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Value of  

Information 

• What would help the agent make a better Umbrella 

decision? 

• The value of information of a random variable X  for 

decision D  is: 

the utility of the network with an arc from X  to D minus 

the utility of the network without the arc. 

 
• Intuitively: 

• The value of information is always  

• It is positive only if the agent changes 
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Value of Information (cont.) 

•  The value of information provides a bound on how much 

you should be prepared to pay for a sensor. How much is a 

perfect weather forecast worth? 

• Original maximum expected utility: 

• Maximum expected utility when we know Weather: 

• Better forecast is worth at most: 

77 

91 
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Value of Information 

•  The value of information provides a bound on how much you should be 

prepared to pay for a sensor. How much is a perfect  fire sensor worth? 

• Original maximum expected utility: 

• Maximum expected utility when we know  Fire: 

• Perfect fire sensor is worth: 

-22.6 

-2 
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Value of control 
• The value of control of a variable X  is the utility of the 

network when you make X a decision variable minus the 

utility of the network when X is a random variable. 

•  What if we could control the weather? 

• Original maximum expected utility: 77 

• Maximum expected utility when we control the weather: 100 

• Value of control of the weather: 23 
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Combining ideas for Stochastic planning 

• What is a key limitation of decision networks? 

 

 

 

• What is an advantage of Markov models? 

Represent  (and optimize) only a fixed number of 
decisions 

The network can extend indefinitely 

Goal:  represent  (and optimize) an indefinite 
sequence of decisions 
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Planning in Stochastic Environments 

Environment 

Problem 
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Recap: Markov Models 
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Markov Models  

Markov Chains 

Hidden Markov 
Model 

Markov Decision 
Processes (MDPs) 
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Partially Observable 
Markov Decision 

Processes (POMDPs) 
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Infinite horizon problems: process does not stop 

 

Indefinite horizon problem: the agent does not know 

when the process may stop 

 

Finite horizon: the process must end at a give time N 
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Decision Processes 
Often an agent needs to go beyond  a fixed set of 

decisions – Examples? 

• Would like to have an ongoing decision process 
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How can we deal with indefinite/infinite 

processes? 
We make the same two assumptions we made for…. 

 

The action outcome depends only on the current state 

 

Let St  be the state at time t … 

 

The process is stationary…  

We also need a more flexible specification for the utility.  How? 

• Defined based on a reward/punishment R(s) that the agent 

receives in each state s 

CPSC 502, Lecture 12 
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MDP: formal specification 

For an MDP you specify: 

• set S of states and set A of actions  

• the process’ dynamics (or transition model)  

P(St+1|St, At)  

• The reward function  

R(s, a,, s’)  

     describing the reward that  the agent receives when it 

performs action a in state s and ends up in state s’  

• R(s) is used when the reward depends only on the state s 

and not on how the agent got there  

• Absorbing/stopping/terminal state 
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MDP graphical specification 

Basically a MDP augments a Markov Chain augmented 

with actions and rewards/values 
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When Rewards only depend on the state 
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Decision Processes: MDPs 
To manage an ongoing (indefinite… infinite) decision process, we combine…. 

Markovian 

Stationary 

Utility not just at the end 

Sequence of rewards Fully Observable 
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Example MDP: Scenario and Actions 

Agent moves in the above grid via actions Up, Down, Left, Right 

Each action has: 

• 0.8 probability to reach its intended  effect 

• 0.1 probability to move at right angles of the intended direction 

• If the agents bumps into a wall, it says there 

How many states? 

There are two terminal states (3,4) and (2,4) 
CPSC 502, Lecture 12 
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Example MDP: Rewards 
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Example MDP: Underlying info structures 

Four actions Up, Down, Left, Right 

Eleven States: {(1,1), (1,2)…… (3,4)} 
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Example MDP: Sequence of actions 

Can the sequence [Up, Up, Right, Right, Right ] take 

the agent in terminal state (3,4)? 

 

Can the sequence reach the goal in any other way? 

CPSC 502, Lecture 12 
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 MDPs: Policy 
• The robot needs to know what to do as the decision process 

unfolds… 

• It starts in a state, selects an action, ends up in another state 

selects another action…. 

