
Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 27 26

Nov, 14, 2016

CPSC 422, Lecture 27 26

Slide 1

CPSC 422, Lecture 26

Lecture Overview

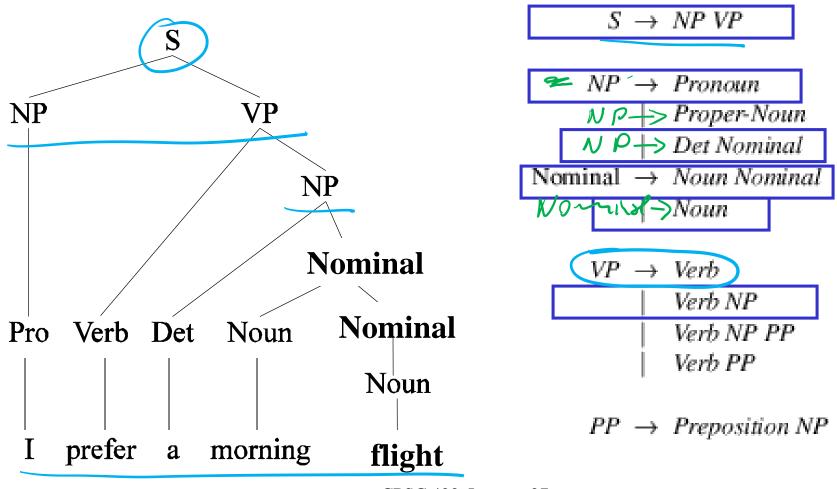
- Recap English Syntax and Parsing
- Key Problem with parsing: Ambiguity
- Probabilistic Context Free Grammars (PCFG)
- Treebanks and Grammar Learning

	Key Constituents: Examples Hest						
					plement)		
•	Noun phrases (NP)	•	(Det)	Ν	(PP)		
			the	cat	on the table		
•	Verb phrases (VP)	•	(Qual)	V	(NP)		
			never	eat	a cat		
•	Prepositional phrases ((PP).	(Deg)	Ρ	(NP)		
			almost	in	the net		
•	Adjective phrases(AP)	•	(Deg)	A	(PP)		
			very	happy	about it		
•	Sentences (S)	•	(NP)	(-)	(VP)		
	CPSC 422, Lecture 27		a mouse		ate it		

Context Free Grammar (CFG)

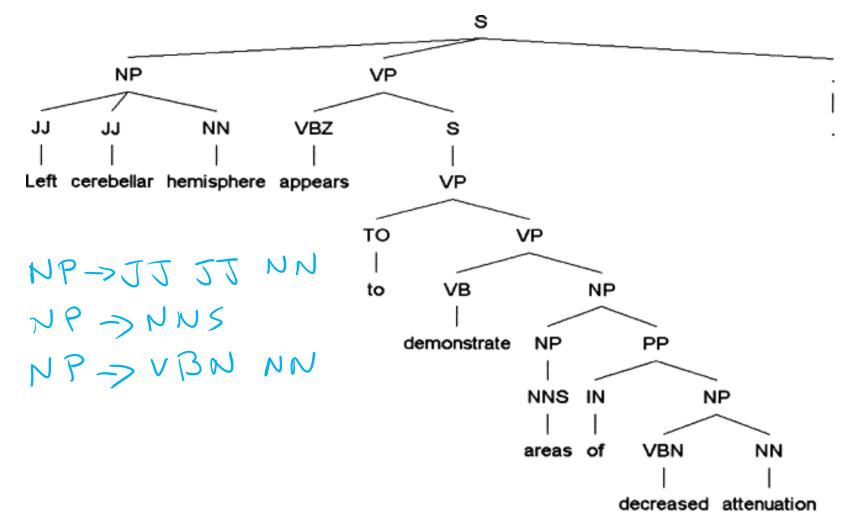
- 4-tuple (non-term., term., productions, start)
- (N, ∑, P, S)
- P is a set of rules $A \rightarrow \alpha$; $A \in N$, $\alpha \in (\Sigma \cup N)^*$ $N = \{X,Y\}$ $\sum \{a,b,c\}$ $P = X \rightarrow Xb$

