
CPSC 502, Lecture 2 Slide 1

Introduction to

Artificial Intelligence (AI)

Computer Science cpsc502, Lecture 2

Sep, 13, 2011

CPSC 502, Lecture 2 Slide 2

R&Rsys we'll cover in this course

Environment

Problem

Query

Planning

Deterministic Stochastic

Constraint
Satisfaction Search

Arc
Consistency

Search

Search

Logics

STRIPS

Vars +
Constraints

Value Iteration

Var. Elimination
Belief Nets

Decision Nets

Markov Processes

Var. Elimination

Approx. Inference

Temporal. Inference

Static

Sequential

Representation

Reasoning

Technique

CPSC 502, Lecture 2 3

Today Sept 13

• Uninformed Search

• Informed Search

• ….

• ….

CPSC 322, Lecture 4 Slide 4

Simple Planning Agent

Deterministic, goal-driven agent

• Agent is given a goal (subset of possible states)

• Environment changes only when the agent acts

• Agent perfectly knows:

• what actions can be applied in any given state

• the state it is going to end up in when an

action is applied in a given state

• The sequence of actions and their appropriate

ordering is the solution

CPSC 322, Lecture 4 Slide 5

Three examples

1. Solving an 8-puzzle

2. Vacuum cleaner world

3. A delivery robot planning the route it will take in a
bldg. to get from one room to another (see
textbook)

CPSC 322, Lecture 4 Slide 6

Example 2: 8-Puzzle?

Possible start state Goal state

CPSC 322, Lecture 6 Slide 7

Example: vacuum world

Possible start state Goal state

CPSC 322, Lecture 4 Slide 8

How can we find a solution?

• Define underlying search space. A graph where

nodes are states and edges are actions.

CPSC 322, Lecture 6 Slide 9

Vacuum world: Search space graph

states? Where it is dirty and robot location

actions? Left, Right, Suck

Possible goal test? no dirt at all locations

CPSC 322, Lecture 4 Slide 10

Search: Abstract Definition

 How to search

• Start at the start state

• Consider the effect of taking different actions

starting from states that have been encountered

in the search so far

• Stop when a goal state is encountered

To make this more formal, we'll need review the

formal definition of a graph...

CPSC 322, Lecture 4 Slide 11

A graph consists of a set N of nodes and a set A of ordered

pairs of nodes, called arcs.

Node n2 is a neighbor of n1 if there is an arc from n1 to n2. That

is, if n1, n2 A.

A path is a sequence of nodes n0, n1,..,nk such that ni-1, ni

A.

A cycle is a non-empty path such that the start node is the

same as the end node

A directed acyclic graph (DAG) is a graph with no cycles

Given a set of start nodes and goal nodes, a solution is a path

from a start node to a goal node.

Search Graph

CPSC 322, Lecture 4 Slide 12

Examples for graph formal def.

a

b c d e

f g h i j k l n

CPSC 322, Lecture 4 Slide 13

Generic search algorithm: given a graph, start node, and goal

node(s), incrementally explore paths from the start node(s).

Maintain a frontier of paths from the start node that have

been explored.

As search proceeds, the frontier expands into the unexplored

nodes until (hopefully!) a goal node is encountered.

The way in which the frontier is expanded defines the search

strategy.

For most problems, we can never actually build the whole graph

Graph Searching

CPSC 322, Lecture 4 Slide 14

Input: a graph, a start nodes, Boolean procedure goal(n)
that tests if n is a goal node

frontier:= [<s>: s is a start node];

While frontier is not empty:

 select and remove path <no,….,nk> from frontier;
 If goal(nk)
 return <no,….,nk>;

For every neighbor n of nk

 add <no,….,nk, n> to frontier;
end

Generic Search Algorithm

CPSC 322, Lecture 4 Slide 15

Problem Solving by Graph Searching

Ends of frontier

CPSC 322, Lecture 4 Slide 16

The forward branching factor of a node is the

number of arcs going out of the node

The backward branching factor of a node is the

number of arcs going into the node

If the forward branching factor of any node is b

and the graph is a tree, How many nodes are

n steps away from the root?

