Introduction to

Artificial Intelligence (AI)

Computer Science cpsc502, Lecture 2

Sep, 13, 2011

R&Rsys we'll cover in this course

Today Sept 13

- Uninformed Search
- Informed Search
-

Simple Planning Agent

Deterministic, goal-driven agent

- Agent is given a goal (subset of possible states)
- Environment changes only when the agent acts
- Agent perfectly knows:
 - what actions can be applied in any given state
 - the state it is going to end up in when an action is applied in a given state
- The sequence of actions and their appropriate ordering is the solution

Three examples

- 1. Solving an 8-puzzle
- 2. Vacuum cleaner world
- 3. A delivery robot planning the route it will take in a bldg. to get from one room to another *(see textbook)*

Possible start state

How can we find a solution?

• Define underlying search space. A graph where nodes are states and edges are actions.

le 8

Vacuum world: Search space graph

states? Where it is dirty and robot location

actions? Left, Right, Suck

Possible goal test? no dirt at all locations

Search: Abstract Definition

How to search

- Start at the start state
- Consider the effect of taking different actions starting from states that have been encountered in the search so far
- Stop when a goal state is encountered

To make this more formal, we'll need review the formal definition of a graph...

Search Graph

A *graph* consists of a set *N* of *nodes* and a set *A* of ordered pairs of nodes, called *arcs*.

- Node n_2 is a *neighbor* of n_1 if there is an arc from n_1 to n_2 . That is, if $\langle n_1, n_2 \rangle \in A$.
- A *path* is a sequence of nodes n_0 , n_1 ,..., n_k such that $\langle n_{j-1}, n_j \rangle \in A$.
- A *cycle* is a non-empty path such that the start node is the same as the end node

A *directed acyclic graph* (DAG) is a graph with no cycles

Given a set of start nodes and goal nodes, a *solution* is a path from a start node to a goal node.

Examples for graph formal def.

Graph Searching

- **Generic search algorithm**: given a graph, start node, and goal node(s), incrementally explore paths from the start node(s).
- Maintain a **frontier of paths** from the start node that have been explored.
- As search proceeds, the frontier expands into the unexplored nodes until (hopefully!) a goal node is encountered.
- The way in which the frontier is expanded defines the search strategy.
- For most problems, we can never actually build the whole graph

Generic Search Algorithm

Branching Factor

The *forward branching factor* of a node is the number of arcs going out of the node

The *backward branching factor* of a node is the number of arcs going into the node $\sim \gamma$

If the forward branching factor of any node is b and the graph is a tree, How many nodes are *n* steps away from the root?

CPSC 322, Lecture 4

Comparing Searching Algorithms: will it find a solution? the best one?

Def. (complete): A search algorithm is **complete** if, whenever at least one solution exists, the algorithm **is guaranteed to find a solution** within a finite amount of time.

Def. (optimal): A search algorithm is **optimal** if, when it finds a solution , it is the best solution

Let's look at two basic search strategies

Depth First and Breath First Search:

- To understand key properties of a search strategy
- They represent the basis for more sophisticated (heuristic / intelligent) search

Depth-first Search: DFS

- **Depth-first search** treats the frontier as a **stack**
- It always selects one of the last elements added order in which these order is not specified in pure to the frontier.
- Example: pr
 - the frontier is $[p_1, p_2, \dots, p_r]$
 - neighbors of last node of p₁ (its end) are {n₁, ..., n_k}
- What happens?
 - p_1 is selected, and its end is tested for being a goal.
 - New paths are created attaching $\{n_1, \dots, n_k\}$ to p_1
 - These "replace" p_1 at the beginning of the frontier. Know paths
 - Thus, the frontier is now $(p_1, n_1), ..., (p_1, n_k), p_2, ..., p_r$.
 - p_2 is only selected when all paths extending p_1 have been explored.

CPSC 322, Lecture 5

Slide 19

Depth-first search: Illustrative Graph --- Depth-first Search Frontier

Depth-first Search: Analysis of DFS

• Is DFS complete?

• Is DFS optimal?

• What is its time complexity?

• What is its space complexity?