X-Jac Y


 $Y \rightarrow X X$

CPSC 422, Lecture 27

CFG Example

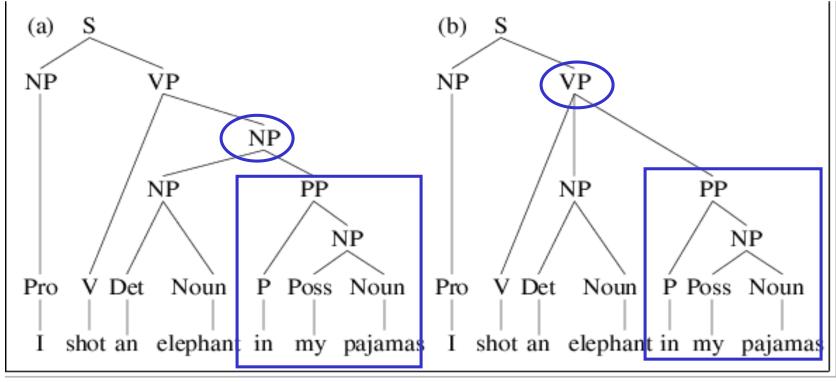

Grammar wit	h example phra	ises	Lexicon	
$S \rightarrow NP VP$ $NP \rightarrow Pronoun$ $NP \rightarrow Proper-Noun$ $\rightarrow NP \rightarrow Det Nominal$ Nominal $\rightarrow Noun Nominal$ $\mid \neg Noun$	I + want a morning flight I Los Angeles a + flight morning + flight flights	Ver Adjectiv Pronou	$un \rightarrow flights breeze$ $vb \rightarrow is prefer like$ $ve \rightarrow cheapest non -$ other direct $un \rightarrow me I you it$ $un \rightarrow Alaska Baltimo$	e need want fly -stop first latest
$VP \rightarrow Verb$ $VP \rightarrow Verb NP$ $VP \rightarrow Verb NP PP$ Verb PP Verb PP $PP \rightarrow Preposition NP$	do want + a flight leave + Boston + in the morning leaving + on Thursday from + Los Angeles	Determine Prepositio	$ Chicago Uniter \rightarrow the a an thion \rightarrow from to on on \rightarrow and or but .$	ted American is these that near

Derivations as Trees

CPSC 422, Lecture 27

Example of relatively complex parse tree

Journal of the American Medical Informatics Association, 2005, Improved Identification of Noun Phrases in Clinical Radiology Reports Using a High-Performance Statistical Natural Language Parser Augmented with the UMLS Specialist Lexicon

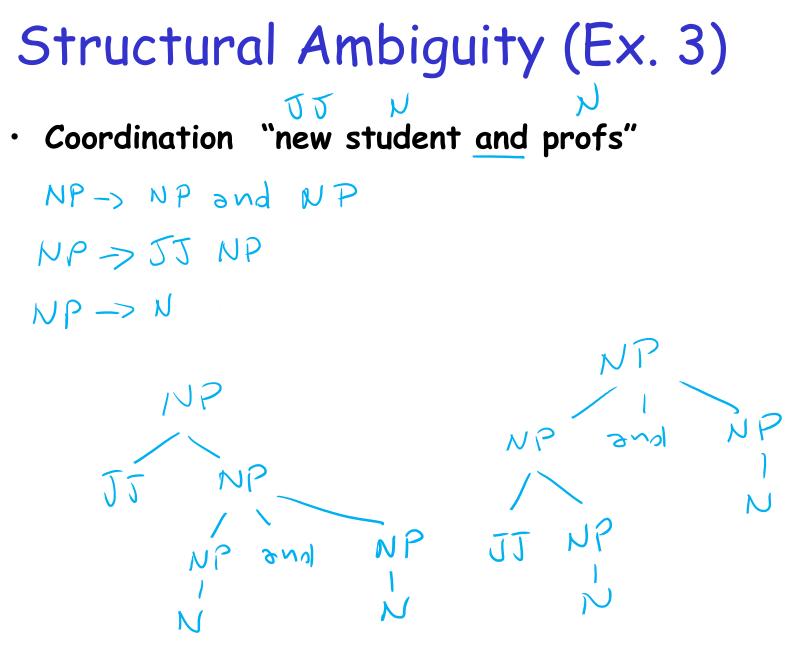

Lecture Overview

- Recap English Syntax and Parsing
- Key Problem with parsing: Ambiguity
- Probabilistic Context Free Grammars (PCFG)
- Treebanks and Grammar Learning

Structural Ambiguity (Ex. 1)

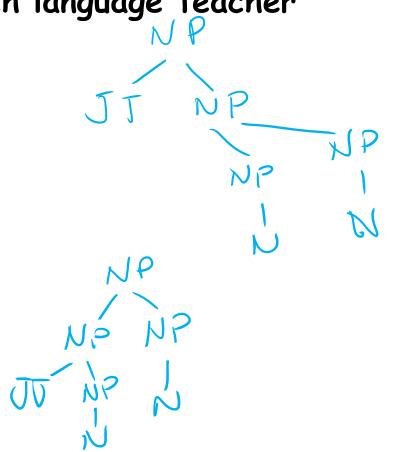
VP -> V NP ; NP -> NP PP VP -> V NP PP

"I shot an elephant in my pajamas"



