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UBC Department of Computer Science

Undergraduate Events

https://my.cs.ubc.ca/students/development/events

Bloomberg LP Info Session
Mon. Oct. 2nd
6:00pm-7:30pm

[.LK.B Room 261

Google Internship Panel

Mon. Oct. 2nd
5:45pm — 7:00pm

DMP 110

Free Cube Breakfast
Tues. Oct. 3
9:00am — 11:00am
ICICS 021

Move (Realtor.com) Info Session
Thurs. Oct. 5t

5:30pm — 7:00pm

DMP 101

Eventbase Job Fair

Wed. Oct. 11th

6:00pm — 8:30pm

Eventbase Downtown Office

Tesla Motors

Wed. Oct. 11th
6:00pm—8:00pm
I.LK.B Room 182

Ericsson Innovation Awards Competition
Deadline: Wed. Nov. 15t", 2017

https://www.ericsson.com/en/events/eia—
2018

David L. Squire Scholarship
Deadline: Wed. Nov. 15th, 2017

http://www.iticanada.ca/index.php/about—
us/scholarships—closed


https://my.cs.ubc.ca/students/development/events

. _ StarAl (statistical relational Al)
422 big picture: Where are we? |, pig: Det +Sto

Prob CFG
Prob Relational Models
Deterministic Stochastic Markov Logics
Belief Nets
Logics Approx. : Gibbs
First Order Logics Markov Chains and HMMs
Ontologies Forward, Viterbi---.
Query | Temporal rep. Approx. : Particle Filtering
e Full Resolution Undirected Graphical Models
« SAT Markov Networks
Conditional Random Fields

Markov Decision Processes and
Partially Observable MDP

* Value Iteration
* Approx. Inference

Reinforcement Learning Representation

Reasoning

Applications of Al Techniaue




Lecture Overview

* Recap of BNs Representation and Exact
Inference

 Start Belief Networks Approx. Reasoning

e Intro to Sampling

 First Naive Approx. Method: Forward
Sampling

« Second Method: Rejection Sampling
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Revise (in)dependencies****-
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Conditional Independencies

Or, blocking paths for probability propagation. Three ways in which a
path between X to Y can be blocked, (1 and 2 given evidence E )

Y E X

{2+ ()

2~
2 &/—6/

H

v
()
N

| — =© —
8| O —C

Note that, in 3, X and Y become dependent as soon as I get evidence
on Z or on any of its descendants ide 7



Independence (Markov Blanket)

L

/ “@/j\ N/@\J Cké
g& /\bm g/@}\ \ ’ g /\ \\,

b 50
What is the minimal set of nodes that must be observed

in order to make node X independent from all the

non—observed nodes in the network

Slide 8
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Independence (Markov Blanket)

L

/CK@NC/D\ /%3‘/@\"0 C\é
;s /W fa\m ga}j‘\*

D 40 b0
A node is conditionally independent from all the other nodes in
the network, given its parents, children, and children’ s
parents (i.e., its Markov Blanket ) Configuration B
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Variable elimination algorithm: Summary

PC Yooy ZpZ)
To compute P(Z/ Y,=v, - ,Y~v,):
1. Construct a factor for each conditional probability.

2. Set the observed variables to their observed values.

3. Given an elimination ordering, simplify/decompose sum of

products
" For all Z; : Perform products and sum out Z,
\ e ———
4. Multiply the remaining factors (all in ? z )

5. Normalize: divide the resulting factor AZ) by 2, (Z).




L
Variable elimination ordering

PGD=t) =5, ,. FAG) ABA) 7C.GA) RB,C)

CRA v < Vé\
3, fAG) 3, FIBA) S, fC.GA) fBC)
GC A — )

24 fAG) 2, ICGA) 2 ; RB,C) ABA)



Complexity: Just Intuition---..

Tree—width of a network given an elimination ordering: max
number of variables in a factor created while running VE.

Tree—width of a belief network : min tree—width over all

elimination orderings (only on the graph structure and is a
measure of the sparseness of the graph)

The complexity of VE is exponential in the tree—width ® and
linear in the number of variables.

Also, finding the elimination ordering with minimum tree—width

is NP—hard @ (but there are some good elimination ordering
heuristics)



Lecture Overview

* Recap of BNs Representation and Exact
Inference

 Start Belief Networks Approx. Reasoning

e Intro to Sampling

 First Naive Approx. Method: Forward
Sampling

« Second Method: Rejection Sampling
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Approximate Inference

Basic idea:
Draw N samples from known prob. distributions

Use those samples to estimate unknown prob.
distributions

Why sample?

Inference: getting a sample is faster than computing the
right answer (e.g. with variable elimination)
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We use Sampling

Sampling is a process to obtain samples adequate to
an unknown probability

How do we get
samples?

