NLP Practical Goal for FOL: the ultimate Web question–answering system?

Map NL queries into FOPC so that answers can be effectively computed

What African countries are not on the Mediterranean Sea?

\[\exists c \text{ Country}(c) \land \neg \text{Borders}(c, \text{Med.Sea}) \land \text{In}(c, \text{Africa}) \]

• Was 2007 the first El Nino year after 2001?
 \[\text{ElNino}(2007) \land \neg \exists y \text{ Year}(y) \land \text{After}(y, 2001) \land \text{Before}(y, 2007) \land \text{ElNino}(y) \]
Just a sketch: to provide some context for some concepts / techniques discussed in 422
Logics in AI: Similar slide to the one for planning

Propositional Definite Clause Logics

Propositional Logics

First-Order Logics

Semantics and Proof Theory

Satisfiability Testing (SAT)

Production Systems

Cognitive Architectures

Hardware Verification

Product Configuration

Semantic Web

Video Games

Summarization

Tutoring Systems

Ontologies

Cognitive Architectures

Today

You will know some applications.

422
Lecture Overview

- **Ontologies** – what objects/individuals should we represent? what relations (unary, binary,..)?
- Inspiration from **Natural Language**: WordNet and FrameNet
- Extensions based on Wikipedia and mining the Web (YAGO, ProBase, Freebase)
- Domain Specific Ontologies (e.g., Medicine: MeSH, UMLS)

CHECK INTERFACES FOR EACH OF THE ABOVE LINKS ON THE COURSE WEB PAGE
Ontologies

Given a logical representation (e.g., FOL)
What individuals and relations are there and we need to model?

In AI an Ontology is a specification of what individuals and relationships are assumed to exist and what terminology is used for them

• What types of individuals
• What properties of the individuals
Ontologies: inspiration from Natural Language

How do we refer to individuals and relationships in the world in Natural Languages e.g., English?

Where do we find definitions for words?

Most of the definitions are circular? They are descriptions.

Fortunately, there is still some useful semantic info (Lexical Relations):

- $w_1 \ w_2$ same Form and Sound, different Meaning
- $w_1 \ w_2$ same Meaning, different Form
- $w_1 \ w_2$ “opposite” Meaning
- $w_1 \ w_2$ Meaning$_1$ subclass of Meaning$_2$
Polysemy
Def. The case where we have a set of words with the same form and multiple related meanings.

Consider the homonym:
bank \rightarrow commercial bank$_1$ vs. river bank$_2$

- Now consider: “A PCFG can be trained using derivation trees from a tree bank annotated by human experts”

- Is this a new independent sense of bank?
Synonyms

Def. Different words with the same meaning.

Substitutability - if they can be substituted for one another in *some* environment without changing meaning or acceptability.

Would I be flying on a large/big plane?

?... became kind of a large/big sister to...

? You made a large/big mistake
Hyponymy/Hypernym

Def. Pairings where one word denotes a sub/super class of the other

- Since dogs are canids
 - Dog is a *hyponym* of canid and
 - Canid is a *hypernym* of dog

car/vehicle

doctor/human

......
Lexical Resources

Databases containing all lexical relations among all words

- **Development:**
 - Mining info from dictionaries and thesauri
 - Handcrafting it from scratch

- **WordNet:** first developed with reasonable coverage and widely used, started with [Fellbaum... 1998]
 - for English (versions for other languages have been developed - see MultiWordNet)
WordNet 3.0

<table>
<thead>
<tr>
<th>Part Of Speech</th>
<th>Unique Strings</th>
<th>Word-Sense Pairs</th>
<th>Synsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noun</td>
<td>117798</td>
<td>146312</td>
<td>82115</td>
</tr>
<tr>
<td>Verb</td>
<td>11529</td>
<td>25047</td>
<td>13767</td>
</tr>
<tr>
<td>Adjective</td>
<td>21479</td>
<td>30002</td>
<td>18156</td>
</tr>
<tr>
<td>Adverb</td>
<td>4481</td>
<td>5580</td>
<td>3621</td>
</tr>
<tr>
<td>Totals</td>
<td>155287</td>
<td>206941</td>
<td>117659</td>
</tr>
</tbody>
</table>

- For each word: all possible senses (no distinction between homonymy and polysemy)
- For each sense: a set of synonyms (synset) and a gloss
WordNet: entry for “table”

The noun “table” has 6 senses in WordNet.

