Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 3

Sep, 12 2016

Lecture on Wed is cancelled

17th Annual SIGdial Meeting on Discourse and Dialogue Los Angeles, USA, September 13-15, 2016

Lecture Overview

Markov Decision Processes

- Formal Specification and example
- Policies and Optimal Policy
- Intro to Value Iteration

Combining ideas for Stochastic planning

What is a key limitation of decision networks?

Represent (and optimize) only a fixed number of decisions

What is an advantage of Markov models?

The network can extend indefinitely

Goal: represent (and optimize) an indefinite sequence of decisions

Decision Processes

Often an agent needs to go beyond a fixed set of decisions – Examples?

Would like to have an ongoing decision process

Infinite horizon problems: process does not stop

Robot surviving on planet, Monitoring Nuc. Plant,

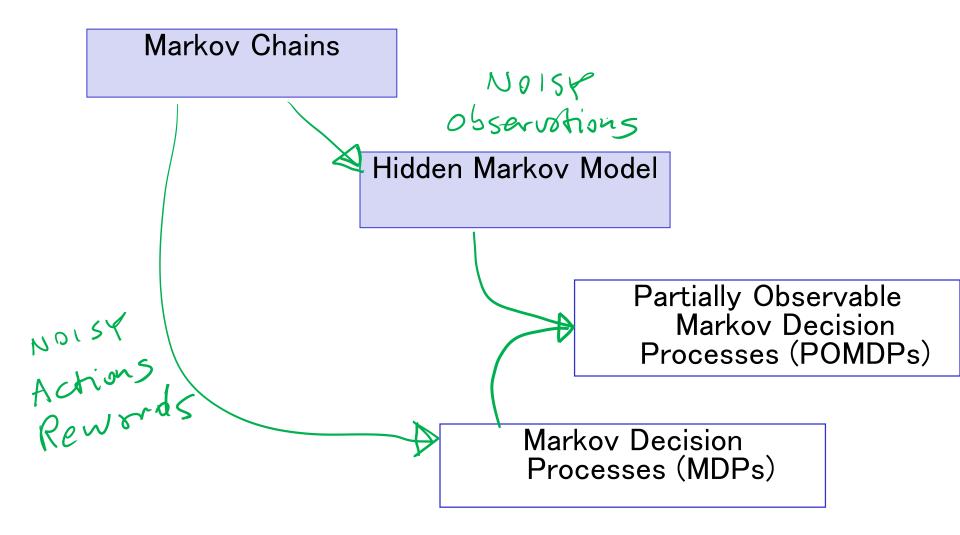
Indefinite horizon problem: the agent does not know when the process may stop

