Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 30

Nov, 23, 2016

Slide source: from Pedro Domingos UW & Markov Logic: An Interface Layer for Artificial Intelligence Pedro Domingos and Daniel Lowd University of Washington, Seattle

CPSC 422, Lecture 31

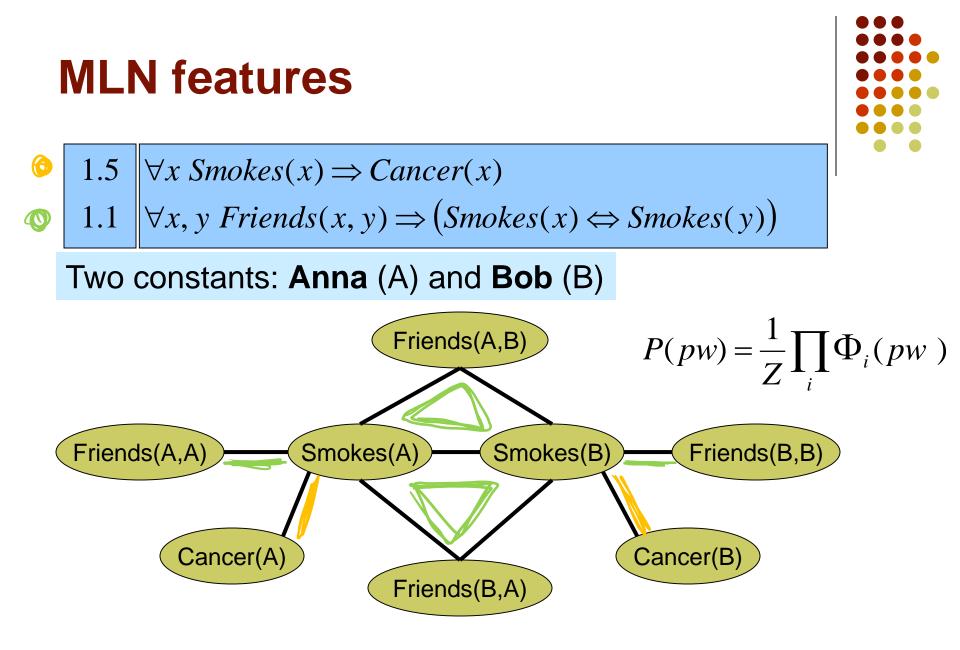
Lecture Overview

- Recap Markov Logic (Networks)
- Relation to First-Order Logics
- Inference in MLN
 - MAP Inference (most likely pw)
 - Probability of a formula, Conditional Probability

Prob. Rel. Models vs. Markov Logic

PRM - Relational Skeleton - Dependency Graph - Parameters (CPT)

