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Lecture Overview

Partially Observable Markov Decision Processes

• Summary

• Belief State

• Belief State Update

• Policies and Optimal Policy
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Belief State and its Update
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 To summarize: when  the agent performs action a in belief 

state b, and then receives observation e, filtering gives a 

unique new probability distribution over state 

• deterministic transition from one belief state to 
another
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Belief Update: Example1
 Let’s introduce a sensor that perceives the number of adjacent 

walls in a location with a 0.1 probability of error

• P(2w|s) = 0.9 ;  P(1w|s) = 0.1 if s is non-terminal and not in third column

• P(1w|s) = 0.9 ; P(2w|s) = 0.1 if s is non-terminal and in third column

 Try to compute the new belief state if agent moves left and then perceives 1 

adjacent wall
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Belief Update: Example 2
 Let’s introduce a sensor that perceives the number of adjacent 

walls in a location with a 0.1 probability of error

• P(2w|s) = 0.9 ;  P(1w|s) = 0.1 if s is non-terminal and not in third column

• P(1w|s) = 0.9 ; P(2w|s) = 0.1 if s is non-terminal and in third column

 Try to compute the new belief state if agent moves right and then perceives 2 

adjacent wall
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Optimal Policies in POMDs ?
 Theorem (Astrom, 1965): 

• The optimal policy in a POMDP is a function π*(b) where b is the 
belief state (probability distribution over states)

 That is, π*(b) is a function from belief states (probability 

distributions) to actions

• It does not depend on the actual state the agent is in

• Good, because the agent does not know that, all it knows are its 
beliefs!

 Decision Cycle for a POMDP agent

• Given current belief state b, execute a = π*(b)

• Receive observation e

•

• Repeat
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How to Find an Optimal Policy?

Turn a POMDP into a corresponding MDP and 

then solve that MDP

Generalize VI to work on POMDPs

Develop Approx. Methods  

Point-Based VI

Look Ahead
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Finding the Optimal Policy: State of the Art

 Turn a POMDP into a corresponding MDP and then apply 

VI: only small models

 Generalize VI to work on POMDPs

• 10 states in1998 

• 200,000 states in 2008-09

 Develop Approx. Methods  2009 - now

 Point-Based VI and Look Ahead

 Even 50,000,000 states 
http://www.cs.uwaterloo.ca/~ppoupart/software.html
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Dynamic Decision Networks (DDN)

 Comprehensive approach to agent design in partially 
observable, stochastic environments

 Basic elements of the approach

• Transition and observation models are represented via a Dynamic 
Bayesian Network (DBN). 

• The network is extended with decision and utility nodes, as done in 
decision networks
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Dynamic Decision Networks (DDN)

• A filtering algorithm is used to incorporate each new 
percept and the action to update the belief state Xt

• Decisions are made by projecting forward possible action 
sequences and choosing the best one: look ahead 
search
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Dynamic Decision Networks (DDN)

Filtering / 
Belief Update

Projection (3-step look-ahead here)

 Nodes in yellow are known (evidence collected, decisions made, local rewards)

 Agent needs to make a decision at time t (At node)

 Network unrolled into the future for 3 steps

 Node Ut+3 represents the utility (or expected optimal reward V*) in state Xt+3

• i.e., the reward in that state and all subsequent rewards

• Available only in approximate form (from another approx. method)

At-2 At-1
At At+1

At+2At+1
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Look Ahead Search for Optimal Policy
General Idea:

 Expand the decision process for n steps into the future, that is

• “Try” all actions at every decision point

• Assume receiving all possible observations at observation points

 Result: tree of depth 2n+1 where 

• every branch represents one of the possible sequences of n actions and n 
observations available to the agent, and the corresponding belief states

• The leaf at the end of each branch corresponds to the belief state reachable 
via that sequence of actions and observations – use filtering/belief-update to 
compute it

 “Back Up” the utility values of the leaf nodes along their 
corresponding branches, combining it with the rewards along that 
path

 Pick the branch with the highest expected value
15CPSC422, Lecture 6



Look Ahead Search for Optimal Policy

Decision At in P(Xt|E1:tA1:t-1 )

Observation Et+1

At+1 in P(Xt+1|E1:t+1 A1:t)

|Et+2

At+2 in P(Xt+1|E1:t+2A1:t+1)

|Et+3

P(Xt+3|E1:t+3 A1:t+2)

|U(Xt+3)

Belief states are 
computed via any 
filtering algorithm, 

given the sequence of 
actions and 

observations up to 
that point

To back up the utilities
• take average at chance points
•Take max at decision points

These are chance nodes, 
describing the 

probability of each 
observation 

a1t
a2t

akt

e1t+1
e2t+1 ekt+k
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A. a1

 Best action at time t?

B. a2 C. indifferent
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Look Ahead Search for Optimal Policy

 What is the time complexity for exhaustive search at depth 

d, with |A| available actions and |E| possible observations?
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B. O(|A|d * |E|d)A. O(d *|A| * |E|) C. O(|A|d * |E|)

A. Close to 1 B. Not too close to 1

• Would Look ahead work better when the discount 

factor is?



Some Applications of POMDPs……
 Jesse Hoey, Tobias Schröder, Areej Alhothali (2015), Affect control 

processes: Intelligent affective interaction using a POMDP, AI Journal

 S Young, M Gasic, B Thomson, J Williams (2013) POMDP-based 

Statistical Spoken Dialogue Systems: a Review, Proc IEEE, 

 J. D. Williams and S. Young. Partially observable Markov decision 

processes for spoken dialog systems. Computer Speech & Language, 

21(2):393–422, 2007.

 S. Thrun, et al. Probabilistic algorithms and the interactive museum 

tour-guide robot Minerva. International Journal of Robotic Research, 

19(11):972–999, 2000.