resolving location

Finite horizon: the process must end at a give time N

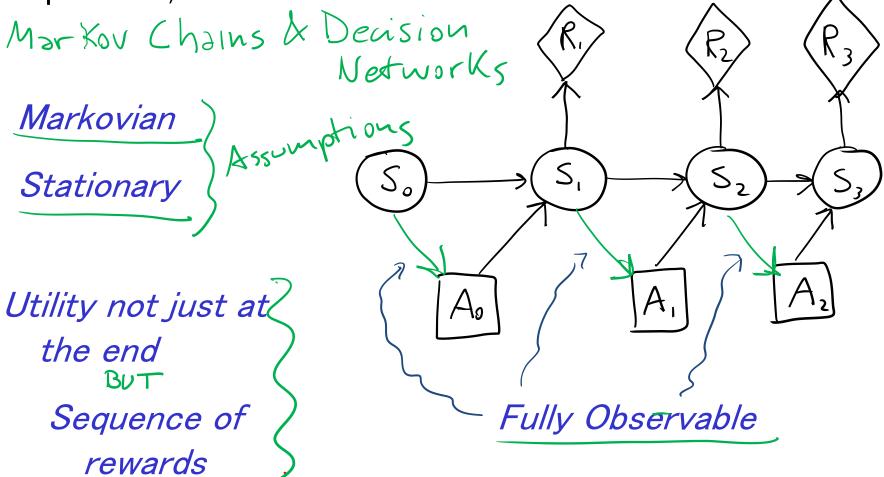
L In N steps

Markov Models

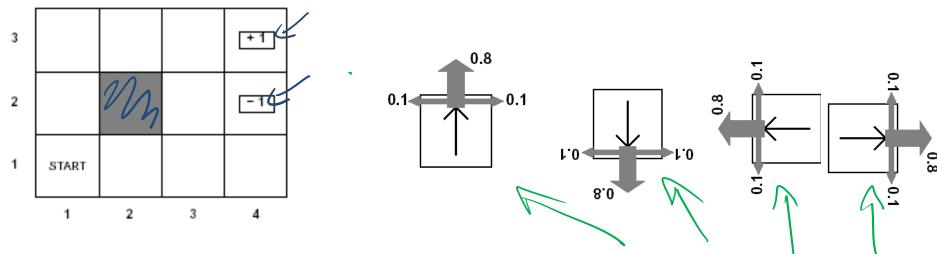


Summary Decision Processes: MDPs

To manage an ongoing (indefinite infinite) decision process, we combine



Example MDP: Scenario and Actions



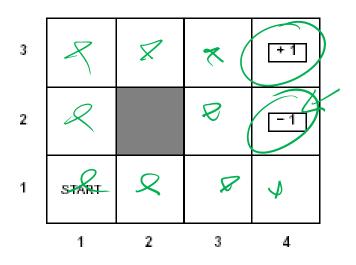
Agent moves in the above grid via actions *Up, Down, Left, Right* Each action has:

- 0.8 probability to reach its intended effect
- 0.1 probability to move at right angles of the intended direction
- If the agents bumps into a wall, it says there

How many states?
$$(1/(1/(1)) - (24)/(34)$$

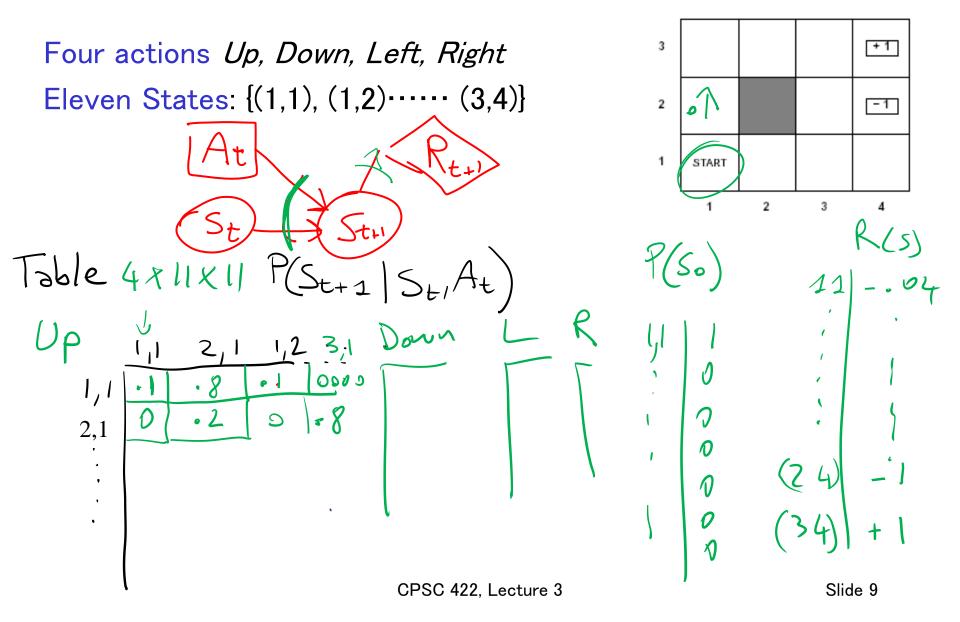
There are two terminal states (3,4) and (2,4)