-weighted logical formulas MARKOV - set of constants S LOGIC NETWORK

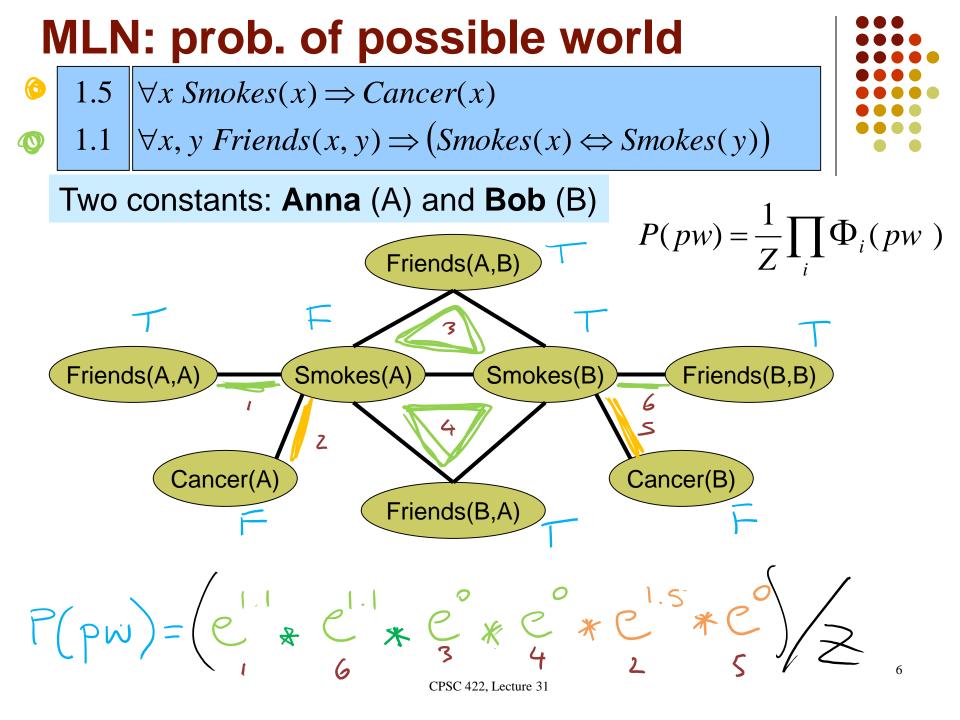


MLN: parameters

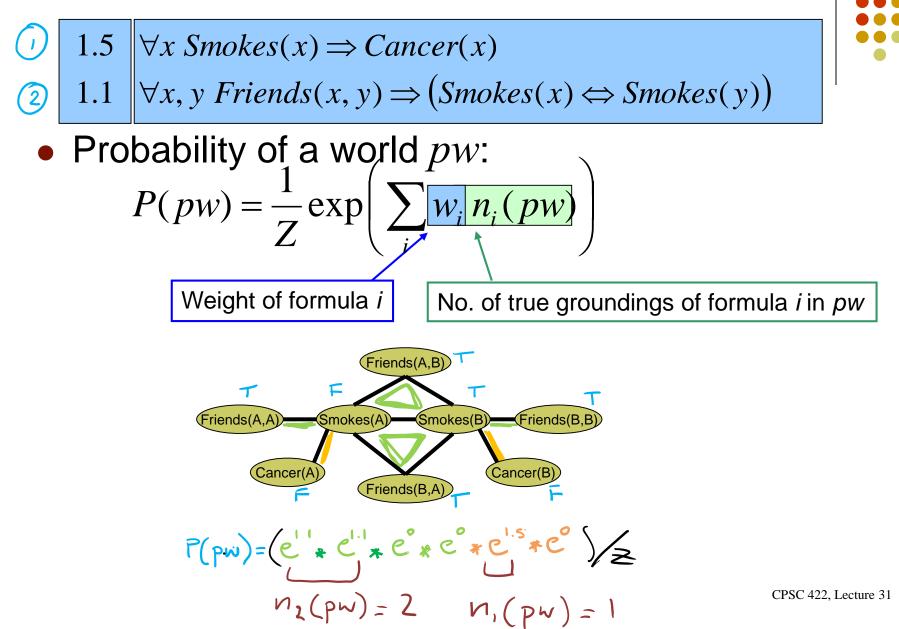
1.5
$$\forall x \, Smokes(x) \Rightarrow Cancer(x)$$

 $f(Smokes(x), Cancer(x)) = \begin{cases} 1 & \text{if } Smokes(x) \Rightarrow Cancer(x) \\ 0 & \text{otherwise} \end{cases}$
 $\mathcal{P}^{V2} = \int_{-\infty}^{\infty} \mathcal{P}^{V2} Smokes(A) \top$
 $\mathcal{P}^{V2} = \int_{-\infty}^{\infty} \mathcal{P}^{V2} Smokes(A) \top$
 $\mathcal{P}^{V2} = \int_{-\infty}^{\infty} \mathcal{P}^{V2} Smokes(A) \top$