1. table, tabular array — (a set of data ⋯)
2. table — (a piece of furniture ⋯)
3. table — (a piece of furniture with tableware ⋯)
4. mesa, table — (flat tableland ⋯)
5. table — (a company of people ⋯)
6. board, table — (food or meals ⋯)

The verb "table" has 1 sense in WordNet.
1. postpone, prorogue, hold over, put over, table, shelve, set back, defer, remit, put off — (hold back to a later time; "let's postpone the exam")
WordNet Relations (between synsets!)

<table>
<thead>
<tr>
<th>Relation</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyponym</td>
<td>From concepts to subtypes</td>
<td>meal → lunch</td>
</tr>
<tr>
<td>Has-Member</td>
<td>From groups to their members</td>
<td>professor → faculty</td>
</tr>
<tr>
<td>Member-Of</td>
<td>From members to their groups</td>
<td>crew → copilot</td>
</tr>
<tr>
<td>Has-Part</td>
<td>From wholes to parts</td>
<td>leg → table</td>
</tr>
<tr>
<td>Part-Of</td>
<td>From parts to wholes</td>
<td>meal → course</td>
</tr>
<tr>
<td>Antonym</td>
<td>Opposites</td>
<td>follower → leader</td>
</tr>
<tr>
<td>Troponym</td>
<td>From events to their subtypes</td>
<td>stroll → walk</td>
</tr>
<tr>
<td>Entails</td>
<td>From events to the events they entail</td>
<td>sleep → snore</td>
</tr>
<tr>
<td>Antonym</td>
<td>Opposites</td>
<td>decrease ↔ increase</td>
</tr>
</tbody>
</table>
WordNet Hierarchies: “Vancouver”

WordNet: example from ver1.7.1

For the three senses of “Vancouver”

⇒ (city, metropolis, urban center)
 ⇒ (municipality)
 ⇒ (urban area)
 ⇒ (geographical area)
 ⇒ (region)
 ⇒ (location)
 ⇒ (entity, physical thing)

⇒ (administrative district, territorial division)
 ⇒ (district, territory)
 ⇒ (region)
 ⇒ (location)
 ⇒ (entity, physical thing)

⇒ (port)
 ⇒ (geographic point)
 ⇒ (point)
 ⇒ (location)
 ⇒ (entity, physical thing)
WordNet Search - 3.1
- WordNet home page - Glossary - Help

Word to search for: bass Search WordNet

Display Options: (Select option to change) Change

Key: "S." = Show Synset (semantic) relations, "W." = Show Word (lexical) relations
Display options for sense: (gloss) "an example sentence"

Noun

- S: (n) bass (the lowest part of the musical range)
- S: (n) bass, bass part (the lowest part in polyphonic music)
- S: (n) bass, basso (an adult male singer with the lowest voice)
 - direct hypernym / inherited hypernym / sister term
 - S: (n) singer, vocalist, vocalizer, vocaliser (a person who sings)
- S: (n) sea bass, bass (the lean flesh of a saltwater fish of the family Serranidae)
- S: (n) freshwater bass, bass (any of various North American freshwater fish with lean flesh (especially of the genus Micropterus))
- S: (n) bass, bass voice, basso (the lowest adult male singing voice)
- S: (n) bass (the member with the lowest range of a family of musical instruments)
- S: (n) bass (nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

Adjective

- S: (adj) bass, deep (having or denoting a low vocal or instrumental range) "a deep voice"; "a bass voice is lower than a baritone voice"; "a bass clarinet"
Wordnet: NLP Tasks

- First success in “obscure” task for Probabilistic Parsing (PP-attachments): words + word-classes extracted from the hypernym hierarchy increase accuracy from 84% to 88% [Stetina and Nagao, 1997]
- Word sense disambiguation
- Lexical Chains (summarization)

- …… and many others!

