Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 22

Nov, 1, 2017

Slide credit: some from Prof. Carla PGomes (Cornell) some slides adapted from Stuart Russell (Berkeley), some from Prof. Jim Martin (Univof Colorado)

CPSC 422, Lecture 22

Lecture Overview

- SAT : example
- First Order Logics
 - Language and Semantics
 - Inference

Satisfiability problems (SAT)

Consider a CNF sentence, e.g.,

 $(\neg D \lor \neg B \lor C) \land (B \lor \neg A \lor \neg C) \land (\neg C \lor \neg B \lor E) \land (E \lor \neg D \lor B) \land (B \lor E \lor \neg C)$

Is there an interpretation in which this sentence is true (i.e., that is a model of this sentence)?

Many combinatorial problems can be reduced to checking the satisfiability of propositional sentencesand returning a model

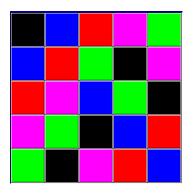
Encoding the Latin Square Problem in Propositional Logic

In combinatorics and in experimental design, a Latin square is

- an *n* × *n* array
- filled with *n* different symbols,
- each occurring exactly once in each row and exactly once in each column.
- Here is an example:

Α	В	С
С	А	В
В	С	А

Here is another one:



Encoding Latin Square in Propositional Logic: Propositions Variables must be binary! (They must be propositions) Each variables represents a color assigned to a cell *i j*. Assume colors are encoded as an integer **k** 2 3 $x_{iik} \in \{0,1\}$ Assuming colors are encoded as follows (black, 1) (red, 2) (blue, 3) (green, 4) (purple, 5) x_{233} True or false, ie. 1 or 0 with respect to the interpretation represented by the picture?

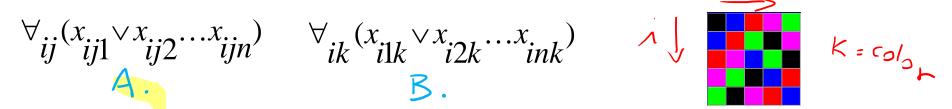
How many vars/propositions overall?

Encoding Latin Square in Propositional Logic Variables must be binary! (They must be propositions) Each variables represents a color assigned to a cell. Assume colors are encoded as integers 2 3 $x_{iik} \in \{0,1\}$ Assuming colors are encoded as follows (black, 1) (red, 2) (blue, 3) (green, 4) (purple, 5) x_{233} True or false, ie. 0 or 1 with respect to the interpretation represented by the picture?

How many vars/propositions overall?

Encoding Latin Square in Propositional Logic: Clauses

• Some color must be assigned to each cell (clause of length n); i-clicker.

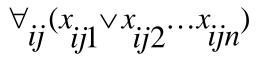


• No color is repeated in the same row (sets of negative binary clauses);

$$\forall_{ik}(\neg x_{i1k} \lor \neg x_{i2k}) \land (\neg x_{i1k} \lor \neg x_{i3k}) \dots (\neg x_{i1k} \lor \neg x_{ink}) \dots (\neg x_{i(n-1)k} \lor \neg x_{ink})$$

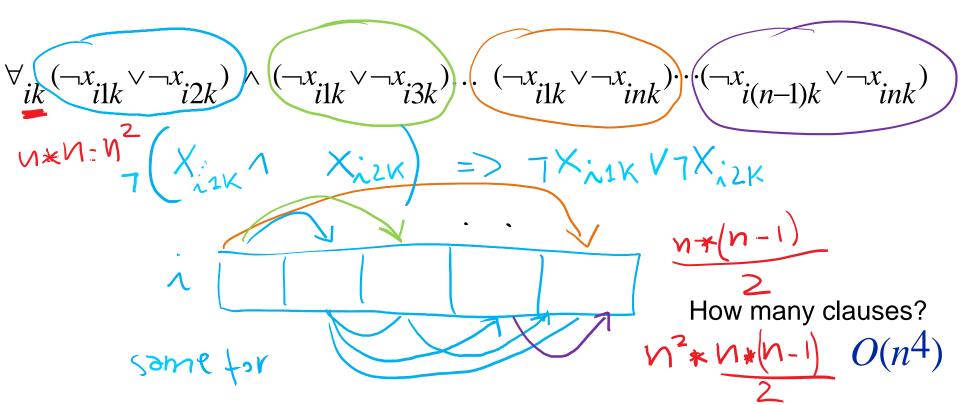
Encoding Latin Square in Propositional Logic: Clauses

• Some color must be assigned to each cell (clause of length n);



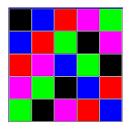


No color repeated in the same row (sets of negative binary clauses);



Encoding Latin Square Problems in Propositional Logic: FULL MODEL

 n^3



Variables:

$$x_{ijk}$$
 cell i, j has color k; i, j, k=1,2, ..., n. $x_{ijk} \in \{0,1\}$

Each variables represents a color assigned to a cell.