CPSC 422, Lecture 27

Structural Ambiguity (Ex.2)


"I saw Mary passing by cs2"

"I saw Mary passing by cs2" (ROOT (ROOT (S **(S** (NP (PRP I)) (NP (PRP I)) (VP (VBD saw) (VP (VBD saw) (NP (NNP Mary)) **(S** (NP (NNP Mary)) **(S** (VP (VBG passing) (VP (VBG passing) (PP (IN by) (PP (IN by) (NP (NNP cs2)))))))) (NP (NNP cs2)))))))

Structural Ambiguity (Ex. 4)

- NP-bracketing "French language teacher"
 - NP->JJNP NP->N NP->NPNP

Lecture Overview

- Recap English Syntax and Parsing
- Key Problem with parsing: Ambiguity
- Probabilistic Context Free Grammars (PCFG)
- Treebanks and Grammar Learning (acquiring the probabilities)
- Intro to Parsing PCFG

Probabilistic CFGs (PCFGs)

- GOAL: assign a probability to parse trees and to sentences
- Each grammar rule is augmented with a conditional probability
 - If these are <u>all the rules for VP</u> and .55 is the <u>VP-Verb</u> <u>VP</u>
 VP -> Verb <u>.55</u>
 VP -> Verb <u>.40</u>
 VP -> Verb <u>NP</u> <u>??</u>
 - What ?? should be ?
 - CPSC 422, Lecture 27

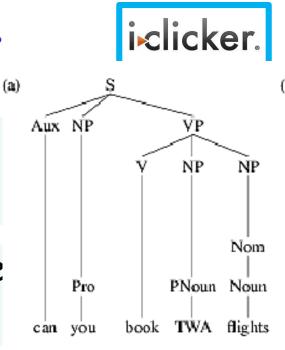
D. None of the

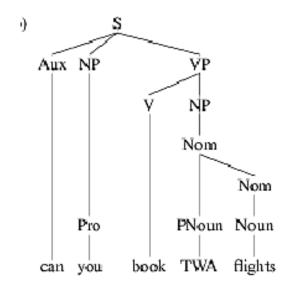
above

Probabilistic CFGs (PCFGs)

- GOAL: assign a probability to parse trees and to sentences
- Each grammar rule is augmented with a conditional probability
 - The expansions for a given non-terminal sum to 1

Formal Def: 5-tuple (N, Σ, P, S, D)