      

• So a policy for an MDP is a 

single decision function π(s) 

that specifies what the agent 

should do  for each state s 

• Needs to make the same decision over and over: Given the 

current state what should I do?  
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How to evaluate a policy 
A policy can generate a set of state sequences with different 

probabilities 
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Each state sequence has a corresponding reward. Typically the 

sum of the rewards for each state in the sequence  
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MDPs: optimal policy 
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For all the sequences of states 

generated  by the policy 

Optimal policy maximizes expected total  reward, where 

• Each environment history  associated with that policy has a 

certain probability of accuriing and a given amount of total reward  

• Total reward is a function of the rewards of its  individual states 
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Sketch of ideas to find the optimal policy for a 

MDP (Value Iteration) 

We first need a couple of definitions 

• V п(s): the expected value of following policy π in state s  

• Q п(s, a), where a is an action:  expected value of 

performing a in s, and then following  policy π. 

We have, by definition 

states reachable  
from s by doing a 

reward 
obtained in s 

expected value 
of following 
policy π in s’ 

Probability of 
getting to s’ from 
s via a 

Q п(s, a)= 

Discount 
factor 
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Value of a policy and Optimal policy 

We can then compute  V п(s) in terms of  Q п(s, a) 

))(,()( ss Q sV  

Expected value of performing 

the action indicated  by π  in s 

and following π after that  

Expected 
value of 
following 
π  in s 

action indicated by π  in s 

For the optimal  policy π *  we also have 

))(*,()( ** ss Q sV  
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Value of Optimal policy 

Optimal  policy π *  is one that gives the action that 

maximizes Q π* for each state 

   ))'(),|'(max)()(
'

**  
s

a
sVassPsRsV  

))(*,()( ** ss Q sV  

Q п(s, a)= 



Value Iteration Rationale 

 
 Given N states, we can write an equation like the one below 

for each of them 

 

 

 

 Each equation contains N unknowns – the V values for the N states 

 N equations in N variables (Bellman equations): It can be shown that they 

have a unique solution: the values for the optimal policy 

 Unfortunately the N equations are non-linear, because of the max 

operator: Cannot be easily solved by using techniques from linear algebra 

 Value Iteration Algorithm: Iterative approach to find the optimal policy and 

corresponding values 


'

111 )'(),|'(max)()(
sa

sVassPs R s V 


'

222 )'(),|'(max)()(
sa

sVassPs R s V 



Value Iteration in Practice 

  Let V(i)(s) be the utility of state s at the ith  iteration of the 

algorithm 

 Start with arbitrary utilities on each state s:  V(0)(s) 

 Repeat simultaneously for every s until there is “no change” 

 

 
 

 True “no change” in the values of V(s) from one iteration to 

the next are guaranteed only if run for infinitely long. 

•  In the limit, this process converges to a unique set of solutions for the 
Bellman equations 

• They are the total  expected rewards (utilities) for the optimal policy 
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'

(k)1)(k )'(),|'(max)()(
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sVassPs R s V 



Example 

 
• Suppose, for instance, that we start with values V(0)(s) that are 

all 0 





















RIGHT

DOWN

LEFT

UP

V

                          0

                          0

                          0

                         0

max04.0)1,1()1(

 -0.04 

0 0 0 

0 0 

0 0 0 0 

 
3 
 
 

2 
 
 
 

1 

     1              2             3              4 

+1  

-1  































RIGHTVVV

DOWNVV

LEFTVV

UPVVV

V

       )1,1(1.0)2,1(1.0)1,2(8.0

                         )1,2(1.0)1,1(9.0

                          )2,1(1.0)1,1(9.0

        )1,1(1.0)1,2(1.0)2,1(8.0

max*104.0)1,1(

)0()0()0(

)0()0(

)0()0(

)0()0()0(

)1(

     Iteration 0      Iteration 1 



Example (cont’d) 

 
 Let’s compute V(1)(3,3) 
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Example (cont’d) 

 
 Let’s compute V(1)(4,1) 


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After a Full Iteration 
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 Only the state  one step away from a positive reward (3,3) has gained 

value, all the others are losing value because of the cost of moving 

 



Some steps in the second iteration 

 
-.04 -.04 0.76 

-.04 -.04 

-.04 -.04 -.04 -.04 

 
3 
 
 

2 
 
 
 