Clauses: $O(n^4)$

Some color must be assigned to each cell (clause of length n);

$$\forall_{ij} (x_{ij1} \lor x_{ij2} \ldots x_{ijn})$$

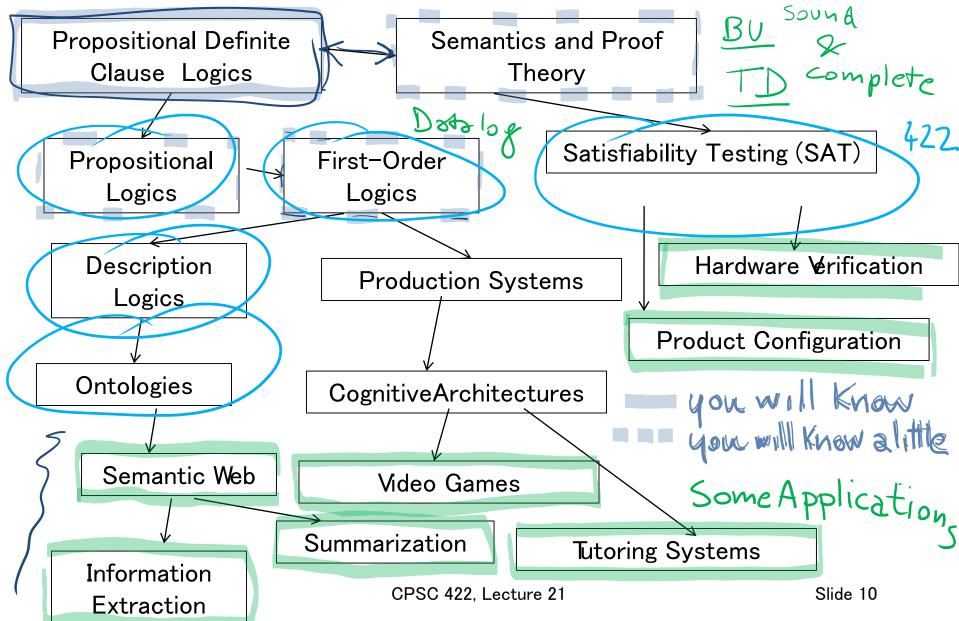
No color repeated in the same row (sets of negative binary clauses);

$$\forall_{ik}(\neg x_{i1k} \lor \neg x_{i2k}) \land (\neg x_{i1k} \lor \neg x_{i3k}) \dots (\neg x_{i1k} \lor \neg x_{ink}) \dots (\neg x_{i(n-1)k} \lor \neg x_{ink})$$

No color repeated in the same column (sets of negative binary clauses);

$$\forall_{jk}(\neg x_{1jk} \lor \neg x_{2jk}) \land (\neg x_{1jk} \lor \neg x_{3jk}) \dots (\neg x_{1jk} \lor \neg x_{njk}) \dots (\neg x_{(n-1)jk} \lor \neg x_{njk})$$

Logics in AI: Similar slide to the one for planning



Relationships between different Logics (better with colors) First Order Logic Datalog $p(X) \leftarrow q(X) \wedge r(X,Y)$ $\forall X \exists Yp(X,Y) \Leftrightarrow \neg q(Y)$ $r(X,Y) \leftarrow S(Y)$ $P(\partial_1, \partial_2)$ $S(\partial_1), Q(\partial_2)$ $-q(\partial_5)$ PDCL Propositional Logic Pt snf $7(p \vee q) \longrightarrow (r \wedge s \wedge f)_{I}$ rESAGAP Slide 1 CPSC 422, Lecture 21

Lecture Overview

- Finish SAT (example)
- First Order Logics
 - Language and Semantics
 - Inference

Representation and Reasoning in Complex domains (from 322)

 In complex domains expressing knowledge with propositions can be quite It is often natural to consider **individuals** and their **properties**

limiting up_s₂ up_s₃ ok_cb, $up(s_2)$ $up(s_3)$ $ok(cb_1)$ $ok(cb_2)$ live_w live($\bar{w_1}$) connected_w, the system con reason about connected(w_1, w_2) ore about the There is no notion that some up are about the same property up_s₂ Up_S_3 CPSC 322. Lecture 23 Slide 13

(from 322) What do we gain....

