Introduction to

Artificial Intelligence (AI)

Computer Science cpsc502, Lecture 10

Oct, 13, 2011

CPSC 502, Lecture 10

Inference in HMMs

More on Robot Localization

R&Rsys we'll cover in this course

How can we minimally extend Markov Chains?

Maintaining the Markov and stationary assumption

A useful situation to model is the one in which:

- the reasoning system does not have access to the states
- but can make observations that give some information about the current state

Hidden Markov Model

 A Hidden Markov Model (HMM) starts with a Markov chain, and adds a noisy observation about the state at each time step:

 $P(S_{0})$ specifies initial conditions

 \checkmark

KXK

 $P(S_{f+1}|S_f)$ specifies the dynamics

Kxh {Kprob.bist.} $O_{f}(O_{f}|S_{f})$ specifies the sensor model

Example: Localization for "Pushed around" Robot

- Localization (where am I?) is a fundamental problem in robotics
- Suppose a robot is in a circular corridor with 16 locations 2 8 9 10 12 13 2 3 5 6 11 14 15 0 4
 - There are four doors at positions: 2, 4, 7, 11
 - The Robot initially doesn't know where it is
 - The Robot is pushed around. After a push it can stay in the same location, move left or right.
 - The Robot has Noisy sensor telling whether it is in front of a door

 Example Stochastic Dynamics: when pushed, it stays in the same location p=0.2, moves left or right with equal probability

Slide 7

$$P(Loc_{t+1} | Loc_{t}) = \frac{2 \cdot 4 \cdot 2 \cdot 4 \cdot 2$$

Useful inference in HMMs

 Localization: Robot starts at an unknown location and it is pushed around *t* times. It wants to determine where it is

$$\mathcal{P}(\operatorname{Loc}_{t} | \underbrace{\mathcal{O}_{o_{1}}, \ldots, \mathcal{O}_{t}}_{\mathcal{N}})$$

• In general (Filtering): compute the posterior distribution over the current state given all evidence to date

$$P(X_t | O_{0:t})$$
 or $P(X_t | e_{0:t})$

Another very useful HMM Inference

• Most Likely Sequence (given the evidence seen so far)

$$\operatorname{argmax}_{X_{0:t}} P(X_{0:t} | e_{0:t})$$

HMM: more agile terminology

Formal Specification as five-tuple (S, K, Π, A, B)

 $S = \{S_1, ..., S_N\}$ $K = \{O_1, ..., O_M\} = \{1, ..., M\}$ $\Pi = \{\pi_i\}, i \in S$

$$A = \{a_{ij}\}, \quad i, j \in S \qquad \sum_{j=1}^{N} a_{ij} = 1$$
$$B = \{b_i(o_t)\}, \quad i \in S, \quad o_t \in K \quad \sum_{t=1}^{M} b_i(o_t) = 1$$

Set of States Output Alphabet Initial State Probabilities

State Transition Probabilities

Symbol Emission Probabilities

N

The forward procedure

$$\alpha_t(i) = P(o_1 o_2 \dots o_t, X_t = i)$$

1. Initialization

$$\alpha_1(i) = \pi_i b_i(o_1), \quad 1 \le i \le N$$

2. Induction

$$\alpha_t(j) = \sum_{i=1}^N \alpha_{t-1}(i) a_{ij} b_j(o_t), \quad 1 \le i \le N, 1 \le j \le N$$

$$P(X_{t=i}|o_{1}\cdots o_{t}) = \bigvee_{J=V_{t}} \underbrace{A_{t}(i)}_{J}$$

Complexity©

 \approx

compute

this ond

simply

normohite

then

CPSC 502, Lecture 10

evidence (observations door 7 door door door $\alpha_1(i) = \pi b_i(o_1)$?, d_2(9) Ø $\mathcal{A}_{1}(\mathfrak{D}) = \mathcal{P}_{\mathfrak{D}} \mathcal{D}_{\mathfrak{D}}(door)$ N $\mathcal{A}_2(\emptyset) = \sum \mathcal{A}_1(i) \partial_i \mathcal{B}_{\emptyset}(i \operatorname{door})$ 1=1 generalize state 6 9 $\chi_2(J) = \sum \chi_1(\lambda) \partial_{\lambda J} b_J(J door)$ i=1, generalize time slice $\alpha_t(j) = \sum \alpha_{t-1}(i) a_{ij} b_j(o_t)$ i = 116 CPSC 502, Lecture 10 Slide 13