CPSC 422, Lecture 31

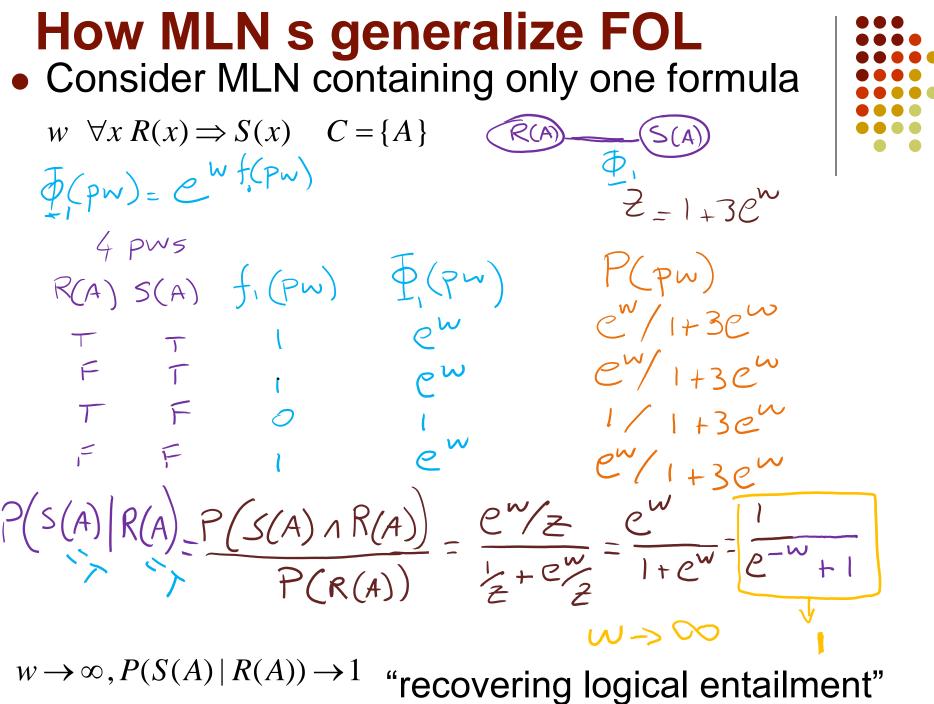


MLN: prob. Of possible world



Lecture Overview

- Recap Markov Logic (Networks)
- Relation to First-Order Logics
- Inference in MLN
 - MAP Inference (most likely pw)
 - Probability of a formula, Conditional Probability



CPSC 422. Lecture 31

9

How MLN s generalize FOL

First order logic (with some mild assumptions) is a special Markov Logics obtained when

- all the weight are equal
- and tend to infinity

Lecture Overview

- Recap Markov Logic (Networks)
- Relation to First-Order Logics
- Inference in MLN
 - MAP Inference (most likely pw)
 - Probability of a formula, Conditional Probability

Inference in MLN

- MLN acts as a template for a Markov Network
- We can always answer prob. queries using standard Markov network inference methods on the instantiated network
- **However**, due to the size and complexity of the resulting network, this is often infeasible.
- Instead, we combine probabilistic methods with ideas from logical inference, including satisfiability and resolution.
- This leads to efficient methods that take full advantage of the logical structure.

• Problem: Find most likely state of world

 $\operatorname{arg\,max} P(pw)$

pw

• Probability of a world *pw*:

$$P(pw) = \frac{1}{Z} \exp\left(\sum_{i} w_{i} n_{i}(pw)\right)$$

Weight of formula *i* No. of true groundings of formula *i* in *pw*

$$\underset{pw}{\operatorname{arg\,max}} \ \frac{1}{Z} \exp\left(\sum_{i} w_{i} n_{i}(pw)\right)$$

 $\underset{pw}{\operatorname{arg\,max}} \quad \frac{1}{Z} \exp\left(\sum_{i} w_{i} n_{i}(pw)\right)$

$$\underset{pw}{\operatorname{arg\,max}} \quad \sum_{i} w_{i} n_{i}(pw)$$

• Are these two equivalent? iclicker. A. Yes B. No C. It depends

- Therefore, the MAP problem in Markov logic reduces to finding the truth assignment that maximizes the sum of weights of satisfied formulas (let's assume clauses)

$$\underset{pw}{\operatorname{arg\,max}} \quad \sum_{i} w_{i} n_{i}(pw)$$

- This is just the weighted MaxSAT problem
- Use weighted SAT solver
 (e.g., MaxWalkSAT [Kautz et al., 1997])

WalkSAT algorithm (in essence) (from lecture 21 - one change)

(Stochastic) Local Search Algorithms can be used for this task!

Evaluation Function: number of satisfied clauses

WalkSat: One of the simplest and most effective algorithms: Start from a randomly generated interpretation (pw)

- Pick randomly an unsatisfied clause
- Pick a proposition/atom to flip (randoml 1 or 2)
 - 1. Randomly
 - 2. To maximize # of satisfied clauses

If all clauses satisfied DONE () CPSC 422. Lecture 31

MaxWalkSAT algorithm (in essence)

Evaluation Function f(pw) : Σ weights(sat. clauses in pw)

current pw <- randomly generated interpretation Generate *new pw* by doing the following

- Pick randomly an unsatisfied clause
- Pick a proposition/atom to flip (randomly 1 or 2)
 - 1. Randomly
 - 2. To maximize Σ weights(sat. clauses in resulting *pw*)

Computing Probabilities

 $P(Formula|M_{L,C}) = ?$

- Brute force: Sum probs. of possible worlds where formula holds
 - M_{L,C} Markov Logic Network PW, possible worlds in which F is true

