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422 big picture: Where are

we?
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e SAT

Belief Nets

Approx. : Gibbs
Markov Chains and HMMs
Forward, Viterbi---.
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Conditional Random Fields
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e Value lteration

* Approx. Inference
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Applications of Al
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Lecture Overview

 Statistical Relational Models (for us aka Hybrid)
 Recap Markov Networks and log—linear models
 Markov Logic
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Statistical Relational Models .

Goals:

e Combine (subsets of) logic and probability
Into a single language (R&R system)

e Develop efficient inference algorithms
e Develop efficient learning algorithms
e Apply to real-world problems

L. Getoor & B. Taskar (eds.), Introduction to Statistical
Relational Learning, MIT Press, 2007.
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Plethora of Approaches :

e Knowledge-based model construction
[Wellman et al., 1992]

e Stochastic logic programs [Muggleton, 1996]

Drobabilistic relational modeﬂ —
Friedman et al., 1999]

Relational Markov networks [Taskar et al., 2002]
Bayesian logic [Milch et al., 2005]

Markov logic [Richardson & Domingos, 200@~—>
And many others....!
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Prob. Rel. Models vs. Markov Logic 1111
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Lecture Overview

 Statistical Relational Models (for us aka Hybrid)
 Recap Markov Networks and log-linear models
« Markov Logic

« Markov Logic Network (MLN)
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Parameterization of Markov Networks
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Factors define the local interactions (like CPTs in Bnets)
What about the global model? Whatdo you do with Bnets?
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P(A,B,C,D)
P(A,B,C, D)

How do we combine local models?
As in BNets by multiplying them!
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000
Markov Networks HHE
e Undirected graphical models ES:.
Chstma . Cough -
e Factors/Potential-functions defined over cligues
1 Smoking | Cancer P(S,C)

P(X) — ZIZICDC(XC) = = A5
F T 4.5
Z=>1]®.(x) T F 2.7
> C T T 4.5
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Markov Networks :log-linear model 3L

P(x) = = [P (x,) °t

= .—P
e Log-linear model: N

T - CAsthma - Cough
e3ch Q(XCB _ e JZCKC\

w, = 0.51
f,(Smoking, Cancer) = {

1 if — Smoking v Cancer

0 otherwise Swmok "0 (oncec .,
( )y €
( 8] Ci.
>, ) £~ >
o o C .St

P(x) = ;exp(zf i f\(x >)

Weight of Feature | Feature i CPSC 322, Lecture 29
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Lecture Overview

 Statistical Relational Models (for us aka Hybrid)
 Recap Markov Networks
 Markov Logic
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Markov Logic: Intuition(1) S

e A logical KB Is a set of hard constraints

on the set of possible worlds  consransr
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Markov Logic: Intuition(1)

e A logical KB Is a set of hard constraints
on the set of possible worlds

’I'Mb\\nvaLS“ a | b}

SVV\QY\CS (a > A

D=F W

%, Vvx Smokes(x) = Cancer(x)

e Let's make them soft constraints:

When a world violates a formula,
the world becomes less probable, not impossible

‘jY ;L\ 1S \/rv€><\:>6/\/> deCredsks

TSP 1ncresces
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Markov Logic: Intuition (2) sece

e The more formulas in the KB a possible world satisfies | e
the more it should be likely

e Give each formula a weight

e Adopting a log-linear model, by design, if a possible
world satisfies a formula its probability should go up
proportionally to exp(the formula weight).

P(world) oc exp(Z weights of formulas it satisfies)

That is, If a possible world satisfies a formula its log
probability should go up proportionally to the formula weight.

log( P(world)) o (Z weights of formulas it satisfies)
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Markov Logic: Definition 434

e A Markov Logic Network (MLN) is

e a set of pairs (F, w) where
Fis a formula in first-order logic
w IS a real number _
Grounding:

e Together with a set C of constants, substituting vars

. ) with constants
e It defines a Markov network with

e One binary node for each grounding of each
predicate in the MLN

e One feature/factor for each grounding of each
formula F in the MLN, with the corresponding weight w
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(not required)consider Existential
and functions

Table 2.2: Construction of all groundings of a first-order formula under Assumptions 2.2-2.4.

function Ground(F)
input: F', a formula in first-order logic
output: & ¢, a set of ground formulas
for each existennally quantified subformula 3x §{x) in F
F « F with dx 5(x) replaced by S(c)) v S(ea) v ... v (e,
where S(c;) 1s §{x) with x replaced by ¢;
Gp «— |F}
for each universally quantified variable x
for each formula F(x)in Gp
Grp «— (G \ Fi(x)) U {Fjic1). Fjica), ..., Fileeph
where Fjic;y) 1s Fj(x) with x replaced by ¢;
for each formula F; € Gp
repeat
for each function f(aj. az....) all of whose arguments are constants
F; « F; with fia).az....) replaced by ¢, where ¢ = fiay. a2, ...)
until F; contains no functions
return & p