Breadth-first Search: BFS

- Breadth-first search treats the frontier as a queue
 - it always selects one of the earliest elements added to the frontier.

Example:
$$p_1, p_2, \dots, p_r$$

• the frontier is $[p_1, p_2, \dots, p_r]$

- neighbors of the last node of p_1 are $\{n_1, \dots, n_k\}$
- What happens?
 - p_1 is selected, and its end tested for being a path to the goal.
 - New paths are created attaching $\{n_1, \dots, n_k\}$ to p_1
 - These follow p_r at the end of the frontier.
 - Thus, the frontier is now $[p_2, ..., p_r, (p_1, n_1), ..., (p_1, n_k)]$.
 - p_2 is selected next.

Illustrative Graph - Breadth-first Search

CPSC 322, Lecture 5

Breadth Search: Analysis of BFS

• Is BFS complete?

• Is BFS optimal?

• What is its time complexity?

• What is its space complexity?

Iterative Deepening (sec 3.6.3)

How can we achieve an acceptable (linear) space complexity maintaining completeness and optimality?

	Complete	Optimal	Time	Space
DFS	N	N	6 m	m 5
BFS	R	Y	bm	5 m
· J		Y	6 m	mb

Key Idea: let's re-compute elements of the frontier rather than saving them.

Iterative Deepening in Essence

- Look with DFS for solutions at depth 1, then 2, then 3, etc.
- If a solution cannot be found at depth *D*, look for a solution at depth *D* + 1.
- You need a depth-bounded depth-first searcher.
- Given a bound B you simply assume that paths of length B cannot be expanded....

(Time) Complexity of Iterative Deepening Complexity of solution at depth m with branching factor *b*

Total # of paths generated $b^{m} + 2b^{m-1} + 3b^{m-2} + ... + mb =$ $b^{m}(1+2b^{-1}+3b^{-2}+..+mb^{1-m}) \leq$ $b^{m}(\sum_{i=1}^{\infty}ib^{1-i}) = b^{m}\left(\frac{b}{b-1}\right)^{2} = O(b^{m}) \quad b = 2 \quad 4$ $9 \quad b = 3 \quad \frac{9}{4} = \frac{2.25}{4}$ $b = 4 \quad \frac{16}{9} < 2$

CPSC 322, Lecture 6

Slide 34

Search with Costs

Sometimes there are costs associated with arcs.

$$\operatorname{cost}(\langle n_0, \dots, n_k \rangle) = \sum_{i=1}^k \operatorname{cost}(\langle n_{i-1}, n_i \rangle)$$

Define optimality.....

Design an optimal search strategy.....

Today Sept 13

- Uninformed Search
- Informed Search
-

Heuristic Search

Uninformed/Blind search algorithms do not take into account the goal until they are at a goal node.

Often there is extra knowledge that can be used to guide the search: an *estimate* of the distance from node *n* to a goal node.

This is called a *heuristic*

More formally

Definition (search heuristic)

A search heuristic h(n) is an estimate of the cost of the shortest path from node n to a goal node.

- *h* can be extended to paths: $h(\langle n_0, \dots, n_k \rangle) = h(n_k)$
- *h(n)* uses only readily obtainable information (that is easy to compute) about a node.

CPSC 322, Lecture 7

1 is on estimate

More formally (cont.)

Definition (admissible heuristic)A search heuristic *h(n)* is admissible if it is never an overestimate of the cost from *n* to a goal.

- There is never a path from *n* to a goal that has path length less than *h(n)*.
- another way of saying this: h(n) is a lower bound on the cost of getting from n to the nearest goal.

Example Admissible Heuristic Functions

- Search problem: robot has to find a route from start location to goal location on a grid (discrete space with obstacles)
- Final cost (quality of the solution) is the number of steps
- If no obstacles, cost of optimal solution is...

Example Admissible Heuristic Functions

If there are obstacle, the optimal solution without obstacles is an admissible heuristic

Example Admissible Heuristic Functions

Similarly, If the nodes are points on a Euclidean plane and • the cost is the distance, we can use the straight-line distance from *n* to the closest goal as the value of h(n).