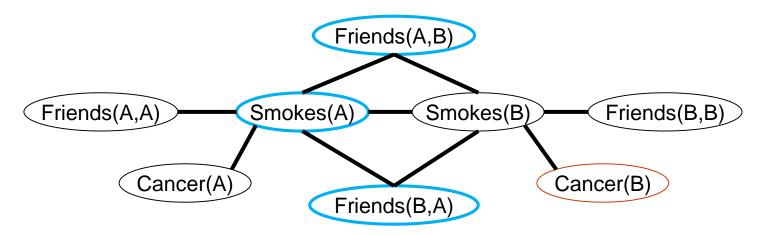
$$P(F, M_{L,C}) = \sum_{pw \in PW_F} P(pw, M_{L,C})$$

 MCMC: Sample worlds, check formula holds S all samples SF samples (i.e. possible worlds) in which Fistrue $P(F, M_{L,C}) = \frac{|S_F|}{|S|}$

Let's look at the simplest case

A. Yec

- P(ground literal | conjuction of ground literals, $M_{L,C}$)
- P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A))



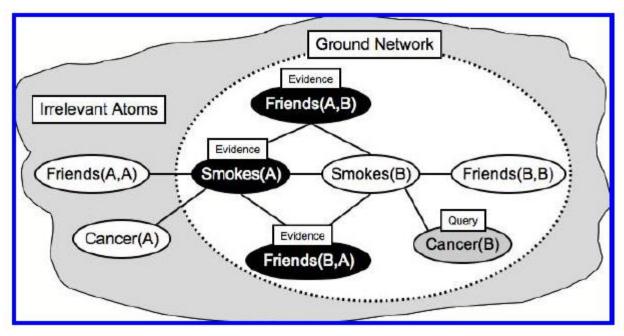
To answer this query do you need to create (ground) the whole network?

B.No

C. It depends

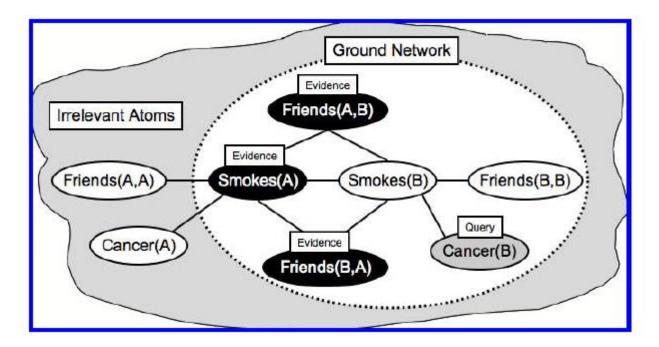
Let's look at the simplest case

- P(ground literal | conjuction of ground literals, $M_{L,C}$)
- P(Cancer(B) Smokes(A), Friends(A, B), Friends(B, A))



You do not need to create (ground) the part of the Markov Network from which the query is independent given the evidence CPSC 422, Lecture 31

P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A))



Then you can perform Gibbs Sampling in this Sub Network

Learning Goals for today's class

You can:

- Show on an example how MLNs generalize FOL
- Compute the most likely pw (given some evidence)
- Probability of a formula, Conditional Probability

Next class on Fri

- Markov Logic: applications
- Start. Prob Relational Models

Start working on Assignment-4 Due Dec 2

Inference in MLN

- MLN acts as a template for a Markov Network
- We can always answer prob. queries using standard Markov network inference methods on the instantiated network
- **However**, due to the size and complexity of the resulting network, this is often infeasible.
- Instead, we combine probabilistic methods with ideas from logical inference, including satisfiability and resolution.
- This leads to efficient methods that take full advantage of the logical structure.

• Find most likely state of world $\underset{pw}{\operatorname{arg\,max}} P(pw)$

 Reduces to finding the *pw* that maximizes the sum of weights of satisfied clauses

$$\underset{pw}{\operatorname{arg\,max}} \quad \sum_{i} w_{i} n_{i}(pw)$$

• Use weighted SAT solver (e.g., MaxWalkSAT [Kautz et al., 1997])

Probabilistic problem solved by logical inference method

Computing Probabilities

 $P(Formula, M_{L,C}) = ?$

 Brute force: Sum probs. of possible worlds where formula holds

$$\begin{split} M_{L,C} & M \Rightarrow \mathsf{Kov} \ Logic \ Network \\ PW_F & possible \ worlds in which \ \mathsf{F} \ is true \\ P(F, M_{L,C}) = \sum_{pw \in PW_F} P(pw, M_{L,C}) \end{split}$$

