Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 17

Oct, 18, 2017

Slide Sources

D. Koller, Stanford CS - Probabilistic Graphical Models

D. Page, Whitehead Institute, MIT

Several Figures from

"Probabilistic Graphical Models: Principles and Techniques" D. Koller, N. Friedman 2009

422 big picture: Where are we?

StarAI (statistical relational AI)

Hybrid: Det +Sto Prob CFG

Prob Relational Models

Markov Logics

Deterministic

Stochastic

Querv

Planning

Logics

First Order Logics

Ontologies Temporal rep.

- Full Resolution
- SAT

Belief Nets

Approx.: Gibbs

Markov Chains and HMMs

Forward, Viterbi....

Approx. : Particle Filtering

Undirected Graphical Models

Markov Networks

Conditional Random Fields

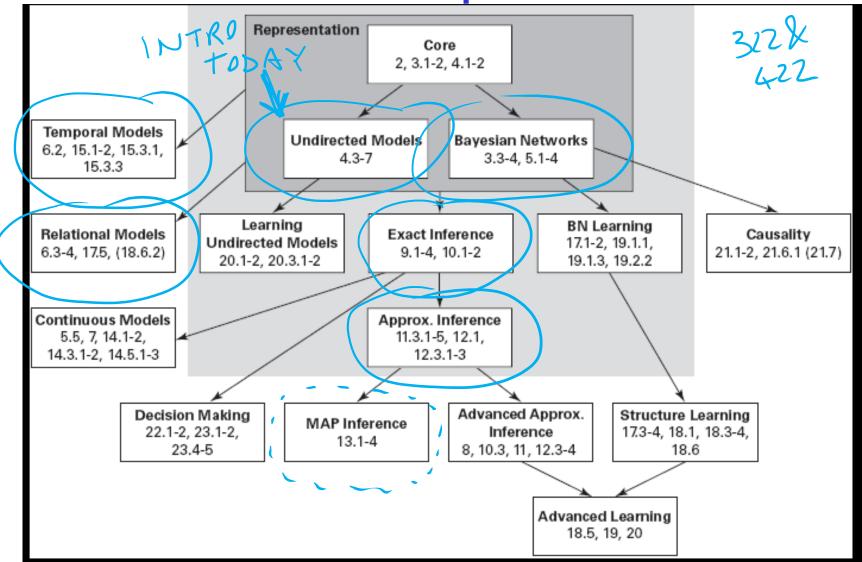
Markov Decision Processes and Partially Observable MDP

- Value Iteration
- Approx. Inference

Reinforcement Learning

Applications of AI

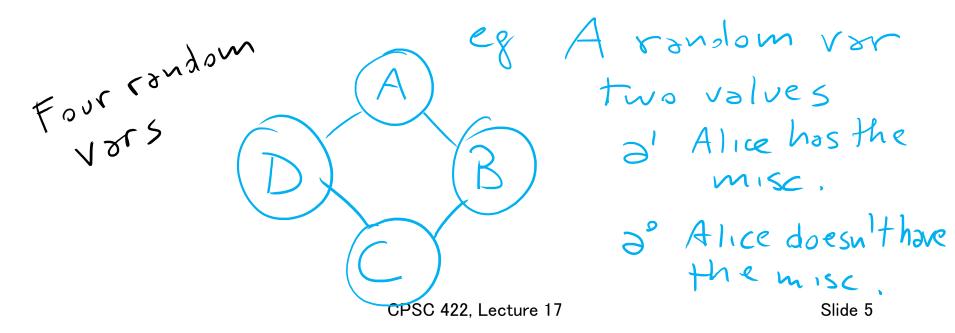
Representation

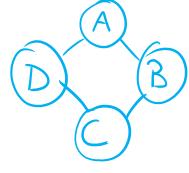

Reasoning Technique

Lecture Overview

Probabilistic Graphical models

- Intro
- Example
- Markov Networks Representation (vs. Belief Networks)
- Inference in Markov Networks (Exact and Approx.)
- Applications of Markov Networks


Probabilistic Graphical Models


From "Probabilistic Graphical Models: Principles and Techniques" D. Koller, N. Friedman 2009