More importantly starting point for larger Ontologies!
More ideas from NLP….

Relations among words and their meanings
(paradigmatic)

Internal structure of individual words
(syntagmatic)
Predicate-Argument Structure

- Represent relationships among concepts, events and their participants

“I ate a turkey sandwich for lunch”
\[\exists w: \text{Isa}(w, \text{Eating}) \land \text{Eater}(w, \text{Speaker}) \land \text{Eaten}(w, \text{TurkeySandwich}) \land \text{MealEaten}(w, \text{Lunch}) \]

“Nam does not serve meat”
\[\exists w: \text{Isa}(w, \text{Serving}) \land \text{Server}(w, \text{Nam}) \land \neg \text{Served}(w, \text{Meat}) \]
Semantic Roles: Resources

- Move beyond inferences about single verbs

 "IBM hired John as a CEO"

 "John is the new IBM hire"

 "IBM signed John for 2M$"

- **FrameNet**: Databases containing frames and their syntactic and semantic argument structures

 (book online Version 1.5-update Sept, 2010)

 - for English (versions for other languages are under development)

- FrameNet Tutorial at NAACL/HLT 2015!
FrameNet Entry

Hiring

• Definition: An Employer hires an Employee, promising the Employee a certain Compensation in exchange for the performance of a job. The job may be described either in terms of a Task or a Position in a Field.

• Inherits From: Intentionally affect

• Lexical Units: commission.n, commission.v, give job.v, hire.n, hire.v, retain.v, sign.v, take on.v
FrameNet: Semantic Role Labeling

Some roles:
- Employer
- Employee
- Task
- Position

• np-vpto
 - In 1979, singer Nancy Wilson HIRED him to open her nightclub act.
 -

• np-ppas
 - Castro has swallowed his doubts and HIRED Valenzuela as a cook in his small restaurant.
Lecture Overview

- **Ontologies** – what objects/individuals should we represent? what relations (unary, binary,..)?
- Inspiration from **Natural Language**: WordNet and FrameNet
- Extensions based on Wikipedia and mining the Web & Web search logs (YAGO, ProBase, Freebase,⋯⋯)
- Domain Specific Ontologies (e.g., Medicine: MeSH, UMLS)
YAGO2: huge semantic knowledge base

Derived from Wikipedia, WordNet and GeoNames. (started in 2007, paper in www conference)

10^6 entities (persons, organizations, cities, etc.)

$>120*10^6$ facts about these entities.

- YAGO accuracy of 95%. has been manually evaluated.
- Anchored in time and space. YAGO attaches a temporal dimension and a spatial dimension to many of its facts and entities.
Freebase

- “Collaboratively constructed database.”
- Freebase contains tens of millions of topics, thousands of types, and tens of thousands of properties and over a billion of facts.
- Automatically extracted from a number of resources including Wikipedia, MusicBrainz, and NNDB.
- As well as the knowledge contributed by the human volunteers.
- Each Freebase entity is assigned a set of human-readable unique keys, which are assembled of a value and a namespace.
- All was available for free through the APIs or to download from weekly data dumps.
Fast Changing Landscape

On 16 December 2015, Google officially announced the Knowledge Graph API, which is meant to be a replacement to the Freebase API. Freebase.com was officially shut down on 2 May 2016.^[6]
Probase (MS Research)

- Harnessed from billions of **web pages** and years worth of **search logs**
- Extremely large concept/category space (2.7 million categories).
- Probabilistic model for correctness, typicality (e.g., between concept and instance)
Infrastructure

Web Pages → Hearst’s Patterns → Extract Concepts → Extract Entities

(Painters, Picasso)
(Paintings, Guernica)
(Presidents, Bush)
(Presidents, Obama)

WikiPedia → Freebase → Wordnet

Web Table Understanding → Integration → Scoring

External Sources Knowledge
A snippet of Probase’s core taxonomy
The Y axis is the number of instances each concept), and on the X axis are the 2.7 million concepts ordered by their size contains logarithmic scale, and on the X axis are the 2.7 million concepts ordered by their size.
Fast Changing Landscape

From Probase page

[Sept. 2016] Please visit our Microsoft Concept Graph release for up-to-date information of this project!
Interesting dimensions to compare Ontologies (but form Probase so possibly biased)

- Covers every topic?
- Knows about everything in a topic?
- Contains rich connections?