By breaking propositions into relations applied to individuals?

Express knowledge that holds for set of individuals (by introducing

 $live(W) \langle -connected_to(W,W1) \land live(W1) \land wire(W) \land wire(W1).$

- We can ask generic queries (i.e., containing Vars)
 Vars)
 Variabless
 - ? connected_to(W, w_1)

"Full" First Order Logics (FOL)

- LIKE DATALOG: Whereas propositional logic assumes the world contains facts, FOL (like natural language) assumes the world contains
 - Objects: people, houses, numbers, colors, baseball games, wars, …
 - Relations: red, round, prime, brother of, bigger than, part of, comes between, ···
 - Functions: father of, best friend, one more than, plus, …

FURTHERMORE WE HAVE

- More Logical Operators:....
- Equality: coreference (two terms refer to the same object)
- Quantifiers
 - ✓ Statements about unknown objects
 - ✓ Statements about classes of objects

Syntax of FOL

Constants Predicates Functions Variables Connectives Equality Quantifiers KingJohn, 2, ,... Brother, >,... Sqrt, LeftLegOf,... x, y, a, b,... \neg , \Rightarrow , \land , \lor , \Leftrightarrow = \forall , \exists

Atomic sentences

Term is a *function* (*term*₁,...,*term*_n) or *constant* or *variable*

Atomic sentence is predicate $(term_1, ..., term_n)$ or $term_1 = term_2$

E.g., preolicate (constant, constant)

Brother(KingJohn, RichardTheLionheart)

 predicate (function (function (constant)) (function (function () (Length (LeftLegOf(Richard)), Length (LeftLegOf(KingJohn)))

Xiala

Complex sentences

Complex sentences are made from atomic sentences using connectives

 $\neg S, \quad S_1 \land S_2, \quad S_1 \lor S_2, \quad S_1 \Rightarrow S_2, \quad S_1 \Leftrightarrow S_2,$

E.g.

Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn)

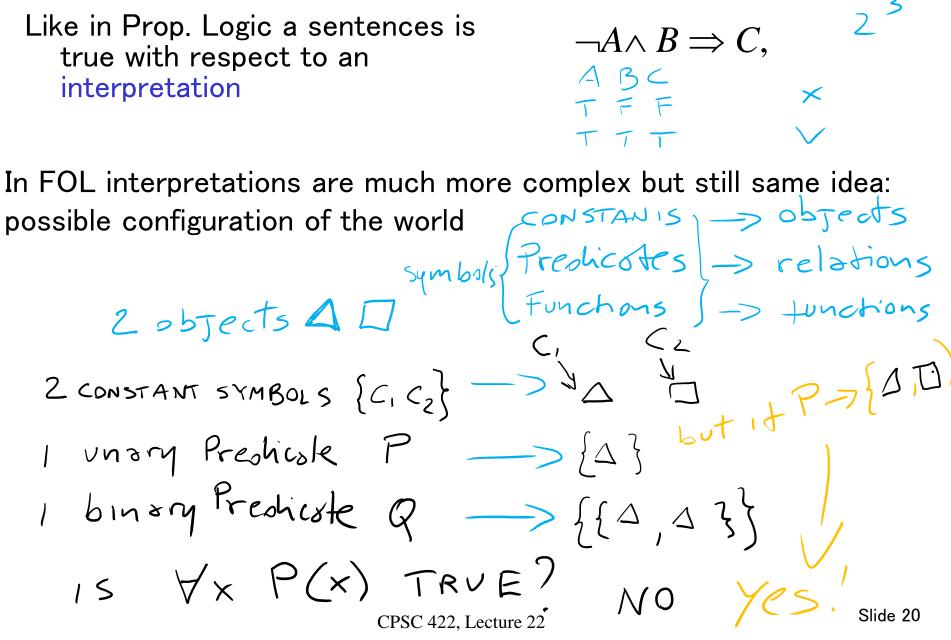
 $\forall x \ P(x)$ is true in an interpretation I iff P is true with x being each possible object in I