Example MDP: Rewards

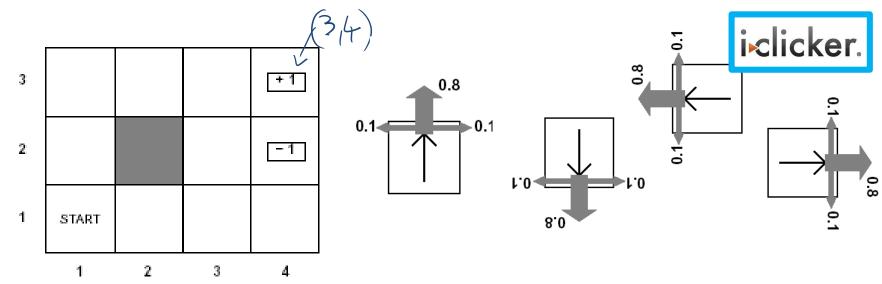


$$R(s) = \begin{cases} -0.04 & \text{(small penalty) for nonterminal states} \\ \pm 1 & \text{for terminal states} \end{cases}$$

Example MDP: Underlying info structures



Example MDP: Sequence of actions



The sequence of actions [*Up, Up, Right, Right, Right*] will take the agent in terminal state (3,4)...

A. always

B. never

C. Only sometimes

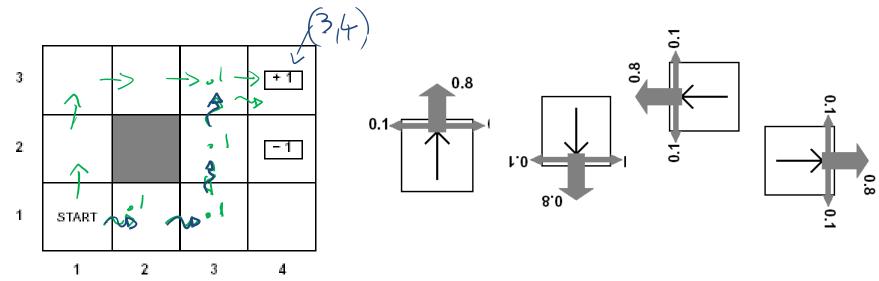
With what probability?

A.
$$(0.8)^5$$

B.
$$(0.8)^5 + ((0.1)^4 \times 0.8)$$

C.
$$((0.1)^4 \times 0.8)$$

Example MDP: Sequence of actions

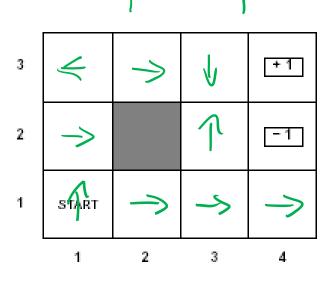


Can the sequence [*Up, Up, Right, Right, Right*] take the agent in terminal state (3,4)?

Can the sequence reach the goal in any other way?

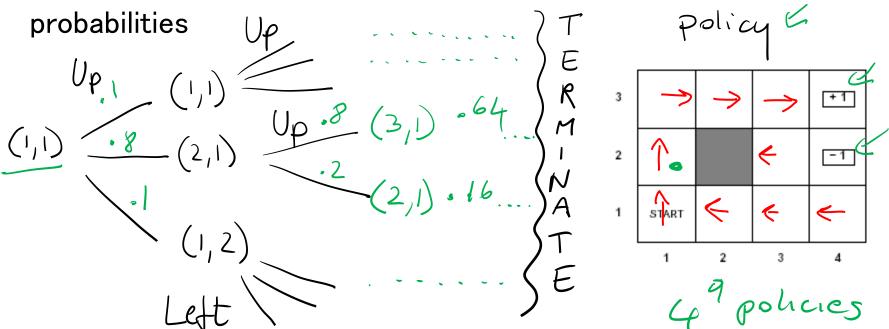
MDPs: Policy

- The robot needs to know what to do as the decision process unfolds…
- It starts in a state, selects an action, ends up in another state selects another action...
- Needs to make the same decision over and over: Given the current state what should I do?
 - So a policy for an MDP is a single decision function \(\pi(s) \) that specifies what the agent should do for each state \(\mathcal{S} \)