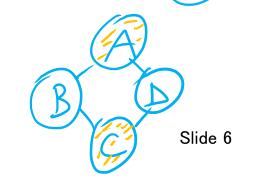
Misconception Example

- Four students (Alice, Bill, Debbie, Charles) get together in pairs, to work on a homework
- But only in the following pairs: AB AD DC BC
- Professor misspoke and might have generated misconception
- A student might have figured it out later and told study partner

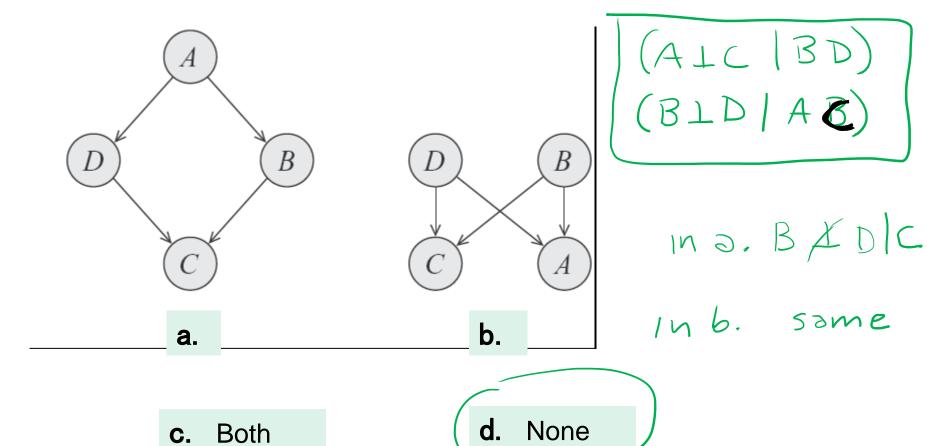
Example: In/Dependencies

Are A and C independent because they never spoke?

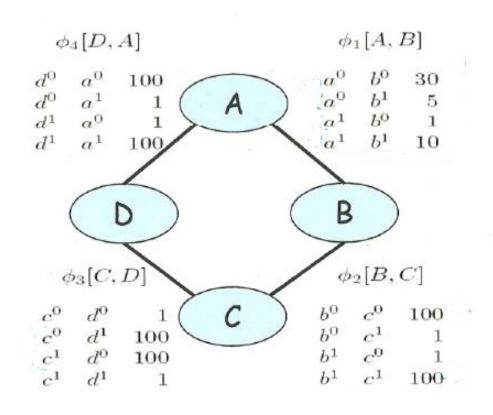
a. Yes


c. Cannot Tell

No, because A might have figured it out and told B who then told C


But if we know the values of B and D....

And if we know the values of A and C



Which of these two Bnets captures the two independencies of our example?

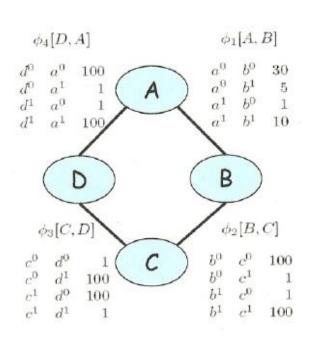
Parameterization of Markov Networks

X set of random
Vovs: A factor is

$$\Phi(Val(X)) \rightarrow |P|$$

Factors define the local interactions (like CPTs in Bnets) What about the global model? What do you do with Bnets?

How do we combine local models?

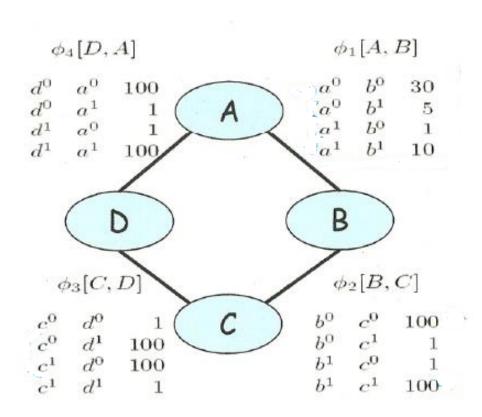

As in BNets by multiplying them!