• MCMC: Sample worlds, check formula holds $S^{all samples}$ $S_{F}^{all samples}$ (i.e. possible worlds) in which Fistrue

$$P(F, M_{L,C}) = \frac{|S_F|}{|S|}$$

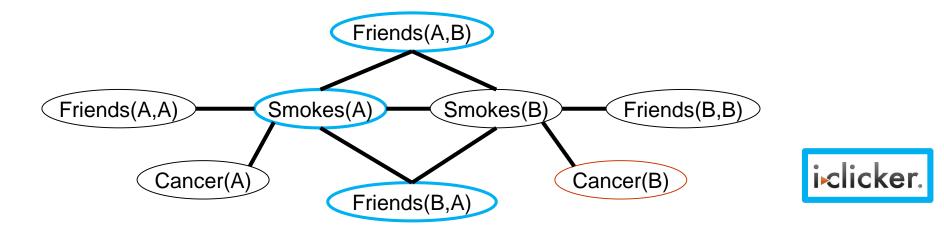
CPSC 422, Lecture 31

1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$

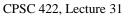
1.1 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

Let's look at the simplest case

P(ground literal | conjuction of ground literals, M_{L,C}) P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A))

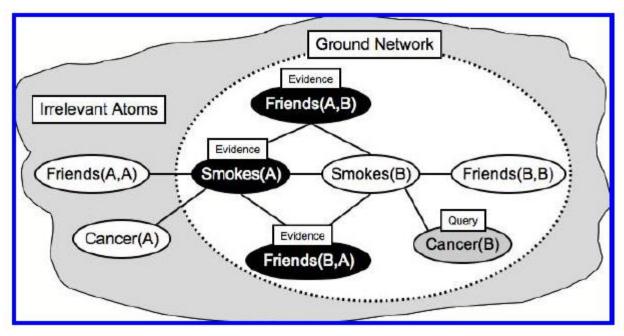


To answer this query do you need to create (ground) the whole network? $A \cdot Y_{es}$ B.No C. It depends...

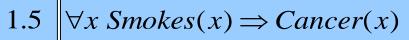


Let's look at the simplest case

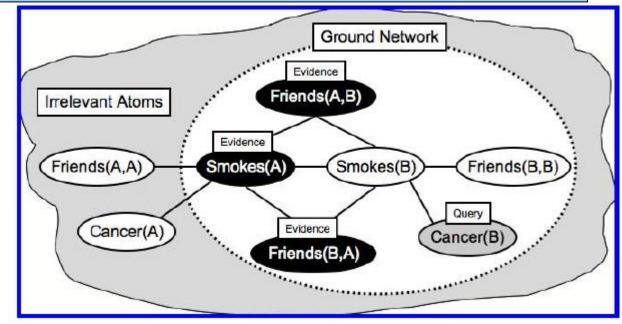
- P(ground literal | conjuction of ground literals, $M_{L,C}$)
- P(Cancer(B) Smokes(A), Friends(A, B), Friends(B, A))



You do not need to create (ground) the part of the Markov Network from which the query is independent given the evidence CPSC 422, Lecture 31 **Computing Cond. Probabilities** P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A)) The sub network is determined by the formulas (the logical structure of the problem)



1.1 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$



You can then perform Gibbs Sampling in this Sub Network

Lecture Overview

- Finish Inference in MLN
 - Probability of a formula, Conditional Probability
- Markov Logic: applications
- Beyond 322/422 (ML + grad courses)
- AI conf. and journals
- Watson…
- Final Exam (office hours, samples)
- TA evaluation

Entity Resolution

 Determining which observations correspond to the same real-world objects

- (e.g., database records, noun phrases, video regions, etc)
- Crucial importance in many areas (e.g., data cleaning, NLP, Vision)