How to evaluate a policy

A policy can generate a set of state sequences with different



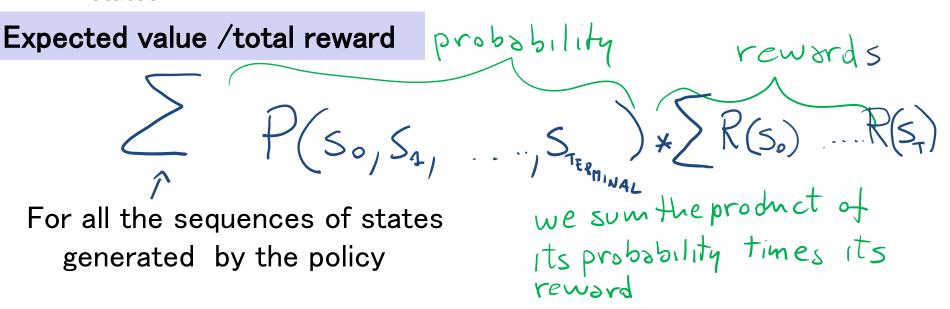
Each state sequence has a corresponding reward. Typically the (discounted) sum of the rewards for each state in the sequence

$$\begin{array}{c}
2 & 0.04 \\
(1,1) \rightarrow (1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (3,4) \\
+ \cdot 72
\end{array}$$

MDPs: expected value/total reward of a policy and optimal policy

Each sequence of states (environment history) associated with a policy has

- a certain probability of occurring
- a given amount of total reward as a function of the rewards of its individual states



Optimal policy is the policy that maximizes expected total reward

Lecture Overview

Markov Decision Processes

- Formal Specification and example
- Policies and Optimal Policy
- Intro to Value Iteration

Sketch of ideas to find the optimal policy for a MDP (Value Iteration)

We first need a couple of definitions

- $V^{\pi}(s)$: the expected value of following policy π in state s
- $Q^{\pi}(s, a)$, where a is an action: expected value of performing a in s, and then following policy π .

Can we express $Q^{\pi}(s, a)$ in terms of $V^{\pi}(s)$?

$$Q^{\pi}(s, a) = \sqrt{(s)} + R(s)$$

$$Q^{\pi}(s, a) = R(s) + \sum_{s' \in X} P(s' | s, a) * \sqrt{(s')} B.$$

$$Q^{\pi}(s, a) = R(s) + \sum_{s' \in X} P(s' | s, a) * \sqrt{(s')} B.$$

$$Q \sqcap (s, a) = \mathbb{R}(s) + \sum_{s' \in X} \mathbb{V}(s')$$
 C.

None of the above

X: set of states reachable from s by doing a

CPSC 422, Lecture 3

Discounted Reward Function

- Suppose the agent goes through states s_1 , s_2 ,..., s_k and receives rewards r_1 , r_2 ,..., r_k
- > We will look at *discounted reward* to define the reward for this sequence, i.e. its *utility* for the agent