Finding the Best State Sequence :

$\underset{X}{\arg \max P(X \mid O)} \quad \begin{array}{l} V_t(j) : probability of the most probable \\ path that leads to that node \end{array}$

The Viterbi Algorithm:

<u>Initialization</u>: $v_1(j) = \pi_j b_j(o_1)$, $1 \le j \le N$ <u>Induction</u>: $v_t(j) = \max_{1 \le i \le N} v_{t-1}(i) a_{ij} b_j(o_t)$, $1 \le j \le N$ <u>Store backtrace</u>:

 $bt_t(j) = argmax_{1 \le i \le N} V_{t-1}(i) a_{ij} b_j(o_t), 1 \le j \le N$

- <u>Termination and path readout</u>: $P(X|O) = max_{1 \le i \le N} v_t(i)$
- To recover X start from $bt_t(i) = argmax_{1 \le i \le N} v_t(i)$ and keep going backward

Robot Localization: More complex Example

- Suppose a robot wants to determine its location based on its actions and its sensor readings
- Three actions: *goRight, goLeft, Stay*
- This can be represented by an augmented HMM

Robot Localization Sensor and Dynamics Model

- Sample Sensor Model (assume same as for pushed around)
- Sample Stochastic Dynamics: P(Loc_{t + 1} / Action_t, Loc t)

$$\begin{split} P(Loc_{t+1} = L \mid Action_{t} = goRight, Loc_{t} = L) &= 0.1 \\ P(Loc_{t+1} = L+1 \mid Action_{t} = goRight, Loc_{t} = L) &= 0.8 \\ P(Loc_{t+1} = L+2 \mid Action_{t} = goRight, Loc_{t} = L) &= 0.074 \\ P(Loc_{t+1} = L' \mid Action_{t} = goRight, Loc_{t} = L) &= 0.002 \text{ for all other locations } L' \end{split}$$

- All location arithmetic is modulo 16
- The action *goLeft* works the same but to the left

Dynamics Model More Details

Robot Localization additional sensor

• Additional Light Sensor: there is light coming through an opening at location 10 $P(L_t | Loc_t)$

Info from the two sensors is combined :"Sensor Fusion"

The Robot starts at an unknown location and must determine where it is

The model appears to be too ambiguous

- Sensors are too noisy
- Dynamics are too stochastic to infer anything

But inference actually works pretty well. check:

http://www.cs.ubc.ca/spider/poole/demos/loc
 alization/localization.html

It uses a generalized form of filtering (not just a sequence of observations, but a sequence of observation pairs (from the two sensors) + the actions

HMMs have many other applications....

Natural Language Processing: e.g., Speech Recognition

For these problems the critical inference is:

find the most likely sequence of states given a sequence of observations

Viterbi Algo

Start Reading Chp 9 of textbook (up tp 9.4 included)

Work on assignment 2

Sample scenario to explore in demo

- Keep making observations without moving. What happens?
- Then keep moving without making observations. What happens?
- Assume you are at a certain position alternate moves and observations

NEED to explain Filtering

Because it will be used in POMDPs

Markov Models

Answering Query under Uncertainty

Lecture Overview

- Recap
- Temporal Probabilistic Models
- Start Markov Models
 - Markov Chain
 - Markov Chains in Natural Language Processing

Sampling a discrete probability distribution e.g. Sim. Amesling. Select n' with probability P generate randou [9,1]) 17<.3 accept n' e.g. Beam Search : Select K individuals. Probability of selection proportional to their value N3 first sample SAME HERE P1= .1 -> N1 ->N2 P2= . CPSC 502, Lecture 10 Slide 27

Answering Query under Uncertainty

Answering Queries under Uncertainty

Stationary Markov Chain (SMC)	
(S_0) (S_1) (S_2) (S_3)	S ₄
A stationary Markov Chain : for all t >0	$\left(dom(s_{i})\right)=k$
$\rightarrow P(S_{t+1} S_0,, S_t) = P(S_{t+1} S_t)$ and	
· P(St+1 St) the some It	
We only need to specify $P(\leq_o)^k$ and	$P(S_{t+1} S_t)$
 Simple Model, easy to specify 	
 Often the natural model 	K×K
 The network can extend indefinitely 	K prob
Variations of SMC are at the core of most Natural Anst cib. Language Processing (NLP) applications!	
CPSC 502, Lecture 10	Slide 30