Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 19

Oct, 23, 2017

4

Slide Sources
Raymond J. Mooney University of Texas at Austin

D. Koller, Stanford CS - Probabilistic Graphical Models

D. Page, Whitehead Institute, MIT

Several Figures from

"Probabilistic Graphical Models: Principles and Techniques" *D. Koller, N. Friedman* 2009 CPSC 422. Lecture 19

Lecture Overview

- Recap: Naïve Markov Logistic regression (simple CRF)
- CRFs: high-level definition
- CRFs Applied to sequence labeling
- NLP Examples: Name Entity Recognition, joint POS tagging and NP segmentation

Let's derive the probabilities we need

$$\phi_i(X_i, Y_1) = \exp\{w_i\} \{X_i = 1, Y_1 = 1\} \}$$

$$\phi_0(Y_1) = \exp\{w_0\} \{Y_1 = 1\} \}$$

$$X_1$$

$$X_2$$

$$P(Y_1 \mid x_1, \dots, x_n) =$$

$$\overset{\approx}{P}(Y_1 = 0, x_1, \dots, x_n) =$$

$$\tilde{P}(Y_1 = 1, x_1, ..., x_n) =$$

Continue

$$P(Y_{1}=1 \mid X_{1}...X_{n}) = \frac{e^{w_{0}+2w_{1}X_{1}}}{1 + e^{w_{0}+2w_{1}X_{2}}}$$

$$= \frac{e^{z}}{1 + e^{z}} = \frac{1}{e^{-z}} = \frac{1}{e^{-z}+1}$$

$$P(Y_{1}\mid X_{1}...X_{n}) = \left\{\frac{1}{e^{-z}+1} \mid \frac{e^{-z}+1}{e^{-z}+1}\right\}$$

Sigmoid Function used in Logistic Regression

Great practical interest

• Number of param w_i is linear instead of exponential in the number of parents

 Natural model for many real world applications

 Naturally aggregates the influence of different parents

CPSC 422, Lecture

Logistic Regression as a Markov Net (CRF)

Logistic regression is a simple Markov Net (a CRF) aka naïve markov model

But only models the **conditional distribution**, $P(Y \mid X)$ and not the full joint P(X,Y)

Let's generalize

Assume that you always observe a set of variables $X = \{X_1 \cdots X_n\}$ and you want to predict one or more variables $Y = \{Y_1 \cdots Y_k\}$

A CRF is an undirected graphical model whose nodes corresponds to X U Y.

 $\phi_1(D_1)\cdots \phi_m(D_m)$ represent the factors which annotate the network (but we disallow factors involving only vars in X – why?)

Lecture Overview

- Recap: Naïve Markov Logistic regression (simple CRF)
- CRFs: high-level definition
- CRFs Applied to sequence labeling
- NLP Examples: Name Entity Recognition, joint POS tagging and NP segmentation

Sequence Labeling

Linear-chain CRF

Increase representational Complexity: Adding Features to a CRF

Instead of a single observed variable X_i we can model multiple features X_{ij} of that observation.

CRFs in Natural Language Processing

- One target variable Y for each word X, encoding the possible labels for X
- Each target variable is connected to a set of feature variables that capture properties relevant to the target distinction

Named Entity Recognition Task

- Entity often span multiple words "British Columbia"
- Type of an entity may not be apparent for individual words "University of British Columbia"
- Let's assume three categories: Person, Location, Organization
- BIO notation (for sequence labeling)

Linear chain CRF parameters

With two factors "types" for each word

$$\phi_t^1(Y_t,Y_{t-1})$$
 $\phi_t^1(Y_t,Y_{t+1})$ Dependency between neighboring target vars

$$\phi_t^2(Y_t, X_1, ..., X_T)$$

Dependency between target variable and its context in the word sequence, which can include also **features of the words** (capitalized, appear in an atlas of location names, etc.)