Known prob. distribution(s)

Samples (o

{

Estimates for unknown (hard to compute) distribution(s)



Generating Samples from a Known Distribution

For a random variable X with
- values fx, " x/
Probability distribution P(X) = {P(x,),---P(x,)}
Partition the interval [0, 1] into kintervals p;, one for each x;,
with length P(x;)
To generate one sample

v' Randomly generate a value y in [0, 1] (i.e. generate a value from a uniform
distribution over [0, 1].
v’ Select the value of the sample based on the interval p; that includes y

From probability theory: P(y < p;) = Length( p ) = P(X)

(& p\F @‘ ; (133

xga,é,ck o 6
(3




From Samples to Probabilities &

\¢ Cowm'T
0D Z;JLTL
X | count X | probability 19 258
X1 nq ” n/m D) 3ol
: : — _l L'. | ZQTT
X Ny, X . ..f'm totel 3200
total m . ki C’%T\D COD: Jol

L2090

Count total number of samples m
Count the number n; of samples x;
Generate the frequency of sample x.as n,/ m

This frequency is your estimated probability of x.



Sampling for Bayesian Networks (N)

» Suppose we have the following BN with two binary
variables I

A e Fla-o) |
0.3 2,7 |
A P(B=1|A) |

~a 0.7 3 o i Kvotw i
—=40 0.1 .i”M d;Sﬂ'Yl\bUd‘\\Ov\5

» |t corresponds to the joint probability distribution
 P(A,B) =P(B|A)P(A)

» To sample from P(A,B) i.e., unknown distributioﬁ‘_”(\o b=

n
- we first sample from P(A). Suppose we get(_A =0.) h

-

'
+ In this case, we then sample from.... (B |A —‘0> A-1 8 5

 |If we had sampled'A = 1) then in the second step we would have sampled

from F(B’A?\



Prior (Forward) Sampling :*

P(S]C)
+c | +s [ 0.1
-s [ 0.9
-c | +s [ 0.5
-s [ 0.5
P(W|S, R)

+S +r +w | 0.99

-w | 0.01

-r +w | 0.90

-W 0.10

-S +r +w | 0.90

-W 0.10

-r +w | 0.01

-w | 0.99

P(C
+C 0.5
-C 0.5

P(R|C)

+c | +r | 0.8

r | 0.2

c | +r [0.2

r | 0.8

Samples:

+C, -S, +I, +tW
-C, S, I, +W

CPSC 422, Lecture 11
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Example

We’ Il get a bunch of samples from the BN:

+c, —s, tr, tw

—C, ts, tr, —w

—C, —S, —r, tw

If we want to know P(W) @

We have counts <+w:4, —-w:1>
Normalize to get P(W) = (+w: - & - W >

This will get closer to the true distribution with more samples

CPSC 422, Lecture 11
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Example
Can estimate anything else from the samples, besides P(W), P(R) , etc:

(FoJ=s.%r, +w/
Fo] +s, 41, tw

4

—C, ts, tr, —w
—C, —S, I, tw

What about P(C| +w)? P(CI +r, +w)? P(C| -r, —w)?

+tC -C

A[O /_:} 3[3 5] |||cker
D None of +he 6'00\/8

Can use/generate fewer samples when we want to
estimate a probability conditioned on evidence?
CPSC 422, Lecture 11 25



Rejection Sampling

Let’ s say we want P S| +w

Ignore (reject) samples which don’ t
have W=+w

This is called rejection sampling

It is also consistent for conditional
probabilities (i.e., correct in the limit)

See any problem as the number of
evidence vars increases?

CPSC 422, Lecture 11

+C,(5S) +H—HW
+c,% +E W
-C, &S, +—=wW
+c,s) +r+w
-C, (S) oL, W
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Hoeffding’ s inequality

Suppose p is the true probability and s is the sample average from »
independent samples.

P(|ls—pl>¢)<2e 2”‘95 k SEGN

p above can be the probability of any event for random variable X =
[X,---X Jdescribed by a Bayesian network

If you want an infinitely small probability of having an error greater than
&, you need infinitely many samples

But if you settle on something less than infinitely small, let’ s say 0, then
you just need to set 5 2
— &
2e <0

So you pick
* the error &£ you can tolerate,
» the frequency O with which you can tolerate it

And solve for 7, i.e., the number of samples that can ensure this

performance |
— In

h..ll':h

1=
T 2g?



Hoeffding s inequality

» Examples:
* You can tolerate an error greater than 0.1 only in 5% of your cases
e Set £ =01, J=0.05
— Iné

« Equation (1) gives you n > 184 n> 2 (1)
T 2¢?

Ca\a/\s\cfwrw\-é @>
i

> If you can tolerate the same error (0.1) only in 1% of the cases, then you

need 265 samples
» If you want an error greater than 0.01 in no more than 5% of the cases,
you need 18,445 samples e b\ou/\é Le

¢\€9< '\‘\/\Bt

\l/ %“es Q“)VVV\ l h ‘
A gses wp



Learning Goals for today’s class

>»YOou can:

« Motivate the need for approx inference in Bnets

« Describe and compare Sampling from a single random
variable

« Describe and Apply Forward Sampling in BN
 Describe and Apply Rejection Sampling

« Apply Hoeffding's inequality to compute number of
samples needed
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TODO for Wed

* Read textbook 6.4.2

« Assignment-2 will be out today: Start working on it

 Nextresearch paper will be this coming Fri
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