Branching Factor

CPSC 322, Lecture 5 Slide 17

Comparing Searching Algorithms: will it find a

solution? the best one?

Def. (complete): A search algorithm is complete if,

whenever at least one solution exists, the algorithm

is guaranteed to find a solution within a finite

amount of time.

Def. (optimal): A search algorithm is optimal if, when

it finds a solution , it is the best solution

CPSC 322, Lecture 5 Slide 18

Let’s look at two basic search strategies

Depth First and Breath First Search:

• To understand key properties of a search strategy

• They represent the basis for more sophisticated

(heuristic / intelligent) search

CPSC 322, Lecture 5 Slide 19

Depth-first Search: DFS

• Depth-first search treats the frontier as a stack

• It always selects one of the last elements added

to the frontier.

Example:

• the frontier is [p1, p2, …, pr]

• neighbors of last node of p1 (its end) are {n1, …, nk}

• What happens?
• p1 is selected, and its end is tested for being a goal.

• New paths are created attaching {n1, …, nk} to p1

• These “replace” p1 at the beginning of the frontier.

• Thus, the frontier is now [(p1, n1), …, (p1, nk), p2, …, pr] .

• p2 is only selected when all paths extending p1 have been

explored.

CPSC 322, Lecture 5 Slide 20

Depth-first search: Illustrative Graph --- Depth-first Search Frontier

CPSC 322, Lecture 5 Slide 21

Depth-first Search: Analysis of DFS

• Is DFS complete?

• Is DFS optimal?

• What is its time complexity?

• What is its space complexity?

CPSC 322, Lecture 5 Slide 25

Breadth-first Search: BFS

• Breadth-first search treats the frontier as a queue

• it always selects one of the earliest elements added to the frontier.

Example:

• the frontier is [p1,p2, …, pr]

• neighbors of the last node of p1 are {n1, …, nk}

• What happens?

• p1 is selected, and its end tested for being a path to the goal.

• New paths are created attaching {n1, …, nk} to p1

• These follow pr at the end of the frontier.

• Thus, the frontier is now [p2, …, pr, (p1, n1), …, (p1, nk)].

• p2 is selected next.

CPSC 322, Lecture 5 Slide 26

Illustrative Graph - Breadth-first Search

CPSC 322, Lecture 5 Slide 27

Breadth Search: Analysis of BFS

• Is BFS complete?

• Is BFS optimal?

• What is its time complexity?

• What is its space complexity?

CPSC 322, Lecture 6 Slide 30

Iterative Deepening (sec 3.6.3)

How can we achieve an acceptable (linear) space

complexity maintaining completeness and optimality?

Key Idea: let’s re-compute elements of the frontier rather

than saving them.

Complete Optimal Time Space

DFS

BFS

CPSC 322, Lecture 6 Slide 31

Iterative Deepening in Essence

• Look with DFS for solutions at depth 1, then 2, then 3,

etc.

• If a solution cannot be found at depth D, look for a

solution at depth D + 1.

• You need a depth-bounded depth-first searcher.

• Given a bound B you simply assume that paths of length

B cannot be expanded….

CPSC 322, Lecture 6 Slide 32

depth = 1

depth = 2

depth = 3

. . .

(Time) Complexity of Iterative Deepening
Complexity of solution at depth m with branching factor b

Total # of paths

at that level

#times created by

BFS (or DFS)
#times created

by IDS

CPSC 322, Lecture 6 Slide 34

(Time) Complexity of Iterative Deepening
Complexity of solution at depth m with branching factor b

Total # of paths generated

bm + 2 bm-1 + 3 bm-2 + ..+ mb =

bm (1+ 2 b-1 + 3 b-2 + ..+m b1-m)≤

)(
1

)(

2

1

1 mm

i

im bO
b

b
bibb

CPSC 322, Lecture 6 Slide 35

Search with Costs

Sometimes there are costs associated with arcs.