Entity Resolution: Example

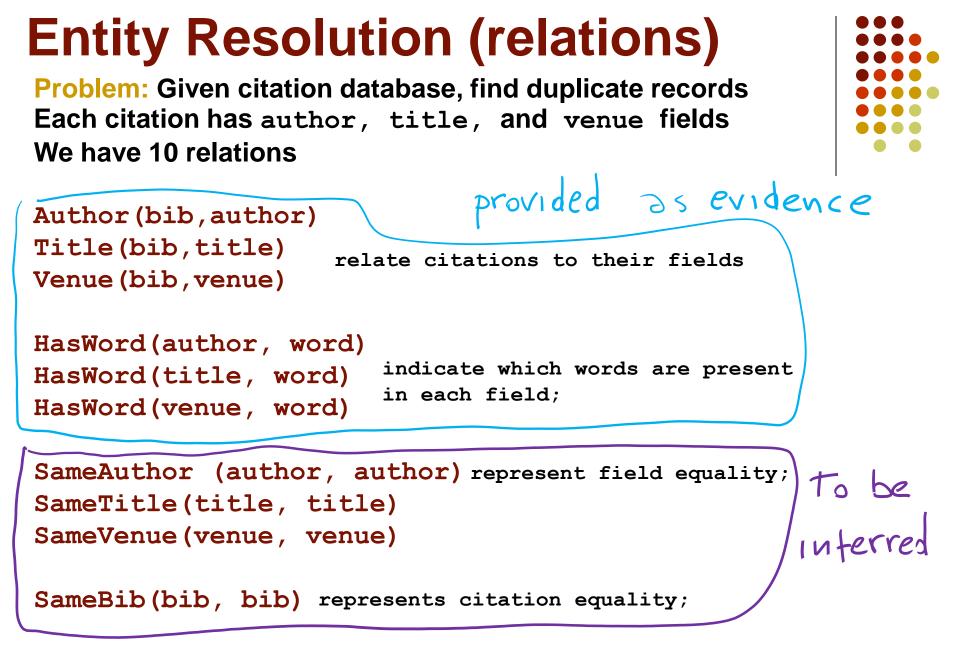
AUTHOR: H. POON & P. DOMINGOS TITLE: UNSUPERVISED SEMANTIC PARSING VENUE: EMNLP-09

AUTHOR: Hoifung Poon and Pedro Domings TITLE: Unsupervised semantic parsing VENUE: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing

AUTHOR: Poon, Hoifung and Domings, Pedro TITLE: Unsupervised ontology induction from text VENUE: Proceedings of the Forty-Eighth Annual Meeting of the Association for Computational Linguistics

AUTHOR: H. Poon, P. Domings TITLE: Unsupervised ontology induction VENUE: ACL-10 CPSC 422, Lecture 31 SAME?

SAME?



Entity Resolution (formulas)

Predict citation equality based on words in the fields

Title (b1, t1) \land Title (b2, t2) \land HasWord (t1,+word) \land HasWord (t2,+word) \Rightarrow SameBib (b1, b2) (NOTE: +word is a shortcut notation, you) (NOTE: +word is a shortcut notation, you)

(NOTE: +word is a shortcut notation, you
actually have a rule for each word e.g.,
Title(b1, t1) ∧ Title(b2, t2) ∧
HasWord(t1, "bayesian") ∧
HasWord(t2, "bayesian") ⇒ SameBib(b1, b2))

Same 1000s of rules for author

Same 1000s of rules for venue

Entity Resolution (formulas)

Transitive closure
SameBib(b1,b2) ∧ SameBib(b2,b3) ⇒ SameBib(b1,b3)

```
SameAuthor(a1,a2) ∧ SameAuthor(a2,a3) ⇒ SameAuthor(a1,a3)
Same rule for title
Same rule for venue
```

Link fields equivalence to citation equivalence – e.g., if two citations are the same, their authors should be the same Author(b1, a1) \land Author(b2, a2) \land SameBib(b1, b2) \Rightarrow SameAuthor(a1, a2) ...and that citations with the same author are more likely to be the same Author(b1, a1) \land Author(b2, a2) \land SameAuthor(a1, a2) \Rightarrow SameBib(b1, b2) Same rules for title Same rules for venue

Benefits of MLN model

- **Standard approach:** build a classifier that given two citations tells you if they are the same or not, and then apply transitive closure
- New MLN approach:
 - performs *collective* entity resolution, where resolving one pair of entities helps to resolve pairs of related entities

e.g., inferring that a pair of citations are equivalent can provide evidence that the names *AAAI-06* and *21st Natl. Conf. on AI* refer to the same venue, even though they are superficially very different. This equivalence can then aid in resolving other entities.