Breadth and density enable understanding.
Lecture Overview

- **Ontologies** – what objects/individuals should we represent? what relations (unary, binary,..)?
- Inspiration from **Natural Language**: WordNet and FrameNet
- Extensions based on Wikipedia and mining the Web (YAGO, ProBase, Freebase)
- **Domain Specific Ontologies** (e.g., Medicine: MeSH, UMLS)
Domain Specific Ontologies: UMLS, MeSH

Unified Medical Language System: brings together many health and biomedical vocabularies

- Enable interoperability (linking medical terms, drug names)
- Develop electronic health records, classification tools
- Search engines, data mining
Portion of the UMLS Semantic Net
Learning Goals for today’s class

You can:

• Define an Ontology

• Describe and Justify the information represented in Wordnet and Framenet

• Describe and Justify the three dimensions for comparing ontologies
Announcements: Midterm

• Avg 60 Max 96 Min 7
• Last two years it was in the lower 70s ?
• If score below 70 need to very seriously revise all the material covered so far
• You can pick up a printout of the solutions along with your midterm

BUT
Before you look at the solutions try to answer the questions by yourself now that you have all the time you want and access to your notes
New Re-weighting to help you

Original breakdown

• Assignments -- 15%
• Readings: Questions and Summaries -- 10%
• Midterm -- 30%
• Final -- 45%

BUT If your grade improves 10% from the midterm to the final

• Assignments -- 15%
• Readings: Questions and Summaries -- 10%
• Midterm -- 15%
• Final -- 60%
Assignment-3 out – due Nov 21
(8-18 hours – working in pairs on programming parts is strongly advised)

Next class Mon

• Similarity measures in ontologies (Wordnet)
DBpedia is a structured twin of Wikipedia. Currently it describes more than 3.4 million entities. DBpedia resources bear the names of the Wikipedia pages, from which they have been extracted.

YAGO is an automatically created ontology, with taxonomy structure derived from WordNet, and knowledge about individuals extracted from Wikipedia. Therefore, the identifiers of resources describing individuals in YAGO are named as the corresponding Wikipedia pages. YAGO contains knowledge about more than 2 million entities and 20 million facts about them.

Freebase is a collaboratively constructed database. It contains knowledge automatically extracted from a number of resources including Wikipedia, MusicBrainz, and NNDB as well as the knowledge contributed by the human volunteers. Freebase describes more than 12 million interconnected entities. Each Freebase entity is assigned a set of human-readable unique keys, which are assembled of a value and a namespace. One of the namespaces is the Wikipedia namespace, in which a value is the name of the Wikipedia page describing an entity.
Summary

• Relations among words and their meanings

• Internal structure of individual words

Wordnet
YAGO
Probase
PropBank
VerbNet
FrameNet
Table 1: Scale of concept dimension

<table>
<thead>
<tr>
<th>name</th>
<th># of concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>SenticNet</td>
<td>14,244</td>
</tr>
<tr>
<td>Freebase</td>
<td>1,450</td>
</tr>
<tr>
<td>WordNet</td>
<td>25,229</td>
</tr>
<tr>
<td>WikiTaxonomy</td>
<td>< 127,325</td>
</tr>
<tr>
<td>YAGO</td>
<td>149,162</td>
</tr>
<tr>
<td>DBPedia</td>
<td>259</td>
</tr>
<tr>
<td>ResearchCyc</td>
<td>≈ 120,000</td>
</tr>
<tr>
<td>KnowItAll</td>
<td>N/A</td>
</tr>
<tr>
<td>TextRunner</td>
<td>N/A</td>
</tr>
<tr>
<td>OMCS</td>
<td>23,365</td>
</tr>
<tr>
<td>NELL</td>
<td>123</td>
</tr>
<tr>
<td>Probase</td>
<td>2,653,872</td>
</tr>
</tbody>
</table>
Today 12 Feb

