first search: Illustrative Graph --- Depth-first Search Frontier 



CPSC 322, Lecture 5 Slide 21 

Depth-first Search: Analysis of DFS 
 

 

 

• Is DFS complete? 

 

 

• Is DFS optimal?  

 

 

• What is its time complexity? 

 

 

• What is its space complexity? 
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Breadth-first Search: BFS 
 

 

 

• Breadth-first search treats the frontier as a queue 

• it always selects one of the earliest elements added to the frontier. 

 

Example: 

• the frontier is [p1,p2, …, pr] 

• neighbors of  the last node of p1 are {n1, …, nk}  

• What happens? 

• p1 is selected, and its end tested for being a path to the goal.  

• New paths are created attaching {n1, …, nk} to p1 

• These follow pr at the end of the frontier. 

• Thus, the frontier is now [p2, …, pr, (p1, n1), …, (p1, nk)]. 

• p2 is selected next. 



CPSC 322, Lecture 5 Slide 26 

Illustrative Graph - Breadth-first Search 
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Breadth Search: Analysis of BFS 
 

 

 

• Is BFS complete? 

 

 

• Is BFS optimal?  

 

 

• What is its time complexity? 

 

 

• What is its space complexity? 
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Iterative Deepening (sec 3.6.3) 

How can we achieve an acceptable (linear) space 

complexity maintaining completeness and optimality? 
 
 

 

Key Idea: let’s re-compute elements of the frontier rather 

than saving them. 
 

Complete Optimal Time Space 

DFS 

BFS 
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Iterative Deepening in Essence 
 

• Look with DFS for solutions at depth 1, then 2, then 3, 

etc. 
 

• If a solution cannot be found at depth D, look for a 

solution at depth D + 1.  

 

• You need a depth-bounded depth-first searcher. 
 

• Given a bound B you simply assume that paths of length 

B cannot be expanded…. 
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depth = 1 
 

 

depth = 2 

 

 

 

 

depth = 3 

. . . 



(Time) Complexity of Iterative Deepening 
Complexity of solution at depth m with branching factor b 

 
Total # of paths 

at that level 

#times created by 

BFS (or DFS) 
#times created 

by IDS 
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(Time) Complexity of Iterative Deepening 
Complexity of solution at depth m with branching factor b 

 
Total # of paths generated 

bm + 2 bm-1 + 3 bm-2 + ..+ mb =  

bm (1+ 2 b-1 + 3 b-2 + ..+m b1-m )≤ 
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Search with Costs 

Sometimes there are costs associated with arcs. 

  ),cost(,,cost
1

10 



k

i
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Define optimality….. 

 

 

 

Design an optimal search strategy…… 
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Today Sept 13 

• Uninformed Search 

• Informed Search 

• …. 

• …. 
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Uninformed/Blind search algorithms do not take 

into account the goal until they are at a goal 

node. 
 

Often there is extra knowledge that can be used 

to guide the search: an estimate  of the 

distance from node n to a goal node.  

 

 

This is called a heuristic 
 

Heuristic Search 
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More formally 

Definition (search heuristic) 

A search heuristic h(n) is an estimate of the cost of the shortest 

path from node n to a goal node. 

• h can be extended to paths:  h(n0,…,nk)=h(nk) 

• h(n) uses only readily obtainable information (that is easy to 

compute) about a node. 
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More formally (cont.) 

Definition (admissible heuristic) 

A search heuristic h(n) is admissible if it is never an 

overestimate of the cost from n to a goal. 

   

• There is never a path from n to a goal that has path length less 

than h(n). 

• another way of saying this: h(n) is a lower bound on the cost of 

getting from n to the nearest goal. 
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Example Admissible Heuristic Functions 
 

 

 

 Search problem: robot has to find a route from start 

location to goal location on a grid  (discrete space with 

obstacles) 

Final cost (quality of the solution) is the number of steps 

If no obstacles, cost of optimal solution is… 
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Example Admissible Heuristic Functions 

 

 

 

If there are obstacle, the optimal solution without 

obstacles is an admissible heuristic 

G 
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Example Admissible Heuristic Functions 
 

 

 

• Similarly, If the nodes are points on a Euclidean plane and 

the cost is the distance, we can use the straight-line 

distance from n to the closest goal as the value of h(n). 
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Example Heuristic Functions 

 

 

 

• In the 8-puzzle, we can use the number of misplaced tiles 
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Example Heuristic Functions 

 

 

 

• Another one we can use the number of moves between 

each tile's current position and its position in the solution 

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 
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How to Construct a Heuristic 
 

 

 

You identify  relaxed version of the problem:  

• where one or more constraints have been dropped 

• problem with fewer restrictions on the actions 

Robot: the agent can move through walls 

Driver: the agent can move straight 

8puzzle: (1) tiles can move anywhere  

      (2) tiles can move to any adjacent square 

 
Result: The cost of an optimal solution to the relaxed 

problem is an admissible heuristic for the original 

problem (because it is always weakly less costly to solve 

a less constrained problem!) 
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How to Construct a Heuristic (cont.) 
 