 γ discount factor, $0 \le \gamma \le 1$

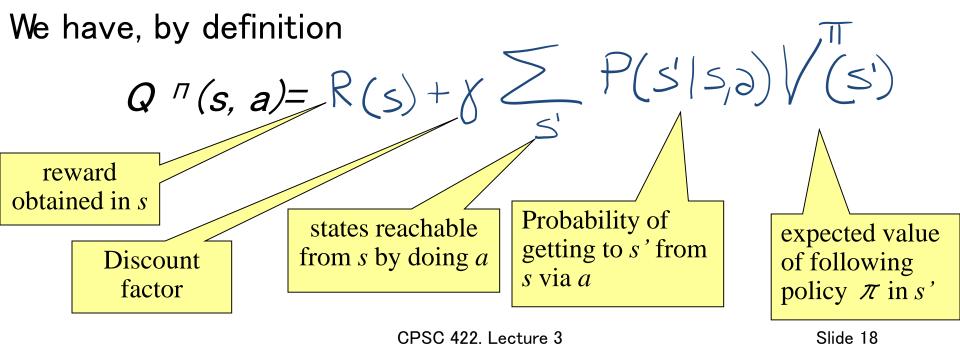
 R_{max} bound on R(s) for every s

$$U[s_1, s_2, s_3,...] = r_1 + \gamma r_2 + \gamma^2 r_3 +$$
$$= \sum_{i=0}^{\infty} \gamma^i r_{i+1} \le \sum_{i=0}^{\infty} \gamma^i R_{\max} = \frac{R_{\max}}{1 - \gamma}$$

Sketch of ideas to find the optimal policy for a MDP (Value Iteration)

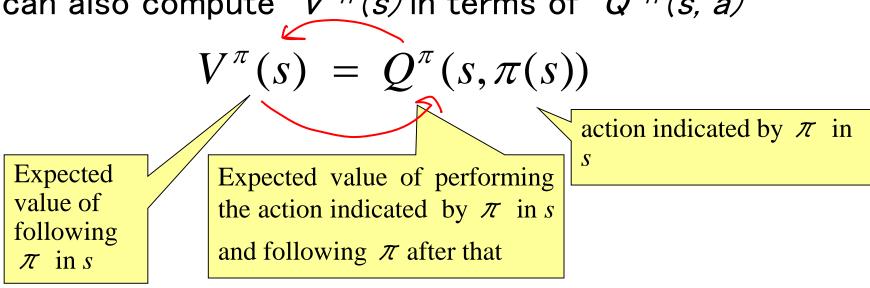
We first need a couple of definitions

- STOP HERE
- V Π (s): the expected value of following policy π in state s
- Q \sqcap (s, a), where a is an action: expected value of performing a in s, and then following policy π .



Value of a policy and Optimal policy

We can also compute $V^{\pi}(s)$ in terms of $Q^{\pi}(s, a)$



For the optimal policy $\pi *$ we also have

$$V^{\pi^*}(s) = Q^{\pi^*}(s, \pi^*(s))$$

Value of Optimal policy

$$V^{\pi^*}(s) = Q^{\pi^*}(s, \pi^*(s))$$

Remember for any policy π

$$Q^{\pi}(s,\pi(s)) = R(s) + \gamma \sum_{s'} P(s'|s,\pi(s)) \times V^{\pi}(s'))$$

But the Optimal policy $\pi *$ is the one that gives the action that maximizes *the future reward* for each state

$$Q^{\pi^*}(s,\pi^*(s)) = R(s) + \gamma \quad \text{max} \left(\frac{s'}{s} \right) \times \sqrt{(s')}$$

$$V^{\pi^*}(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s,a) \times V^{\pi^*}(s'))$$

Value Iteration Rationale

Given N states, we can write an equation like the one below for each of them

$$V(s_1) = R(s_1) + \gamma \max_{a} \sum_{s'} P(s'|s_1, a)V(s')$$

$$V(s_2) = R(s_2) + \gamma \max_{a} \sum_{s'} P(s'|s_2, a)V(s')$$

- ➤ Each equation contains N unknowns the V values for the N states
- N equations in N variables (Bellman equations): It can be shown that they have a unique solution: the values for the optimal policy
- Unfortunately the N equations are non-linear, because of the max operator: Cannot be easily solved by using techniques from linear algebra
- ➤ Value Iteration Algorithm: Iterative approach to find the optimal policy and corresponding values

Learning Goals for today's class

You can:

- Compute the probability distribution on states given a sequence of actions in an MDP
- Define a policy for an MDP
- Define and Justify a discounted reward function
- Derive the Bellman equations on which Value Iteration is based (we will likely finish this in the next lecture)

Lecture on Wed is cancelled (3)

TODO for Fri

Read textbook

9.5.3 Value Iteration