Syntax-Driven Semantic Analysis

Meaning of words

- Relations among words and their meanings (Paradigmatic)
- Internal structure of individual words (Syntagmatic)
Practical Goal for (Syntax-driven) Semantic Analysis

Map NL queries into FOPC so that answers can be effectively computed

- **What African countries are not on the Mediterranean Sea?**
 \[\exists c \text{ Country}(c) \land \neg \text{Borders}(c, \text{Med.Sea}) \land \text{In}(c, \text{Africa}) \]

- **Was 2007 the first El Nino year after 2001?**
 \[\text{ElNino}(2007) \land \neg \exists y \text{ Year}(y) \land \text{After}(y, 2001) \land \text{Before}(y, 2007) \land \text{ElNino}(y) \]
Semantic Analysis

- Syntax-driven Semantic Analysis
- Literal Meaning
- Further Analysis
- Intended meaning

- Meanings of grammatical structures
- Meanings of words
- Common-Sense Domain knowledge
- Discourse Structure
- Context

I am going to SFU on Tue.
The garbage truck just left.

Shall we meet on Tue?
What time is it?
Compositional Analysis

• Principle of Compositionality
 - The meaning of a whole is derived from the meanings of the parts

• What parts?
 - The constituents of the syntactic parse of the input
Compositional Analysis: Example

- *AyCaramba serves meat*

\[\exists e \; Serving(e)^\wedge Server(e, AyCaramba)^\wedge Served(e, Meat) \]
Augmented Rules

• Augment each syntactic CFG rule with a semantic formation rule

• Abstractly

\[A \rightarrow \alpha_1...\alpha_n \quad \{ f(\alpha_1.sem,\ldots,\alpha_n.sem) \} \]

• i.e., The semantics of \(A \) can be computed from some function applied to the semantics of its parts.

• The class of actions performed by \(f \) will be quite restricted.
Simple Extension of FOL: Lambda Forms

- A FOL sentence with variables in it that are to be bound.

- **Lambda-reduction**: variables are bound by treating the lambda form as a function with formal arguments.

\[\lambda x P(x) \]

\[\lambda x P(x)(Sally) \]

\[P(Sally) \]

\[\lambda x \lambda y In(x, y) \land Country(y) \]

\[\lambda y In(BC, y) \land Country(y) \]
Augmented Rules: Example

- **Concrete entities**
 - PropNoun \(\rightarrow\) AyCaramba
 - MassNoun \(\rightarrow\) meat

- **Simple non-terminals**
 - NP \(\rightarrow\) PropNoun
 - NP \(\rightarrow\) MassNoun

Assigning FOL constants
- Attachments
 - \{AyCaramba\}
 - \{MEAT\}

Copying from daughters up to mothers
- Attachments
 - \{PropNoun.sem\}
 - \{MassNoun.sem\}
Augmented Rules: Example

Semantics attached to one daughter is applied to semantics of the other daughter(s).

- **S** → NP VP
 - \{VP.sem(NP.sem)\}
- **VP** → Verb NP
 - \{Verb.sem(NP.sem)\}

lambda-form

- **Verb** → **serves**
 - \(\lambda x \lambda y \exists e \text{Serving}(e) \land \text{Server}(e, y) \land \text{Served}(e, x)\)
Example

\[S \rightarrow NP \text{ VP} \]
\[VP \rightarrow \text{Verb} \text{ NP} \]
\[\text{Verb} \rightarrow \text{serves} \]
\[NP \rightarrow \text{PropNoun} \]
\[NP \rightarrow \text{MassNoun} \]
\[\text{PropNoun} \rightarrow \text{AyCaramba} \]
\[\text{MassNoun} \rightarrow \text{meat} \]