),cost(,,cost
1

10

k

i

iik nnnn

Define optimality…..

Design an optimal search strategy……

CPSC 502, Lecture 2 36

Today Sept 13

• Uninformed Search

• Informed Search

• ….

• ….

CPSC 322, Lecture 7 Slide 37

Uninformed/Blind search algorithms do not take

into account the goal until they are at a goal

node.

Often there is extra knowledge that can be used

to guide the search: an estimate of the

distance from node n to a goal node.

This is called a heuristic

Heuristic Search

CPSC 322, Lecture 7 Slide 38

More formally

Definition (search heuristic)

A search heuristic h(n) is an estimate of the cost of the shortest

path from node n to a goal node.

• h can be extended to paths: h(n0,…,nk)=h(nk)

• h(n) uses only readily obtainable information (that is easy to

compute) about a node.

CPSC 322, Lecture 7 Slide 39

More formally (cont.)

Definition (admissible heuristic)

A search heuristic h(n) is admissible if it is never an

overestimate of the cost from n to a goal.

• There is never a path from n to a goal that has path length less

than h(n).

• another way of saying this: h(n) is a lower bound on the cost of

getting from n to the nearest goal.

CPSC 322, Lecture 7 Slide 40

Example Admissible Heuristic Functions

 Search problem: robot has to find a route from start

location to goal location on a grid (discrete space with

obstacles)

Final cost (quality of the solution) is the number of steps

If no obstacles, cost of optimal solution is…

CPSC 322, Lecture 7 Slide 41

Example Admissible Heuristic Functions

If there are obstacle, the optimal solution without

obstacles is an admissible heuristic

G

CPSC 322, Lecture 7 Slide 42

Example Admissible Heuristic Functions

• Similarly, If the nodes are points on a Euclidean plane and

the cost is the distance, we can use the straight-line

distance from n to the closest goal as the value of h(n).

CPSC 322, Lecture 7 Slide 43

Example Heuristic Functions

• In the 8-puzzle, we can use the number of misplaced tiles

CPSC 322, Lecture 7 Slide 44

Example Heuristic Functions

• Another one we can use the number of moves between

each tile's current position and its position in the solution

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

CPSC 322, Lecture 7 Slide 45

How to Construct a Heuristic

You identify relaxed version of the problem:

• where one or more constraints have been dropped

• problem with fewer restrictions on the actions

Robot: the agent can move through walls

Driver: the agent can move straight

8puzzle: (1) tiles can move anywhere

 (2) tiles can move to any adjacent square

Result: The cost of an optimal solution to the relaxed

problem is an admissible heuristic for the original

problem (because it is always weakly less costly to solve

a less constrained problem!)

CPSC 322, Lecture 7 Slide 46

How to Construct a Heuristic (cont.)

You should identify constraints which, when

dropped, make the problem extremely easy to

solve
• this is important because heuristics are not useful if they're as hard

to solve as the original problem!

This was the case in our examples

Robot: allowing the agent to move through walls. Optimal

solution to this relaxed problem is Manhattan distance

Driver: allowing the agent to move straight. Optimal solution

to this relaxed problem is straight-line distance

8puzzle: (1) tiles can move anywhere Optimal solution to this

relaxed problem is number of misplaced tiles

(2) tiles can move to any adjacent square….

CPSC 322, Lecture 8 Slide 47

Another approach to construct heuristics
Solution cost for a subproblem

1 3

8 2 5

7 6 4

1 2 3

8 4

7 6 5

1 3

@ 2 @

@ @ 4

1 2 3

@ 4

@ @ @

Current node

Goal node

Original Problem

SubProblem

CPSC 322, Lecture 8 Slide 48

Heuristics: Dominance
If h2(n) ≥ h1(n) for all n (both admissible)

then h2 dominates h1

h2 is better for search (why?)