$$\tilde{P}(A,B,C,D) = \phi_1(A,B) \times \phi_2(B,C) \times \phi_3(C,D) \times \phi_4(A,D)$$

$$P(A,B,C,D) = \frac{1}{Z}\tilde{P}(A,B,C,D)$$

$$P(A,B,C,D) = \frac{1}{Z}\tilde{P}(A,B,C,D)$$

Normalized	Unnormalized	Assignment			
.04	300000	d^0	c^0	b^0	a^0
. 04	300000	d^1	c^0	b^0	a^0
.04 41×10-6	300000	d^0	c^1	b^0	a^0
41x10-6	30	d^1	c^1	b^0	a^0
•	500	d^0	c^0	b^1	a^0
:	500	d^1	c^0	b^1	a^0
. 69	5000000	d^0	c^1	b^1	a^0
	500	d^1	c^1	b^1	a^0
`.	100	d^0	c^0	b^0	a^1
•	1000000	d^1	c^0	b^0	a^1
•	100	d^0	c^1	b^0	a^1
	100	d^1	c^1	b^0	a^1
•	10	d^0	c^0	b^1	a^1
•	100000	d^1	c^0	b^1	a^1
,	100000	d^0	c^1	b^1	a^1
.	100000	d^1	c^1	b^1	a^1

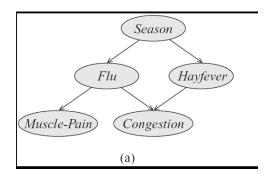

Multiplying Factors (same seen in 322 for VarElim)

(unrelated to sur running example)

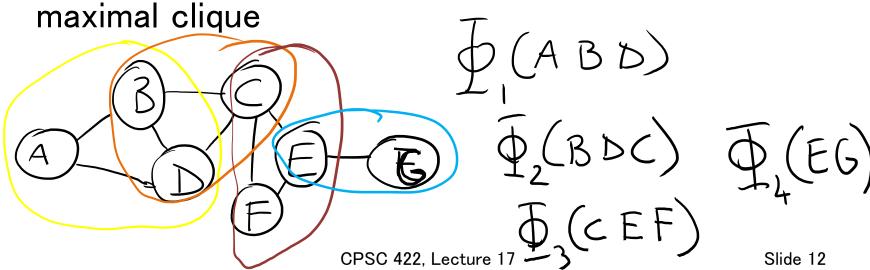
A A			a^1	b^1	c^1	$0.5 \cdot 0.5 = 0.25$
AB			a^1	b^1	c^2	$0.5 \cdot 0.7 = 0.35$
	BC		a^1	b^2	c^1	$0.8 \cdot 0.1 = 0.08$
$a^1 \ b^1 \ 0.5$	D C		a^1	b^2	c^2	$0.8 \cdot 0.2 = 0.16$
$a^1 \ b^2 \ 0.8$	b^1 c^1 0.5		a^2	b^1	c^1	$0.1 \cdot 0.5 = 0.05$
a^2 b^1 0.1	$b^1 \ c^2 \ 0.7$		a^2	b^1	c^2	$0.1 \cdot 0.7 = 0.07$
a^2 b^2 0	$b^2 c^1 0.1$		a^2	b^2	c^1	0.0.1 = 0
a^3 b^1 0.3	$b^2 c^2 0.2$		a^2	b^2	c^2	0.0.2 = 0
$a^3 b^2 0.9$			a^3	b^1	c^1	$0.3 \cdot 0.5 = 0.15$
. 11 '	a^3	b^1	c^2	$0.3 \cdot 0.7 = 0.21$		
in this exam	a^3	b^2	c^1	$0.9 \cdot 0.1 = 0.09$		
A has three	a^3	b^2	c^2	$0.9 \cdot 0.2 = 0.18$		

2, 3, 3,

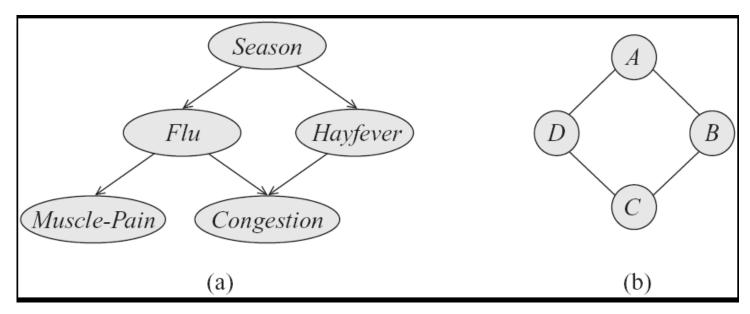
Factors do not represent marginal probs.!