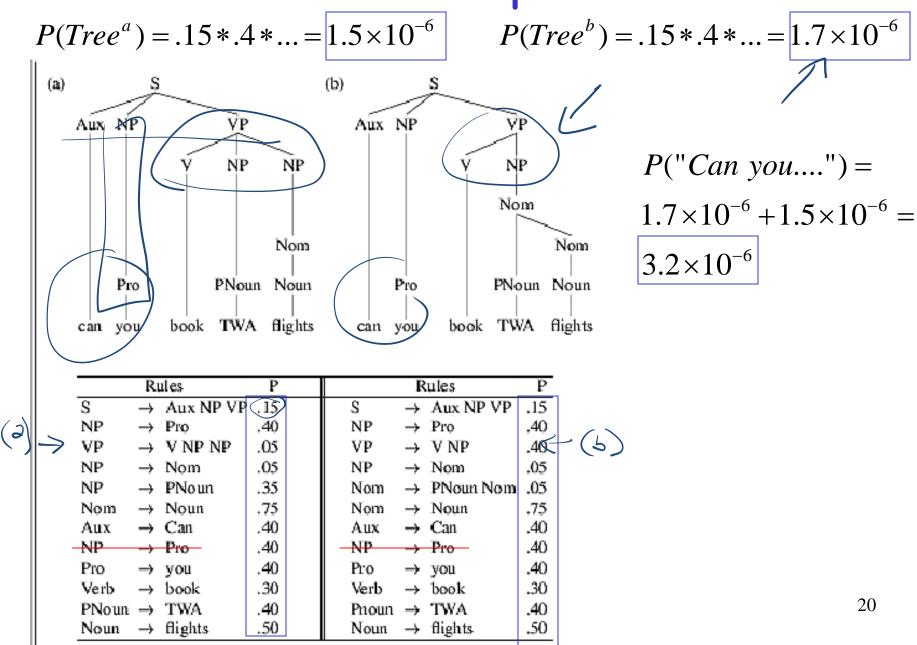

Sample PCFG


$\left \right $	$S \rightarrow NP VP \qquad [.80] \ Det \rightarrow that [.05] \ the [.80] \ a [.15]$				
	$S \rightarrow Aux NP VP$	[.15]	Noun \rightarrow book	[.10]	
l	$S \rightarrow VP$	[.05]	Noun \rightarrow flights	[<i>.</i> 50]	
	$\overrightarrow{NP} \rightarrow Det Nom$	[.20]	Noun \rightarrow meal	[.40]	
	$NP \rightarrow Proper-Noun$	[.35]	$Verb \rightarrow book$	[.30]	
	$NP \rightarrow Nom$	[.05]	Verb \rightarrow include	[.30]	
	$NP \rightarrow Pronoun$	[.40]	$Verb \rightarrow want$	[.40]	
V	$Nom \rightarrow Noun$	[.75]	$Aux \rightarrow can$	[.40]	
	$Nom \rightarrow Noun Nom$	[.20]	$Aux \rightarrow does$	[.30]	
	$Nom \rightarrow Proper-Noun Nom$	[.05]	$Aux \rightarrow do$	[.30]	
	$VP \rightarrow Verb$	[.55]	$Proper-Noun \rightarrow TWA$	[.40]	
	$VP \rightarrow Verb NP$	[.40]	$Proper-Noun \rightarrow Denver$	[.40]	
	$VP \rightarrow Verb NP NP$	[.05]	$Pronoun \rightarrow you[.40] \mid I[.60]$		
- 1					

PCFGs are used to....

- Estimate Prob. of parse tree
 - A. Sum of the probs of all the rules applied
 - B. Product of the probs of all the rules applied
 - Estimate Prob. of a sentence
 A. Sum of the probs of all the parse trees
 - B. Product of the probs of all the parse trees

CPSC 422, Lecture 27


PCFGs are used to....

• Estimate Prob. of parse tree

• Estimate Prob. to sentences

CPSC 422, Lecture 27

Example

Lecture Overview

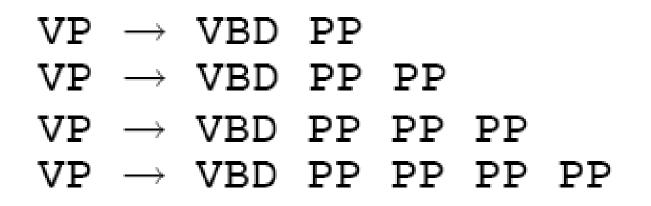
- Recap English Syntax and Parsing
- Key Problem with parsing: Ambiguity
- Probabilistic Context Free Grammars (PCFG)
- Treebanks and Grammar Learning (acquiring the probabilities)

Treebanks

- DEF. corpora in which each sentence has been paired with a parse tree
- These are generally created
 - Parse collection with parser
 - human annotators revise each parse
- Requires detailed annotation guidelines
 - POS tagset
 - Grammar
 - instructions for how to deal with particular grammatical constructions.

Penn Treebank

• Penn TreeBank is a widely used treebank.

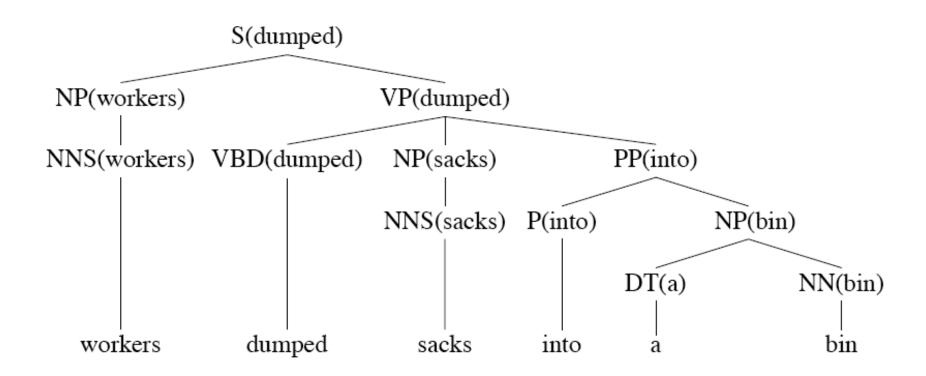

Most well known is the Wall Street
Journal section of the Penn
TreeBank.