Example Heuristic Functions

• In the 8-puzzle, we can use the number of misplaced tiles

Start State

17

Example Heuristic Functions (2)

 Another one we can use the number of moves between each tile's current position and its position in the solution

= 18

How to Construct a Heuristic

You identify relaxed version of the problem:

- where one or more constraints have been dropped
- problem with fewer restrictions on the actions
 Robot: the agent can move through walls
 Driver: the agent can move straight <
 8puzzle: (1) tiles can move anywhere
 (2) tiles can move to any adjacent square

Result: The cost of an optimal solution to the relaxed problem is an admissible heuristic for the original problem (because it is always weakly less costly to solve a less constrained problem!)

How to Construct a Heuristic (cont.)

- You should identify constraints which, when dropped, make the problem extremely easy to solve
 - this is important because heuristics are not useful if they're as hard to solve as the original problem!

This was the case in our examples

- Robot: *allowing* the agent to move through walls. Optimal solution to this relaxed problem is Manhattan distance
- Driver: *allowing* the agent to move straight. Optimal solution to this relaxed problem is straight-line distance
- 8puzzle: (1) tiles can move anywhere Optimal solution to this relaxed problem is number of misplaced tiles
- (2) tiles can move to any adjacent square....

Goal node

Combining Heuristics

How to combine heuristics when there is no dominance?

- If $h_1(n)$ is admissible and $h_2(n)$ is also admissible then
- $h(n) = \frac{m \delta x}{(h_1, h_2)}$ is also admissible
- ... and dominates all its components

Combining Heuristics: Example

In 8-puzzle, solution cost for the 1,2,3,4 subproblem is substantially more accurate than Manhattan distance in some cases som of of each the non So....tromits portion WZX retter henrigh'?

Best-First Search

- Idea: select the path whose end is closest to a goal according to the heuristic function.
- **Best-First search** selects a path on the frontier with minimal *h*-value (for the end node).
- It treats the frontier as a priority queue ordered by *h*.
 (similar to ?) ∠ ∠ F ≤ ∠ ∞ ∠ 5 ℃
- This is a greedy approach: it always takes the path which appears locally best

Analysis of Best-First Search

• Complete no: a low heuristic value can mean that a cycle gets followed forever.

- Optimal: no (why not?)
- Time complexity is O(b^m)
- Space complexity is O(b^m)

A* Search Algorithm

- A^* is a mix of:
 - lowest-cost-first and
 - best-first search

- A^* treats the frontier as a priority queue ordered by $f(p) = \zeta(\rho) + b(\rho)$
- It always selects the node on the frontier with the lowest distance.

Analysis of A*

Let's assume that arc costs are strictly positive.

- Time complexity is $O(b^m)$
 - the heuristic could be completely uninformative and the edge costs could all be the same, meaning that A^{*} does the same thing as BFS
- Space complexity is O(b^m) like <u>BFS</u>, A^{*} maintains a frontier which grows with the size of the tree
- Completeness: yes.
- Optimality: yes.

Optimality of A^{*}

If A^{*} returns a solution, that solution is guaranteed to be optimal, as long as

When

- the branching factor is finite
- arc costs are strictly positive

Theorem

If A^{*} selects a path p, p is the shortest (i.e., lowest-cost) path.

Why is A^* optimal? $f = c_+ b_1$

- Assume for contradiction that some other path p' is actually the shortest path to a goal $cost(p') \leq cost(p)$
- Consider the moment when p is chosen from the frontier. Some part of path p'will also be on the frontier; let's call this partial path p".

Why is A^{*} optimal? (cont')

• Because p was expanded before p", $+(p) \leq$

p

- Because p is a goal, h(p) = OThus C(p) < C(p') + h(p'')
- Because <u>h</u> is admissible, <u>cost(p") + h(p") ≤ cost(p')</u> for any path p'to a goal that extends p"

 $C(p) + h(p) \leq$

• Thus $(p) \leq G(p)$ for any other path p'to a goal.

This contradicts our assumption that p' is the shortest path. that cost(p') < cost(p)

CPSC 322, Lecture 8

Slide 57

Branch-and-Bound Search

• What is the biggest advantage of A*?