$a^0 b^0$	0.13
a ⁰ b ¹	0.69
a¹ b ⁰	0.14
a¹ b¹	0.04


Marginal P(A,B)
Computed from the joint

Step Back…. From structure to factors/potentials

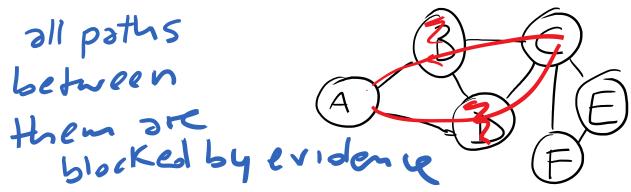

In a Bnet the joint is factorized….

In a Markov Network you have one factor for each

Directed vs. Undirected

Independencies
$$(F \perp H \mid S)$$

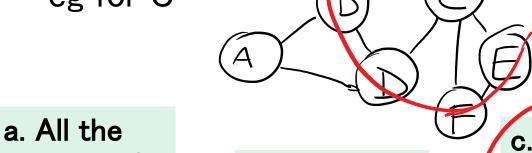
 $(C \perp S \mid F, H)$
 $(M \perp C, H, S \mid F)$
Factorization $P(S, F, H, M, C) =$
 $P(S) P(F \mid S) P(H \mid S) P(M \mid F) \times$
 $P(C \mid F, H)$ CPSC 422, Lecture 17


$$(A \perp C \mid B D)$$

$$(B \perp D \mid A B)$$

$$P(A B C D) = \frac{1}{2} \oint_{1} (AB) \times \frac{1}{2} (BC) * \oint_{2} (CD) * \oint_{1} (AD)$$
Slide 13

General definitions


Two nodes in a Markov network are independent if and only if ...

eg for A C

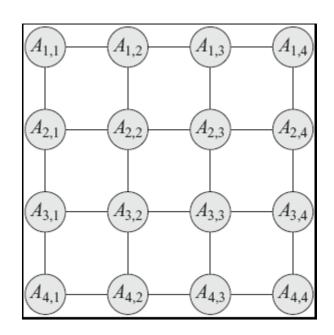
So the markov blanket of a node is...?

eg for C

i×clicker.