8puzzle: (1) tiles can move anywhere

 (2) tiles can move to any adjacent square

(Original problem: tiles can move to an adjacent square if it is
empty)

search costs for the 8-puzzle (average number of paths
expanded):

d=12 IDS = 3,644,035 paths
 A*(h1) = 227 paths
 A*(h2) = 73 paths

d=24 IDS = too many paths
 A*(h1) = 39,135 paths
 A*(h2) = 1,641 paths

CPSC 322, Lecture 8 Slide 49

Combining Heuristics

How to combine heuristics when there is no

dominance?

If h1(n) is admissible and h2(n) is also admissible

then

h(n)= ………………… is also admissible

… and dominates all its components

CPSC 322, Lecture 8 Slide 50

Combining Heuristics: Example

In 8-puzzle, solution cost for the 1,2,3,4 subproblem
is substantially more accurate than Manhattan
distance in some cases

So…..

CPSC 322, Lecture 7 Slide 51

Best-First Search

 • Idea: select the path whose end is closest to a

goal according to the heuristic function.

• Best-First search selects a path on the frontier

with minimal h-value (for the end node).

• It treats the frontier as a priority queue ordered by h.

(similar to ?)

• This is a greedy approach: it always takes the path

which appears locally best

CPSC 322, Lecture 7 Slide 52

Analysis of Best-First Search

• Complete no: a low heuristic value can mean that

a cycle gets followed forever.

• Optimal: no (why not?)

• Time complexity is O(bm)

• Space complexity is O(bm)

CPSC 322, Lecture 8 Slide 53

• A* is a mix of:

• lowest-cost-first and

• best-first search

• A* treats the frontier as a priority queue ordered

by f(p)=

• It always selects the node on the frontier with the

………….. estimated …………….distance.

A* Search Algorithm

CPSC 322, Lecture 8 Slide 54

Analysis of A*

Let's assume that arc costs are strictly positive.

• Time complexity is O(bm)

• the heuristic could be completely uninformative and the

edge costs could all be the same, meaning that A* does

the same thing as BFS

• Space complexity is O(bm) like BFS, A* maintains a

frontier which grows with the size of the tree

• Completeness: yes.

• Optimality: yes.

CPSC 322, Lecture 8 Slide 55

Optimality of A*

If A* returns a solution, that solution is guaranteed to

be optimal, as long as

When

• the branching factor is finite

• arc costs are strictly positive

• h(n) is an underestimate of the length of the shortest path

from n to a goal node, and is non-negative

Theorem

 If A* selects a path p, p is the shortest (i.e., lowest-cost) path.

CPSC 322, Lecture 8 Slide 56

Why is A* optimal?

• Assume for contradiction that some other path p' is actually the

shortest path to a goal

• Consider the moment when p is chosen from the frontier. Some

part of path p' will also be on the frontier; let's call this partial

path p''.

p

p'

p''

CPSC 322, Lecture 8 Slide 57

Why is A* optimal? (cont’)

• Because p was expanded before p'',

• Because p is a goal, Thus

• Because h is admissible, cost(p'') + h(p'') cost(p') for any path

p' to a goal that extends p''

• Thus for any other path p' to a goal.

This contradicts our assumption that p' is the shortest path.

p

p'

p''

CPSC 322, Lecture 9 Slide 58

Branch-and-Bound Search

 • What is the biggest advantage of A*?

• What is the biggest problem with A*?

• Possible Solution:

CPSC 322, Lecture 9 Slide 59

Branch-and-Bound Search Algorithm

• Follow exactly the same search path as depth-first search

• treat the frontier as a stack: expand the most-recently
added path first

• the order in which neighbors are expanded can be
governed by some arbitrary node-ordering heuristic

CPSC 322, Lecture 9 Slide 60

Branch-and-Bound Search Algorithm
• Keep track of a lower bound and upper bound on solution

cost at each path
• lower bound: LB(p) = f(p) = cost(p) + h(p)

• upper bound: UB = cost of the best solution found so far.

 if no solution has been found yet, set the upper bound to .