1 M wordsfrom the 1987-1989 Wall StreetJournal.

```
( S
 (S-TPC-2
   (NP-SBJ-1 (PRP We)
   (VP (MD would)
     (VP (VB have)
                       S->NPVP
       ' ( S
         (NP-SBJ)(-NONE- *-1))
         (VP (TO to)
          (VP (VB wait)
            (SBAR-TMP (IN until)
              (S
                (NP-SBJ (PRP we) )
                (VP (VBP have)
                  (VP (VBN collected)
                    (PP-CLR (IN on)
                      ('' '')
    SBJ (PRP he) )
     (VBD said)
      (-NONE - *T* - 2)
                                                40
```

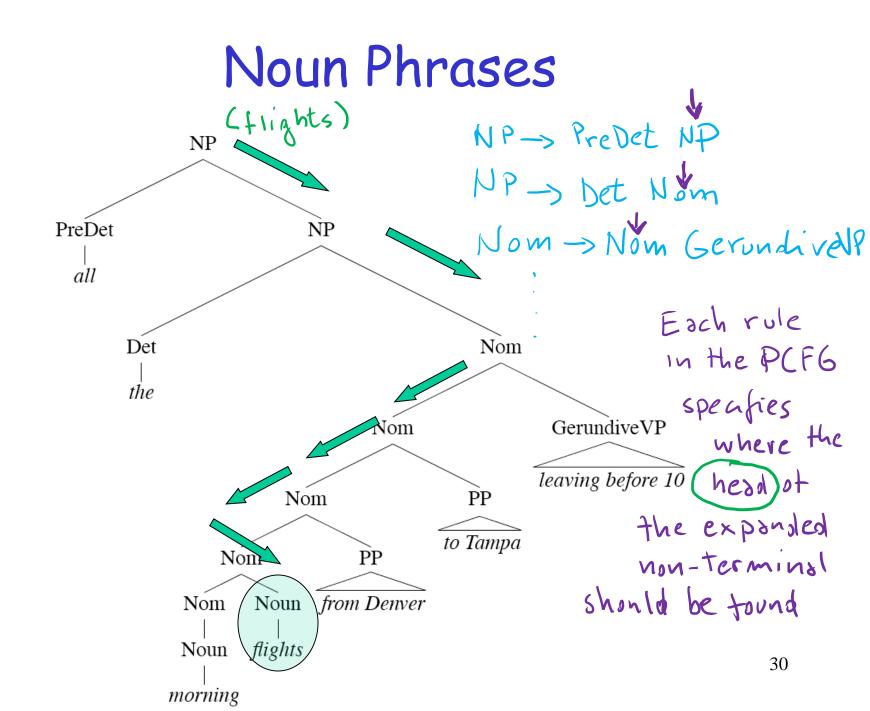
Treebank Grammars

- Such grammars tend to contain lots of rules....
- For example, the Penn Treebank has 4500 different rules for VPs! Among them...



Heads in Trees

- Finding heads in treebank trees is a task that arises frequently in many applications.
 - Particularly important in statistical parsing


 We can visualize this task by annotating the nodes of a parse tree with the heads of each corresponding node.

Lexically Decorated Tree

Head Finding

- The standard way to do head finding is to use a simple set of tree traversal rules specific to each non-terminal in the grammar.
- Each rule in the PCFG specifies where the head of the expanded non-terminal should be found

Acquiring Grammars and Probabilities

Manually parsed text corpora (e.g., PennTreebank)

- Grammar: read it off the parse trees Ex: if an NP contains an ART, ADJ, and NOUN then we create the rule NP -> ART ADJ NOUN.
- Probabilities: $P(A \to \alpha | A) = \frac{count(A \to \alpha)}{z} = \frac{count(A \to \alpha)}{count(A \to \alpha)}$ Ex: if the NP -> ART ADJ NOUN rule is used 50
 - times and all NP rules are used 5000 times, then the rule's probability is ... \mathbb{P}

Example
if you look at all the parse tores in the
bank you find three rules for NP

$$O$$
 NP-3 ART ADJ NOUN
 O NP-3 ART ADJ NOUN
 O NP-3 NOUN
 O NP-3 PRONOUN
 O NP-3

Learning Goals for today's class

You can:

- Provide a formal definition of a PCFG
- Apply a PCFG to compute the probability of a parse tree of a sentence as well as the probability of a sentence
- Describe the content of a treebank
- Describe the process to identify a head of a syntactic constituent
- Compute the probability distribution of a PCFG from a treebank

Next class on Wed

- Parsing Probabilistic CFG: CKY parsing
- PCFG in practice: Modeling Structural and Lexical Dependencies

Assignment-3 due next Mon Assignment-4 out same day