Other MLN applications

- Information Extraction
- Co-reference Resolution (see lecture 1!)
- **Robot Mapping** (infer the map of an indoor environment from laser range data)
- Link-based Clustering (uses relationships among the objects in determining similarity)
- Ontologies extraction from Text

Summary of tutorial on MLN for NLP at NA-ACL (2010)

- We need to unify logical and statistical NLP
- Markov logic provides a language for this
 - Syntax: Weighted first-order formulas
 - Semantics: Feature templates of Markov nets
 - Inference: Satisfiability, MCMC, lifted BP, etc.
 - Learning: Pseudo-likelihood, VP, PSCG, ILP, etc.
- Growing set of NLP applications
- Open-source software: Alchemy

alchemy.cs.washington.edu

 Book: Domingos & Lowd, *Markov Logic*, Morgan & Claypool, 2009.

Learning Goals for today's class

You can:

- Show on an example how MLNs generalize FOL
- Compute the most likely pw given some evidence
- Probability of a formula, Conditional Probability

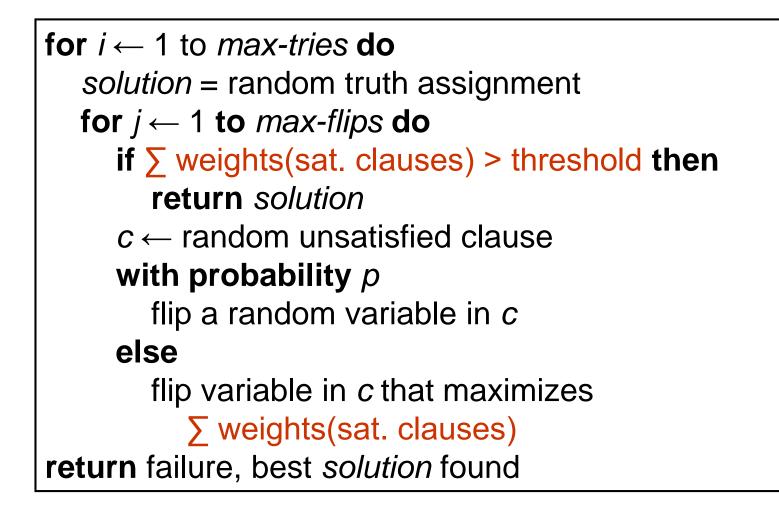
Next class on Mon (last class)

- Markov Logic: applications
- Watson....
- Beyond 322/422 (ML + grad courses)
- AI conf. and journals
- Final Exam (office hours, samples)

Assignment-4 due on Mon (last class)

Marked Summaries for last paper discussion

The MaxWalkSAT Algorithm



Markov Logic Network

What is the probability that a formula F_1 holds given that formula F_2 does?

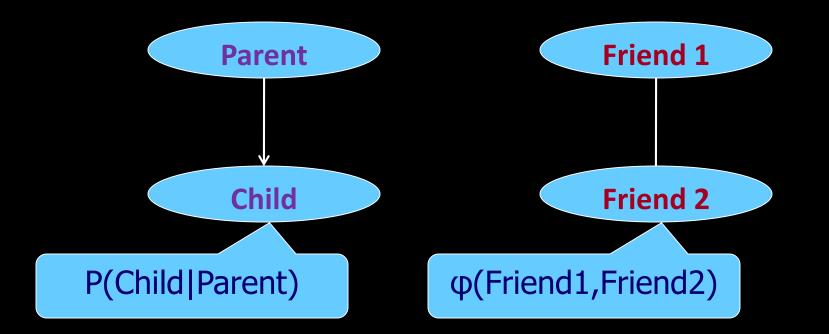
 $P(F_{1} | F_{2}, L, C)$ $= P(F_{1} | F_{2}, M_{L,C})$ $= \frac{P(F_{1} \land F_{2}, M_{L,C})}{P(F_{2}, M_{L,C})}$ $= \frac{\sum_{x \in \chi_{F_{1}} \cap x \in \chi_{F_{2}}} P(X = x, M_{L,C})}{\sum_{x \in \chi_{F_{2}}} P(X = x, M_{L,C})}$

Computing Probabilities

P(Formula|Formula2,MLN,C) = ?