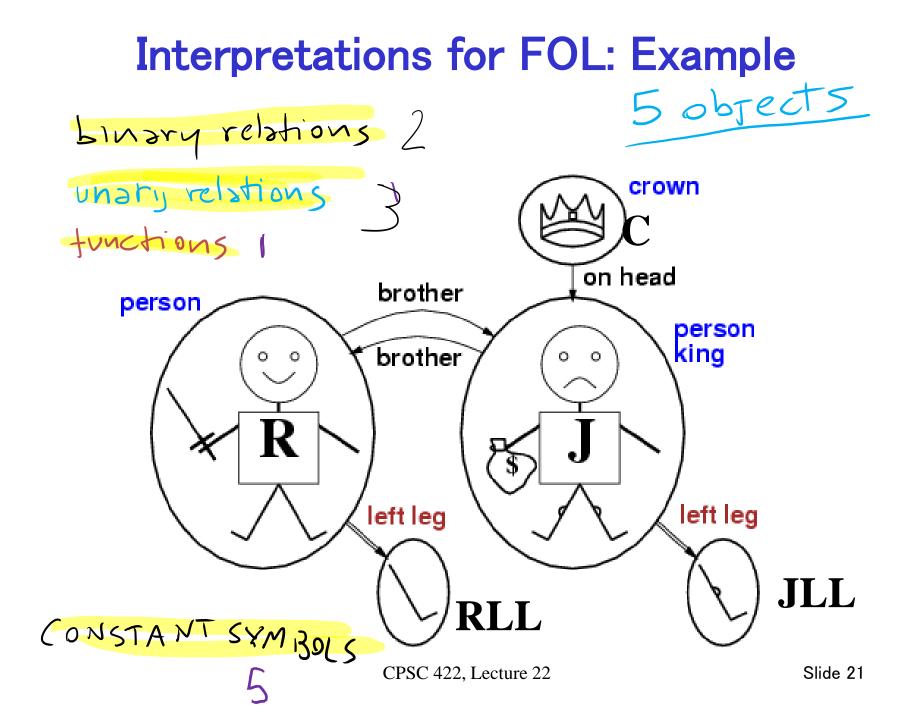
 $\exists x \ P(x) \text{ is true in an interpretation I iff P is true with x being some possible object in I$

Truth in first-order logic

Like in Prop. Logic a sentences is $\neg A \land (B \Longrightarrow C),$ true with respect to an ABC interpretation \succ 下 丁 丁 In FOL interpretations are **much more complex** but still same idea: CONSTANTS _ > Objects possible configuration of the world 2 objects A [] symbols Predicotes] -> relations Eurchans J -> tunctions C, C2 2 CONSTANT SYMBOLS {C, C2} 1 unary Preshicole P -> {] 1 binary Presticate Q $\longrightarrow \{ \Delta, \Delta, \zeta \}$ iclicker. A. yes 15 Vx P(x) TRUE? B. no Slide 19 CPSC 422, Lecture 22

Truth in first-order logic





Same interpretation with sets

Since we have a one to one mapping between symbols and object we can use symbols to refer to objects

• {R, J, RLL, JLL, C}

Property Predicates

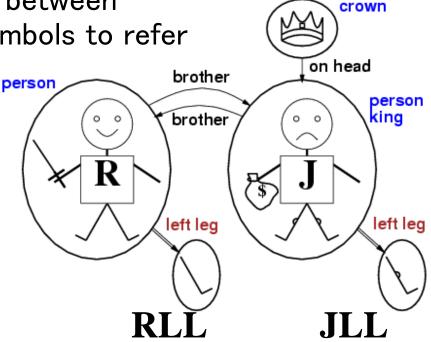
- Person = {R, J}
- Crown = {C}
- King = {J}

Relational Predicates

- Brother = { <R,J>, <J,R>}
- OnHead = {<C,J>}

Functions

LeftLeg = {<R, RLL>, <J, JLL>} CPSC 422. Lecture 22



С

How many Interpretations with.... 2550ming unique names

- 5 Objects and 5 symbols
 - {R. J. RLL. JLL. C}
- 3 Property Predicates (Unary Relations)

25 05 01

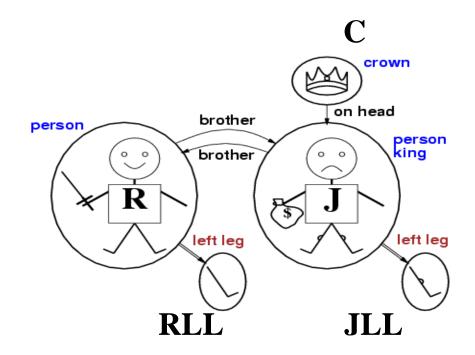
R J RLL JLL

- Person
- Crown
- King
- 2 Relational Predicates
- Predicates A. 2⁵ B. 2²⁵ C. 25² 25 possibilities; each one con be % so 2 Brother
 - OnHead
- 1 Function
 - $x^{0}^{A}_{5} \times (2^{5})^{3}_{*} \times (2^{25})^{2}_{*} \times 5^{5}$ • LeftLeg

licker

To summarize: Truth in first-order logic

- Sentences are true with respect to an **interpretation**
- World contains objects (**domain elements**)
- Interpretation specifies referents for constant symbols → objects predicate symbols → relations function symbols → functional relations
- An atomic sentence *predicate(term₁,...,term_n)* is true iff the **objects** referred to by *term₁,...,term_n* are in the **relation** referred to by *predicate*