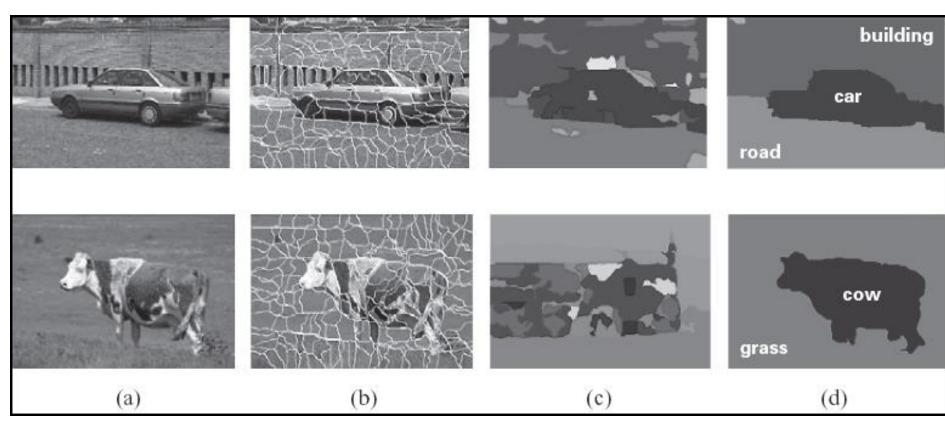
a. All the parents of its children

b. The whole network


c. All its neighbors

Markov Networks Applications (1): Computer Vision

Called Markov Random Fields


- Stereo Reconstruction
- Image Segmentation
- Object recognition

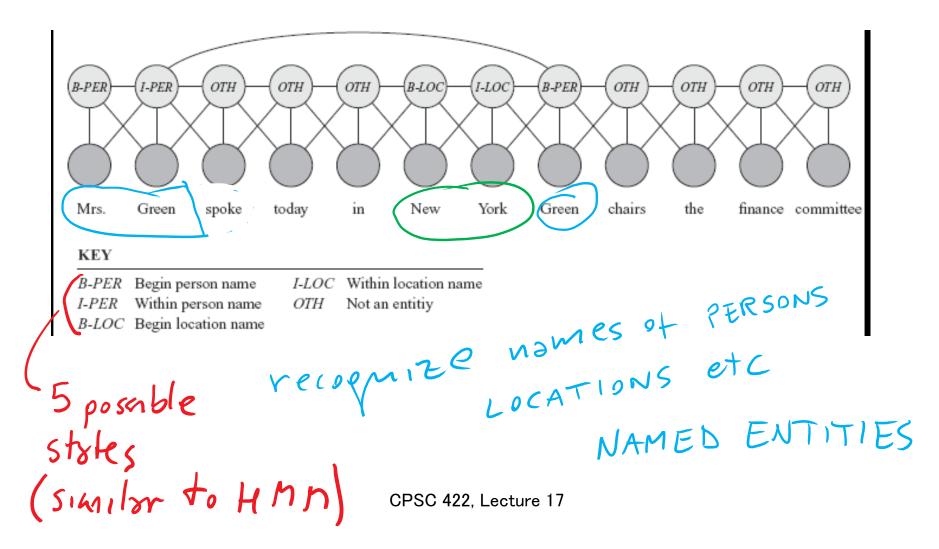
Typically pairwise MRF

- Each vars correspond to a pixel (or superpixel)
- Edges (factors) correspond to interactions between adjacent pixels in the image
 - E.g., in segmentation: from generically penalize discontinuities, to road under car

Image segmentation

clossfying each superpixel in dependently

With a Markov Random Field 1


Markov Networks Applications (1): Computer Vision

- Each vars correspond to a pixel (or superpixel)
- Edges (factors) correspond to interactions between adjacent pixels in the image
 - E.g., in segmentation: from generically penalize

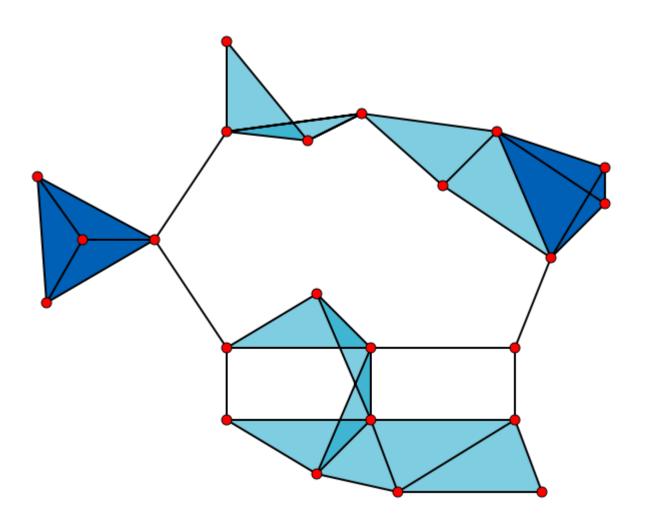
discontinuities, to road under car SIMPLE EXAMPLE rosa CPSC 422. Lecture 17

Markov Networks Applications (2): Sequence Labeling in NLP and BioInformatics

Conditional random fields (next class Fri)

Learning Goals for today's class

>You can:


- Justify the need for undirected graphical model (Markov Networks)
- Interpret local models (factors/potentials) and combine them to express the joint
- Define independencies and Markov blanket for Markov Networks
- Perform Exact and Approx. Inference in Markov Networks
- Describe a few applications of Markov Networks

One week to Midterm, Wed, Oct 25, we will start at noon sharp

How to prepare….

- Keep Working on assignment-2!
- Go to Office Hours
- Learning Goals (look at the end of the slides for each lecture – complete list has been posted)
- Revise all the clicker questions and practice exercises
- More practice material has been posted
- Check questions and answers on Piazza

How to acquire factors?