1 

     1              2             3              4 

+1  

-1  

     Iteration 1 

08.0

                          .04-

                          .04-

                          .04-

                         .04-

max04.0)1,1()2( 





















RIGHT

DOWN

LEFT

UP

V































RIGHTVVV

DOWNVV

LEFTVV

UPVVV

V

       )1,1(1.0)2,1(1.0)1,2(8.0

                         )1,2(1.0)1,1(9.0

                          )2,1(1.0)1,1(9.0

        )1,1(1.0)1,2(1.0)2,1(8.0

max*104.0)1,1(

)1()1()1(

)1()1(

)1()1(

)1()1()1(

)2(

-.04 -.04 0.76 

-.04 -.04 

-.04 -.04 -.04 -.04 

 
3 
 
 

2 
 
 
 

1 

     1              2             3              4 

+1  

-1  

     Iteration 2 

 -0.08 



-.04 -.04 0.76 

-.04 -.04 

-.04 -.04 -.04 -.04 

Example (cont’d) 

 
 Let’s compute V(1)(2,3) 

 

 

 

 

 

 

 

 

 Steps two moves away from positive rewards start increasing 

their value 
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State Utilities as Function of  Iteration 

# 
 

 Note that values of states at different distances from (4,3) 

accumulate negative rewards until a path to (4,3) is found 



Value Iteration: Computational 
Complexity 

Value iteration works by producing successive 

approximations of the optimal value function.  

Each iteration can be performed in O(|A||S|2) 

steps,  

or faster if there is sparsity in the transition 

function.  
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Rewards and Optimal Policy 
Optimal Policy when penalty in non-terminal states is -0.04 

Note that here the cost of taking steps is small compared to the 

cost of ending into (2,4) 

• Thus, the  optimal policy for state (1,3) is to take the long way around 

the obstacle rather then risking to fall into (2,4) by taking the shorter 

way that passes next to it 

May the optimal policy change if the  reward in the non-terminal states (let’s call it r)  
changes? 
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Rewards and Optimal Policy 
Optimal Policy when  r < -1.6284 

Why is the agent heading straight into   (2,4) from its surrounding states? 

3 

 

2 

 

1 

1       2        3      4 
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Rewards and Optimal Policy 
Optimal Policy when  -0.427 < r < -0.085 

The cost of taking a step is high enough to make the agent take the shortcut to (3,4) 

from (1,3) 

3 

 

2 

 

1 

1       2        3        4 
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Rewards and Optimal Policy 
Optimal Policy when  -0.0218 < r < 0 

Why is the agent heading straight into the obstacle from (2,3)? And into the wall in 

(1,4)? 

3 

 

2 

 

1 

1       2      3      4 
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Rewards and Optimal Policy 
Optimal Policy when  -0.0218 < r < 0 

Stay longer in the grid  is not penalized as much as before. The agent is willing to 

take longer routes to avoid (2,4) 

• This is true even when it means banging against the 

obstacle a few times when moving from (2,3) 

3 
 
2 
 
1 

1       2      3    4 



CPSC 502, Lecture 12 Slide 49 

Rewards and Optimal Policy 
Optimal Policy when  r > 0 

Which means the agent is rewarded for every step it takes 

3 
 
2 
 
1 

1       2        3      4 

state where every action 
belong to an optimal policy 



AI talk today: Lots of concepts covered in 502 

Speaker:   Thomas G. Dietterich, Professor Oregon State University 

                http://web.engr.oregonstate.edu/~tgd/ 

 

Title: Challenges for Machine Learning in Ecological Science and 

Ecosystem Management 

Time:          3:30 - 4:50 p.m 

Location:   Hugh Dempster Pavilion (DMP) 

                     Room 110, 6245 Agronomy Rd.  

Abstract: 

Just as machine learning has played a huge role in genomics, there are 

many  problems in ecological science and ecosystem management that 

could be  transformed by machine learning.  …..  These include (a) .., (b) 

automated classification of images of arthropod specimens,  (c) species 

distribution modeling …. (d) design of optimal policies for  

managing wildfires and invasive species.  …. combining probabilistic 

graphical models with non-parametric learning methods, and optimization of 

complex spatio-temporal Markov processes. 
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http://web.engr.oregonstate.edu/~tgd/
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TODO for next Tue 

 

• Read Textbook 9.5  

 

•Also Do exercises 9.C 
http://www.aispace.org/exercises.shtml 

 

http://www.aispace.org/exercises.shtml