 A. N.Rafferty,E. Brunskill,Ts L. Griffiths, and Patrick Shafto. Faster 

teaching by POMDP planning. In Proc. of Ai in Education, pages 280–

287, 2011

 P. Dai, Mausam, and D. S.Weld. Artificial intelligence for artificial 

artificial intelligence. In Proc. of the 25th AAAI Conference on AI , 

2011. [intelligent control of workflows]
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Another “famous” Application

Source:  Jesse Hoey

UofT 2007

Learning and Using POMDP
models of Patient-Caregiver 
Interactions During Activities 
of Daily Living 

Goal: Help Older adults living with 
cognitive disabilities (such as 
Alzheimer's) when they: 

• forget the proper sequence of tasks that need to be 
completed
• they lose track of the steps that they have already 
completed. 
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R&R systems BIG PICTURE

Environment

Problem

Query

Planning

Deterministic Stochastic

Search

Arc Consistency

Search

Search

Var. Elimination

Constraint 
Satisfaction

Logics

STRIPS

Belief Nets

Vars + 
Constraints

Decision Nets

Markov Decision Processes
Var. Elimination

Static

Sequential

Representation

Reasoning
Technique

SLS

Markov Chains and HMMs
Approx. Inference

Temporal. Inference

POMDPs
Approx. Inference

Value Iteration



422 big picture

Query

Planning

Deterministic Stochastic

• Value Iteration

• Approx. Inference

• Full Resolution
• SAT

Logics
Belief Nets

Markov Decision Processes  and  
Partially Observable MDP

Markov Chains and HMMsFirst Order Logics

Ontologies
Temporal rep.

Applications of AI

Approx. : Gibbs

Undirected Graphical Models
Conditional Random Fields

Reinforcement Learning Representation

Reasoning
Technique

Prob CFG
Prob Relational Models
Markov Logics

Hybrid: Det +Sto

Forward, Viterbi….

Approx. : Particle Filtering
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Learning Goals for today’s class

You can:

• Define a Policy for a POMDP

• Describe space of possible methods for computing 
optimal policy for a given POMDP

• Define and trace Look Ahead Search for finding an 
(approximate) Optimal Policy 

• Compute Complexity of Look Ahead Search 
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TODO for next Fri

• Read textbook 11.3 (Reinforcement Learning)
•11.3.1 Evolutionary Algorithms
•11.3.2 Temporal Differences
•11.3.3 Q-learning

• Assignment 1 will be posted on 

Connect today

• VInfo and VControl
• MDPs (Value Iteration)
• POMDPs



 In practice, the hardness of POMDPs arises from the complexity of 

policy spaces and the potentially large number of states.

 Nervertheless, real-world POMDPs tend to exhibit a significant 

amount of structure, which can often be exploited to improve the 

scalability of solution algorithms. 

• Many POMDPs have simple policies of high quality. Hence, it is often 
possible to quickly find those policies by restricting the search to some class 
of compactly representable policies. 

• When states correspond to the joint instantiation of some random variables 
(features), it is often possible to exploit various forms of probabilistic 
independence (e.g., conditional independence and context-specic
independence), decomposability (e.g., additive separability) and sparsity in 
the POMDP dynamics to mitigate the impact of large state spaces.
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Symbolic Perseus

• Symbolic Perseus - point-based value iteration 

algorithm that uses Algebraic Decision Diagrams 

(ADDs) as the underlying data structure to tackle 

large factored POMDPs

• Flat methods: 10 states at 1998, 200,000 states at 

2008

• Factored methods: 50,000,000 states

• http://www.cs.uwaterloo.ca/~ppoupart/software.html
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POMDP as MPD
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 We can also define a reward function for belief states
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 By applying simple rules of probability we can derive a:

Transition model P(b’|a,b)


s

sRsbb )()()(

When  the agent performs a given action a in belief state b, and 
then receives observation e, filtering gives a unique new 
probability distribution over state 

deterministic transition from one belief state to the next
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Solving POMDP as MPD
 So we have defined a POMD as an MDP over the belief states

• Why bother?

 Because it can be shown that an optimal policy л*(b) for this 
MDP is also an optimal policy for the original POMDP

• i.e., solving a POMDP in its physical space is equivalent to 
solving the corresponding MDP in the belief state

 Great, we are done!
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POMDP as MDP

 But how does one find the optimal policy π*(b)?

• One way is to restate the POMDP as an MPD in belief state space

 State space :  

• space of probability distributions over original states

• For our grid world the belief state space is?

• initial distribution <1/9,1/9, 1/9,1/9,1/9,1/9, 1/9,1/9,1/9,0,0> is  a point 
in this space

 What does the transition model need to specify?
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Does not work in practice

 Although a transition model can be effectively computed 
from the POMDP specification

 Finding (approximate) policies for continuous, 
multidimensional MDPs is PSPACE-hard

• Problems with a few dozen states are often unfeasible

 Alternative approaches….
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How to Find an Optimal Policy?

Turn a POMDP into a corresponding MDP and 

then solve the MDP (  )

Generalize VI to work on POMDPs (also )

Develop Approx. Methods  ()

Point-Based Value Iteration

Look Ahead
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Recent Method: Point-

based Value Iteration

• Find a solution for a sub-set of all states

• Not all states are necessarily reachable

• Generalize the solution to all states

• Methods include: PERSEUS, PBVI, and 

HSVI and other similar approaches (FSVI, 

PEGASUS)
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How to Find an Optimal Policy?

Turn a POMDP into a corresponding MDP and 

then solve the MDP

Generalize VI to work on POMDPs (also )

Develop Approx. Methods  ()

Point-Based VI

Look Ahead
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