Quantifiers

Allows us to express

- Properties of collections of objects instead of enumerating objects by name
- Properties of an unspecified object

```
Universal: "for all" ∀
Existential: "there exists" ∃
```

Universal quantification

∀<*variables*> <*sentence*>

Everyone at UBC is smart: $\forall x At(x, UBC) \Rightarrow Smart(x)$

 $\forall x P \text{ is true in an interpretation } I \text{ iff } P \text{ is true with } x \text{ being each possible object in } I$

Equivalent to the conjunction of instantiations of P

At(KingJohn, UBC) \Rightarrow Smart(KingJohn) \land At(Richard, UBC) \Rightarrow Smart(Richard) \land At(Ralphie, UBC) \Rightarrow Smart(Ralphie) \land ...

Existential quantification

Someone at UBC is smart: $\exists x \operatorname{At}(x, \operatorname{UBC}) \land \operatorname{Smart}(x)$

 $\exists x P \text{ is true in an interpretation } I \text{ iff } P \text{ is true with } x \text{ being some possible object in } I$

Equivalent to the disjunction of instantiations of P

 $\mathsf{At}(\mathsf{KingJohn},\,\mathsf{UBC})\wedge\mathsf{Smart}(\mathsf{KingJohn})$

- \lor At(Richard, UBC) \land Smart(Richard)
- \lor At(Ralphie, UBC) \land Smart(Ralphie)

V ...

Properties of quantifiers

 $\exists x \forall y \text{ is not the same as } \forall y \exists x \\ \exists x \forall y \text{ Loves}(x,y) \end{cases}$

"There is a person who loves everyone in the world"

- ∀y∃x Loves(x,y)
 - "Everyone in the world is loved by at least one person"

Quantifier duality: each can be expressed using the other
∀x Likes(x,IceCream)∀x Likes(x,IceCream)∃x Likes(x,Broccoli)¬∀x ¬Likes(x,Broccoli)

Lecture Overview

- Finish SAT (example)
- First Order Logics
 - Language and Semantics
 - Inference

FOL: Inference

Resolution Procedure can be generalized to FOL

- Every formula can be rewritten in logically equivalent CNF
 - Additional rewriting rules for quantifiers
- **Similar Resolution step**, but variables need to be unified (like in DATALOG)

(In(x,y) v 7(horged(x))
$$\Theta = \{z_x, y_y\}$$

(In(z,v) V (onnected (z))
> Chorged (x) v Connected (x)

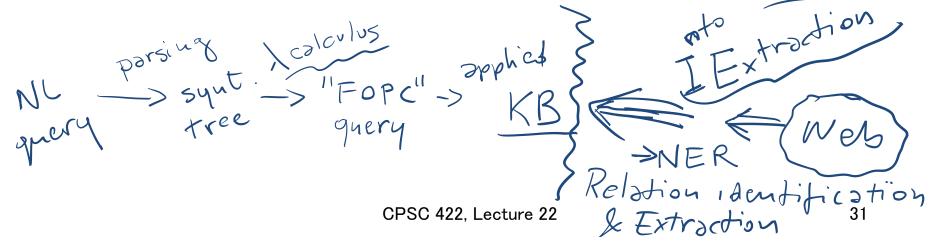
NLP Practical Goal for FOL: the ultimate Web question-answering system?

Map NL queries into FOPC so that answers can be effectively computed

What African countries are not on the Mediterranean Sea?

 $\exists c \ Country(c) \land \neg Borders(c, Med.Sea) \land In(c, Africa)$

Was 2007 the first El Nino year after 2001? $ElNino(2007) \land \neg \exists y Year(y) \land After(y,2001) \land$ $Before(y,2007) \land ElNino(y)$



Learning Goals for today's class

You can:

- Explain differences between Proposition Logic and First Order Logic
- Compute number of interpretations for FOL
- Explain the meaning of quantifiers
- Describe application of FOL to NLP: Web question answering

Next class Fri

- Ontologies (e.g., Wordnet, Probase), Description Logics…
- Midterm will be returned (sorry for the delay)

Assignment-3 will be out today