- Discard worlds where Formula 2 does not hold
- In practice: More efficient alternatives

Directed Models vs. Undirected Models



Undirected Probabilistic Logic Models

- Upgrade undirected propositional models to relational setting
 - Markov Nets → Markov Logic Networks
 - Markov Random Fields \rightarrow Relational Markov Nets
 - Conditional Random Fields \rightarrow Relational CRFs

46

Markov Logic Networks (Richardson & Domingos)

- Soften logical clauses
 - A first-order clause is a **hard** constraint on the world

 $\forall x, person(x) \rightarrow \exists y, person(y), father(x, y)$

 Soften the constraints so that when a constraint is violated, the world is less probably, not impossible

w: friends $(x, y) \land$ smokes $(x) \rightarrow$ smokes (y)

- Higher weight \Rightarrow Stronger constraint
- Weight of $\infty \implies$ first-order logic

Probability(World S) = $(1/Z) \times \exp \{\Sigma \text{ weight}_i \times \text{ numberTimesTrue(f}_i, S) \}$

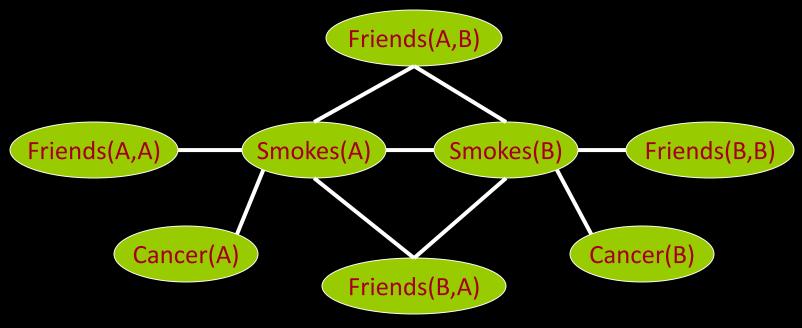
47

Example: Friends & Smokers

1.5
$$\forall x \, Smokes(x) \Rightarrow Cancer(x)$$

1.1
$$\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$$

Two constants: Anna (A) and Bob (B)



CPSC 422, Lecture 31

Alphabetic Soup => Endless Possibilities

- Probabilistic Relational Models (PRM)
- Bayesian Logic Programs (BLP)
- PRISM
- Stochastic Logic Programs (SLP)
- Independent Choice Logic (ICL)
- Markov Logic Networks (MLN)
- Relational Markov Nets (RMN)
- CLP-BN
- Relational Bayes Nets (RBN)
- Probabilistic Logic Progam (PLP)
- ProbLog

....

- Web data (web)
- Biological data (bio)
- Social Network Analysis(soc)
- Bibliographic data (cite)
- Epidimiological data (epi)
- Communication data (comm)
- Customer networks (cust)
- Collaborative filtering problems (cf)
- Trust networks (trust)

•••

 Fall 2003 – Dietterich @ OSU, Spring 2004 –Page @ UW, Spring 2007-Neville @ Purdue,

 Fall 2008 – Pedro @ CMU
 CPSC 422, Lecture 31
 49

Recent Advances in SRL Inference

- Preprocessing for Inference
 - FROG Shavlik & Natarajan (2009)
- Lifted Exact Inference
 - □ Lifted Variable Elimination Poole (2003), Braz et al(2005) Milch et al (2008)
 - □ Lifted VE + Aggregation Kisynski & Poole (2009)
- Sampling Methods
 - □ MCMC techniques Milch & Russell (2006)
 - □ Logical Particle Filter Natarajan et al (2008), ZettleMoyer et al (2007)
 - □ Lazy Inference Poon et al (2008)
- Approximate Methods
 - □ Lifted First-Order Belief Propagation Singla & Domingos (2008)
 - □ Counting Belief Propagation Kersting et al (2009)
 - □ MAP Inference Riedel (2008)
- Bounds Propagation
 - □ Anytime Belief Propagation Braz et al (2009)

Conclusion

- Inference is the key issue in several SRL formalisms
- FROG Keeps the count of unsatisfied groundings
 Order of Magnitude reduction in number of groundings
 Compares favorably to Alchemy in different domains
- Counting BP BP + grouping nodes sending and receiving identical messages
 Conceptually easy, scaleable BP algorithm
 Applications to challenging AI tasks
- Anytime BP Incremental Shattering + Box Propagation
 Only the most necessary fraction of model considered and shattered
 Status Implementation and evaluation

Relation to Statistical Models

- Special cases:
 - Markov networks
 - Markov random fields
 - Bayesian networks
 - Log-linear models
 - Exponential models
 - Max. entropy models
 - Gibbs distributions
 - Boltzmann machines
 - Logistic regression
 - Hidden Markov models
 - Conditional random fields

- Obtained by making all predicates zero-arity
- Markov logic allows objects to be interdependent (non-i.i.d.)