Factors are similar to the ones for the Naïve Markov (logistic regression)

$$\phi_t(Y_t,X_{tk}) = \exp\{w_{tk} \times 1 \{Y_t = \text{I-LOC}, X_{tk} = 1 \}\}$$
 opposition names

Features can also be

- The word
- Following word
- Previous word

More on features

Including features that are conjunctions of simple features increases accuracy

Total number of features can be 10^5-10^6

However features are sparse i.e. most features are 0 for most words

Linear-Chain Performance

Per-token/word accuracy in the high 90% range for many natural datasets 12601 is wrong to 2 words at of 9

Per-field precision and recall are more often around 80–95%, depending on the dataset. Entire Named Entity Phrase must be correct.

Skip-Chain CRFs

Include additional factors that connect non-adjacent target variables

E.g., When a word occur multiple times in the same documents

Graphical structure over Y can depend on the values of the Xs!

CPSC 422, Lecture 19

Slide 17

Coupled linear-chain CRFs

 Linear-chain CRFs can be combined to perform multiple tasks simultaneously

Performs part-of-speech labeling and noun-phrase segmentation

Coupled linear-chain CRFs

 Linear-chain CRFs can be combined to perform multiple tasks simultaneously

Performs part-of-speech labeling and noun-phrase segmentation

Inference in CRFs (just intuition)

An HMM can be viewed as a factor graph
$$p(\mathbf{y}, \mathbf{x}) = \prod_{t} \Psi_t(y_t, y_{t-1}, x_t)$$
 where $Z = 1$, and the factors are defined as: $\Psi_t(j, i, x) \stackrel{\text{def}}{=} p(y_t = j | y_{t-1} = i) p(x_t = x | y_t = j)$. (4.1)

Forward / Backward / Smoothing and Viterbi can be rewritten (not trivial!) using these factors

Then you plug in the factors of the CRFs and all the algorithms work fine with CRFs! ©

CRFs Summary

- Ability to incorporate arbitrary overlapping local and global features
- Graphical structure over Y can depend on the values of the Xs (see slide 21)
- Can perform multiple tasks simultaneously (see slide 23)
- Standard Inference algorithm for HMM can be applied
- Practical Learning algorithms exist
- State-of-the-art on many labeling tasks (deep learning recently shown to be often better when large training data are available... current research on ensembling them!)

See MALLET package

Probabilistic Graphical Models

From "Probabilistic Graphical Models: Principles and Techniques" D. Koller, N. Friedman 2009

Combining CRFs and Neural Models

SEMANTIC IMAGE SEGMENTATION WITH DEEP CONVOLUTIONAL NETS
AND FULLY CONNECTED CRFS

International Conference on Learning Representations (ICLR), San Diego, California, USA, May 2015.

Liang-Chieh Chen Univ. of California, Los Angeles; George Papandreou Google Inc.; Iasonas Kokkinos INRIA; Kevin Murphy Google Inc.; Alan L. Yuille Univ. of California, Los Angeles

1.Use CNN to generate a rough prediction of segmentation (smooth, blurry heat map)
2.Refine this prediction with a conditional random field (CRF)

422 big picture: Where are we?

Hybrid: Det +Sto

Prob CFG
Prob Relational Models
Markov Logics

Deterministic

Stochastic

Logics

Ontologies Temporal rep.

Full Resolution

First Order Logics

SAT

Belief Nets

Approx.: Gibbs

Markov Chains and HMMs

Forward, Viterbi....

Approx. : Particle Filtering

Undirected Graphical Models

Markov Networks

Conditional Random Fields

Markov Decision Processes and Partially Observable MDP

-artially Observable MDI

- Value Iteration
- Approx. Inference

Reinforcement Learning

Applications of AI

Representation

Reasoning Technique

Query

Planning

Learning Goals for today's class

You can:

- Provide general definition for CRF
- Apply CRFs to sequence labeling
- Describe and justify features for CRFs applied to Natural Language processing tasks
- Explain benefits of CRFs

Midterm, Wed, Oct 25, we will start at noon sharp

How to prepare...

- Go to Office Hours (extra hours offered)
- Learning Goals (look at the end of the slides for each lecture
 complete list has been posted)
- Revise all the clicker questions and practice exercises
- More practice material has been posted
- Check questions and answers on Piazza

Next class Fri

- Start Logics
- Revise Logics from 322!