Example: Friends & Smokers

Smoking causes cancer.
Friends have similar smoking habits.
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Example: Friends & Smokers

VX Smokes(x) = Cancer(x)
VX, y Friends(x, y) = (Smokes(x) <> Smokes(y))

CPSC 322, Lecture 29

20



Example: Friends & Smokers

1.5
1.1

VX Smokes(x) = Cancer(x)
VX, y Friends(x, y) = (Smokes(x) <> Smokes(y))
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Example: Friends & Smokers

1.5
1.1

VX Smokes(x) = Cancer(x)
VX, y Friends(x, y) = (Smokes(x) <> Smokes(y))

Two constants: Anna (A) and Bob (B)
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MLN nodes sess
1.5 | Vx Smokes(x) = Cancer(X) e

1.1

vx, y Friends(x, y) = (Smokes(x) < Smokes(y))

Two constants: Anna (A) and Bob (B)

e One binary node for each grounding of each
predicate in the MLN

e Any nodes missing?

CPSC 322, Lecture 29

Grounding:
substituting vars
with constants

Cancer(B)
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ML

N nodes (complete)

1.5
1.1

VX Smokes(x) = Cancer(Xx)
VX, y Friends(x, y) = (Smokes(x) <> Smokes(y))

Two constants: Anna (A) and Bob (B)

e One binary node for each grounding of each

predicate in the MLN

Smokes®
(Cancers)

Friends(B,A)
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MLN features cooe

0000
1.5 | Vx Smokes(x) = Cancer(x) oo

1.1 |\vx, y Friends(x,y) = (Smokes(x) <> Smokes(y))
Two constants: Anna (A) and Bob (B)

Edge between two nodes iff the corresponding ground predicates
appear together in at least one grounding of one formula

Grounding:
substituting vars

Friends(A,B)
with constants

e
Which edge should not be there?
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MLN features cooe

0000
1.5 | Vx Smokes(x) = Cancer(x) oo

1.1 |\vx, y Friends(x,y) = (Smokes(x) <> Smokes(y))
Two constants: Anna (A) and Bob (B)

Edge between two nodes iff the corresponding ground predicates
appear together in at least one grounding of one formula

Frends(Af)  Smokes)

o i
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MLN features 3
1.5 | VX Smokes(x) = Cancer(x)
1.1 |\vx, y Friends(x,y) = (Smokes(x) <> Smokes(y))

Two constants: Anna (A) and Bob (B)

PR

pV%

Friends(B,A)

One feature/factor for each grounding of each formula F in
the MLN

Cancer(B)
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MLN: parameters selle
e For each formula i we have a factor ese:
é@”") -e/\/\//‘t ‘J—,LCP WV\/ ]90§<f\a|e wOru
1 B
W, V\/@n%\/\‘t' O{' ][-OY“V\/\U =
_g_(?m _ 1 whewn A\—orwwl‘a (S ‘\‘V‘UCI\A Puv
" 5\@ othen wi<e
1.5 Vx Smokes(x) = Cancer(x)
f (Smokes(x), Cancer(x)) = 1 if Smokes (x) = Cancer (X)
| ] 0 otherwise -

PV\/| LT ?WZ - B
SwaoKes (AY T, SwoKes(A) T
Comcer(A) F €= Concer (A) T
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MLN: prob. of possible world sese
1.5 |Vx Smokes(x) = Cancer(x) 000

1.1 |Vx, y Friends(x, y) = (Smokes(x) <> Smokes(y))

Two constants: Anna (A) and Bob (B)

Friends(A,B)

P(pw)=§rcld>c(pwc>

T

Cancer(B)

T)

Friends(B,A) )
|

?CF@:(,*QM ¢ xC gX/g
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MLN: prob. of possible world sese
1.5 |Vx Smokes(x) = Cancer(x) 000

1.1 |Vx, y Friends(x, y) = (Smokes(x) <> Smokes(y))

Two constants: Anna (A) and Bob (B)

P(pw)=§rcld>c<pwc>
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MLN: prob. Of possible world sose
e Probability of a world pw: .
1
P(pw) = zexp(Zwi m(pvv)]
|
Weight of formula i No. of true groundings of formula i in pw

Friends(A,B T

?(Pw\)=< +r T a 5 S/g
Wy (pw)= 2 N, (pw) =)

31
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Learning Goals for today's class

YOUu can:

« Describe the intuitions behind the design of a
Markov Logic

« Define and Build a Markov Logic Network

 Justify and apply the formula for computing the
probability of a possible world
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Next class on Wed
Markov Logic

-relation to FOL
- Inference (MAP and Cond. Prob)

Assignment-4 posted, due on Dec 2
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