 

 

You should identify constraints which, when 

dropped, make the problem extremely easy to 

solve 
• this is important because heuristics are not useful if they're as hard 

to solve as the original problem! 

 

 
This was the case in our examples 

Robot: allowing the agent to move through walls. Optimal 

solution to this relaxed problem is Manhattan distance 

Driver: allowing the agent to move straight. Optimal solution 

to this relaxed problem is straight-line distance  

8puzzle: (1) tiles can move anywhere Optimal solution to this 

relaxed problem is number of misplaced tiles 

(2) tiles can move to any adjacent square…. 
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Another approach to construct heuristics 
Solution cost for a subproblem 
 

 

1 3 

8 2 5 

7 6 4 

1 2 3 

8   4 

7 6 5 

1 3 

@ 2 @ 

@ @ 4 

1 2 3 

@   4 

@ @ @ 

Current node 

Goal node 

Original Problem 
 

 

SubProblem 
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Heuristics: Dominance 
If h2(n) ≥ h1(n) for all n (both admissible) 

then h2 dominates h1  

h2 is better for search (why?) 

8puzzle: (1) tiles can move anywhere  

      (2) tiles can move to any adjacent square 

(Original problem: tiles can move to an adjacent square if it is 
empty) 

search costs for the 8-puzzle (average number of paths 
expanded): 

d=12 IDS = 3,644,035 paths 
 A*(h1) = 227 paths  
 A*(h2) = 73 paths 

d=24  IDS = too many paths  
 A*(h1) = 39,135 paths  
 A*(h2) = 1,641 paths 
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Combining Heuristics 

How to combine heuristics when there is no 

dominance? 

If h1(n) is admissible and h2(n) is also admissible 

then 

h(n)= …………………  is also admissible 

… and dominates all its components 
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Combining Heuristics: Example 

In 8-puzzle, solution cost for the 1,2,3,4 subproblem 
is substantially more accurate than Manhattan 
distance in some cases 

 

So….. 
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Best-First Search 
 

 

 • Idea: select the path whose end is closest to a 

goal according to the heuristic function. 

 

• Best-First search selects a path on the frontier 

with minimal h-value (for the end node). 

• It treats the frontier as a priority queue ordered by h. 

(similar to ?) 

• This is a greedy approach: it always takes the path 

which appears locally best 
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Analysis of Best-First Search 

 

 

 

• Complete no: a low heuristic value can mean that 

a cycle gets followed forever.  

 

 

 

 

 

• Optimal: no (why not?) 

• Time complexity is O(bm) 

• Space complexity is O(bm) 
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• A*  is a mix of: 

•  lowest-cost-first and  

•  best-first search 

 

• A* treats the frontier as a priority queue ordered 

by f(p)= 

 

• It always selects the node on the frontier with the 

………….. estimated …………….distance. 

A* Search Algorithm 
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Analysis of A* 
 

 

 

Let's assume that arc costs are strictly positive. 

• Time complexity is O(bm) 

• the heuristic could be completely uninformative and the 

edge costs could all be the same, meaning that A* does 

the same thing as BFS 

• Space complexity is O(bm) like BFS, A* maintains a 

frontier which grows with the size of the tree 

 

• Completeness: yes. 

 

• Optimality: yes. 
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Optimality of A* 
 

 

 
If A* returns a solution, that solution is guaranteed to 

be optimal, as long as 

When 

• the branching factor is finite 

• arc costs are strictly positive 

• h(n) is an underestimate of the length of the shortest path 

from n to a goal node, and is non-negative 

Theorem 

 If A* selects a path p, p is the shortest (i.e., lowest-cost) path. 
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Why is A* optimal? 

• Assume for contradiction that some other path p' is actually the 

shortest path to a goal 

• Consider the moment when p is chosen from the frontier. Some 

part of path p' will also be on the frontier; let's call this partial 

path p''. 

p 

p' 

p'' 
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Why is A* optimal? (cont’) 

 

• Because p was expanded before p'',  

• Because p is a goal,        Thus  

• Because h is admissible, cost(p'') + h(p'')  cost(p') for any path 

p' to a goal that extends p'' 

• Thus     for any other path p' to a goal.   