• When a path p is selected for expansion:
• if LB(p) UB, remove p from frontier without expanding it (pruning)

• else expand p, adding all of its neighbors to the frontier

CPSC 322, Lecture 9 Slide 62

Other A* Enhancements

The main problem with A* is that it uses exponential

space. Branch and bound was one way around

this problem. Are there others?

• Iterative deepening A*

• Memory-bounded A*

CPSC 322, Lecture 9 Slide 63

Other A* Enhancements

The main problem with A* is that it uses exponential

space. Branch and bound was one way around

this problem. Are there others?

• Iterative deepening A*

• Memory-bounded A*

CPSC 502, Lecture 2 Slide 64

Cycle Checking

You can prune a path that ends in a node already on the path.

This pruning cannot remove an optimal solution.

• The time is ………………… in path length.

CPSC 322, Lecture 10 Slide 65

Repeated States / Multiple Paths

Failure to detect repeated states can turn a linear

problem into an exponential one!

Pruning Cycles

CPSC 322, Lecture 10 Slide 66

Repeated States

CPSC 322, Lecture 10 Slide 67

Search in Practice

Complete Optimal Time Space

DFS N N O(bm) O(mb)

BFS Y Y O(bm) O(bm)

IDS(C) Y Y O(bm) O(mb)

LCFS Y Y O(bm) O(bm)

BFS N N O(bm) O(bm)

A* Y Y O(bm) O(bm)

B&B N Y O(bm) O(mb)

IDA* Y Y O(bm) O(mb)

MBA* N N O(bm) O(bm)

BDS Y Y O(bm/2) O(bm/2)

CPSC 322, Lecture 10 Slide 68

Search in Practice (cont’)

Many paths to

solution, no ∞ paths?

Informed?

Large branching factor?

Sample A* applications

• An Efficient A* Search Algorithm For Statistical

Machine Translation. 2001

• The Generalized A* Architecture. Journal of

Artificial Intelligence Research (2007)

• Machine Vision … Here we consider a new

compositional model for finding salient curves.

• Factored A*search for models over sequences

and trees International Conference on AI. 2003….

It starts saying… The primary challenge when using A*

search is to find heuristic functions that simultaneously are
admissible, close to actual completion costs, and efficient

to calculate… applied to NLP and BioInformatics

CPSC 322, Lecture 9 Slide 69

Class Forum: Piazza

Join the class asap via the signup link below.

http://www.piazza.com/ubc.ca/fall2011/cpsc502

You need a ubc.ca or cs.ubc.ca email address to sign

up. If you do not have one, please send an email to

rjoty@cs.ubc.ca

CPSC 502, Lecture 2 Slide 70

CPSC 502, Lecture 2 Slide 71

Do all the “Graph Searching exercises”

available at

http://www.aispace.org/exercises.shtml

Please, look at solutions only after you have

tried hard to solve them!

 • Join piazza (the class discussion forum)

Read Chp 4 of textbook

TODO for this Thurs

http://www.aispace.org/exercises.shtml

CPSC 322, Lecture 4 Slide 72

• Search is a key computational mechanism in

many AI agents

• We will study the basic principles of search on the

simple deterministic planning agent model

Generic search approach:

• define a search space graph,

• start from current state,

• incrementally explore paths from current state until goal

state is reached.

The way in which the frontier is expanded defines

the search strategy.

Lecture Summary

CPSC 322, Lecture 4 Slide 73

Example1: Delivery Robot

CPSC 322, Lecture 4 Slide 74

How can we find a solution?

• How can we find a sequence of actions and their

appropriate ordering that lead to the goal?

• Define underlying search space. A graph where

nodes are states and edges are actions.

b4

o107 o109 o111

r109 r107 r111

o113 r113

CPSC 322, Lecture 4 Slide 75

Examples of solution

• Start state b4, goal r113

• Solution <b4, o107, o109, o113, r113>

•

b4

o107 o109 o111

r109 r107 r111

o113 r113