• What is the biggest problem with A*?

use t

Sove spare

• Possible Solution:

Branch-and-Bound Search Algorithm

- Follow exactly the same search path as depth-first search
 - treat the frontier as a stack: expand the most-recently added path first
 - the order in which neighbors are expanded can be governed by some arbitrary node-ordering heuristic

Branch-and-Bound Search Algorithm

- Keep track of a lower bound and upper bound on solution cost at each path
 - lower bound: LB(p) = f(p) = cost(p) + h(p)
 - upper bound: *UB* = cost of the best solution found so far.

 \checkmark if no solution has been found yet, set the upper bound to ∞ .

- When a path *p* is selected for expansion:
 - if $LB(p) \ge UB$, remove p from frontier without expanding it (pruning)
 - else expand *p*, adding all of its neighbors to the frontier

VB = 00, 6, 4

Other A* Enhancements

The main problem with A^* is that it uses exponential space. Branch and bound was one way around this problem. Are there others?

- Iterative deepening A*
- Memory-bounded A*

Other A* Enhancements

The main problem with A^* is that it uses exponential space. Branch and bound was one way around this problem. Are there others?

- Iterative deepening A*
- Memory-bounded A*

Cycle Checking

You can prune a path that ends in a node already on the path. This pruning cannot remove an optimal solution.

• The time is <u>line</u> in path length.

<no, 4242-4K> (ni

CPSC 502, Lecture 2

Repeated States / Multiple Paths

Failure to detect repeated states can turn a linear problem into an exponential one!

Pruning Cycles

Search in Practice

	Complete	Optimal	Time	Space
DFS	Ν	Ν	$O(b^m)$	O(mb)
BFS	Y	Y	$O(b^m)$	$O(b^m)$
IDS(C)	Y	Y	$O(b^m)$	O(mb)
LCFS	Y	Y	$O(b^m)$	$O(b^m)$
BFS	Ν	Ν	$O(b^m)$	$O(b^m)$
A*	Y	Y	$O(b^m)$	$O(b^m)$
B&B	Ν	Y	$O(b^m)$	O(mb)
IDA*	Y	Y	$O(b^m)$	O(mb)
MBA*	Ν	Ν	$O(b^m)$	$O(b^m)$
BDS	Y	Y	<i>O(b^{m/2})</i>	<i>O(b^{m/2})</i>

Sample A* applications

- An Efficient A* Search Algorithm For Statistical Machine Translation. 2001
- The Generalized A* Architecture. Journal of Artificial Intelligence Research (2007)
 - Machine Vision ... Here we consider a new compositional model for finding salient curves.
- Factored A*search for models over sequences and trees International Conference on AI. 2003.... It starts saying. A The primary challenge when using A* search is to find heuristic functions that simultaneously are admissible, close to actual completion costs, and efficient to calculate... applied to NLP and BioInformatics Natural Langnage Processing

Slide 69

Class Forum: Piazza

Join the class **asap** via the signup link below.

http://www.piazza.com/ubc.ca/fall2011/cpsc502

You need a **ubc.ca or cs.ubc.ca** email address to sign up. If you do not have one, please send an email to rjoty@cs.ubc.ca

TODO for this Thurs

Read Chp 4 of textbook

Do all the "Graph Searching exercises" available at

http://www.aispace.org/exercises.shtml Please, look at solutions only after you have tried hard to solve them!

• Join piazza (the class discussion forum)

Lecture Summary

- Search is a key computational mechanism in many AI agents
- We will study the basic principles of search on the simple deterministic planning agent model

Generic search approach:

- define a search space graph,
- start from current state,
- incrementally explore paths from current state until goal state is reached.

The way in which the frontier is expanded defines the search strategy. CPSC 322. Lecture 4

Example1: Delivery Robot

How can we find a solution?

- How can we find a sequence of actions and their appropriate ordering that lead to the goal?
- Define underlying search space. A graph where nodes are states and edges are actions.

CPSC 322, Lecture 4

Examples of solution

- Start state b4, goa r113
- Solution <b4, o107, o109, o113, r113>

CPSC 322, Lecture 4