This contradicts our assumption that p' is the shortest path. 

p 

p' 

p'' 
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Branch-and-Bound Search 
 

 

 • What is the biggest advantage of A*? 

 

 

• What is the biggest problem with A*? 

 

 

• Possible Solution:  
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Branch-and-Bound Search Algorithm 

• Follow exactly the same search path as depth-first search 

• treat the frontier as a stack: expand the most-recently 
added path first 

• the order in which neighbors are expanded can be 
governed by some arbitrary node-ordering heuristic 
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Branch-and-Bound Search Algorithm 
• Keep track of a lower bound and upper bound on solution 

cost at each path 
• lower bound: LB(p) =  f(p) = cost(p) + h(p) 

• upper bound: UB = cost of  the best solution found so far. 

 if no solution has been found yet, set the upper bound to . 

• When a path p is selected for expansion: 
• if LB(p) UB, remove p from frontier without expanding it (pruning) 

• else expand p, adding all of its neighbors to the frontier 
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Other A* Enhancements 

 

The main problem with A* is that it uses exponential 

space.  Branch and bound was one way around 

this problem.  Are there others? 

 

• Iterative deepening A* 

• Memory-bounded A*  
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Other A* Enhancements 

 

The main problem with A* is that it uses exponential 

space.  Branch and bound was one way around 

this problem.  Are there others? 

 

• Iterative deepening A* 

• Memory-bounded A*  
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Cycle Checking 

You can prune a path that ends in a node already on the path. 

This pruning cannot remove an optimal solution. 

• The time is ………………… in path length. 
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Repeated States / Multiple Paths 

Failure to detect repeated states can turn a linear 

problem into an exponential one! 



Pruning Cycles 
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Repeated States 
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Search in Practice 

 

 

 

Complete Optimal Time Space 

DFS N N O(bm) O(mb) 

BFS Y Y O(bm) O(bm) 

IDS(C) Y Y O(bm) O(mb) 

LCFS Y  Y  O(bm) O(bm) 

BFS N N O(bm) O(bm) 

A* Y Y O(bm) O(bm) 

B&B N Y  O(bm) O(mb) 

IDA* Y Y O(bm) O(mb) 

MBA* N N O(bm) O(bm) 

BDS Y Y  O(bm/2) O(bm/2) 
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Search in Practice (cont’) 
 

 

 

 

Many paths to 

solution, no  ∞ paths? 
 

Informed? 

 
 

Large branching factor? 

 
 



Sample A* applications 

• An Efficient A* Search Algorithm For Statistical 

Machine Translation. 2001 

• The Generalized A* Architecture. Journal of 

Artificial Intelligence Research (2007)  

• Machine Vision … Here we consider a new 

compositional model for finding salient curves.  

• Factored A*search for models over sequences 

and trees International Conference on AI. 2003…. 

It starts saying… The primary challenge when using A* 

search is to find heuristic functions that simultaneously are 
admissible, close to actual completion costs, and efficient 

to calculate…  applied to NLP and BioInformatics 
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Class Forum: Piazza 

Join the class asap via the signup link below.  

 

http://www.piazza.com/ubc.ca/fall2011/cpsc502  

 

You need a ubc.ca or cs.ubc.ca email address to sign 

up. If you do not have one, please send an email to 

rjoty@cs.ubc.ca 
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Do all the “Graph Searching exercises” 

available at 

http://www.aispace.org/exercises.shtml 

Please, look at solutions only after you have 

tried hard to solve them! 

 

 • Join piazza (the class discussion forum) 

 

Read Chp 4 of textbook 

TODO for this Thurs 

http://www.aispace.org/exercises.shtml
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• Search is a key computational mechanism in 

many AI agents  

• We will study the basic principles of search on the 

simple deterministic planning agent model 

Generic search approach:  

• define a search space graph,  

• start from current state,  

• incrementally explore paths from current state until goal 

state is reached. 
 

The way in which the frontier is expanded defines 

the search strategy. 

 

 

Lecture Summary 
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Example1: Delivery Robot 
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How can we find a solution? 

• How can we find a sequence of actions and their 

appropriate ordering that lead to the goal? 

• Define underlying search space.  A graph where 

nodes are states and edges are actions. 

b4 

o107 o109 o111 

r109 r107 r111 

o113 r113 
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Examples of solution 

• Start state b4, goal r113 

• Solution <b4, o107, o109, o113, r113>  

•   

 

 

b4 

o107 o109 o111 

r109 r107 r111 

o113 r113 