\[\exists e \text{ Isa}(e, \text{Serving}) \land \text{Server}(e, \text{AC}) \land \text{Served}(e, \text{Meat}) \]

\[\forall x \forall y \exists e \text{ Serving}(e) \land \text{Server}(e, y) \land \text{Served}(e, \text{Meat}) \]

\[\{\text{VP.sem(NP.sem)}\} \]
\[\{\text{Verb.sem(NP.sem)}\} \]
\[\{\text{PropNoun.sem}\} \]
\[\{\text{MassNoun.sem}\} \]
\[\{\text{AC}\} \]
\[\{\text{MEAT}\} \]
References (Project?)

• Text Book: Representation and Inference for Natural Language : A First Course in Computational Semantics Patrick Blackburn and Johan Bos, 2005, CSLI

Next Time

• Read Chp. 19 (Lexical Semantics)
Next Time

Read Chp. 20

Computational Lexical Semantics
• Word Sense Disambiguation
• Word Similarity
• Semantic Role Labeling
Lexeme:

- Orthographic form +
- Phonological form +
- Meaning (sense)

[Modulo inflectional morphology]

- Lexicon: A collection of lexemes
Homonymy

Def. Lexemes that have the same “forms” but unrelated meanings

- **Examples:** Bat (wooden stick-like thing) vs. Bat (flying scary mammal thing)

 Plant (……..) vs. Plant (……..)

Homographs
content/content

Homonyms

Homophones
wood/would
Relevance to NLP Tasks

Information retrieval (homonymy):

✓ QUERY: bat

Spelling correction: **homophones** can lead to real-word spelling errors

Text-to-Speech: **homographs** (which are not homophones)
Polysemy

Lexeme (new def.):
- Orthographic form + Phonological form +
- Set of related senses

How many distinct (but related) senses?
- They *serve* meat...
- He *served* as Dept. Head...
- She *served* her time....

- Does AC *serve* vegetarian food?
- Does AC *serve* Rome?
- (?) Does AC *serve* vegetarian food and Rome?
Thematic Roles: Usage

Literal Meaning expressed with thematic roles

Syntax-driven Semantic Analysis

Sentence

Further Analysis

Intended meaning

Constraint Generation

Eg. Instrument "with"
Eg. Subject?

Support "more abstract" INFERENCE

Eg. Result did not exist before
Semantic Roles

- Def. Semantic generalizations over the specific roles that occur with specific verbs.

- I.e. eaters, servers, takers, givers, makers, doers, killers, all have something in common

- We can generalize (or try to) across other roles as well
Thematic Role Examples

<table>
<thead>
<tr>
<th>Thematic Role</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGENT</td>
<td>The waiter spilled the soup.</td>
</tr>
<tr>
<td>EXPERIENCER</td>
<td>John has a headache.</td>
</tr>
<tr>
<td>FORCE</td>
<td>The wind blows debris from the mall into our yards.</td>
</tr>
<tr>
<td>THEME</td>
<td>Only after Benjamin Franklin broke the ice...</td>
</tr>
<tr>
<td>RESULT</td>
<td>The French government has built a regulation-size baseball diamond...</td>
</tr>
<tr>
<td>CONTENT</td>
<td>Mona asked “You met Mary Ann at a supermarket”?</td>
</tr>
<tr>
<td>INSTRUMENT</td>
<td>He turned to poaching catfish, stunning them with a shocking device...</td>
</tr>
<tr>
<td>BENEFICIARY</td>
<td>Whenever Ann Callahan makes hotel reservations for her boss...</td>
</tr>
<tr>
<td>SOURCE</td>
<td>I flew in from Boston.</td>
</tr>
<tr>
<td>GOAL</td>
<td>I drove to Portland.</td>
</tr>
</tbody>
</table>
Thematic Roles

<table>
<thead>
<tr>
<th>Thematic Role</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGENT</td>
<td>The volitional causer of an event</td>
</tr>
<tr>
<td>EXPERIENCER</td>
<td>The experiencer of an event</td>
</tr>
<tr>
<td>FORCE</td>
<td>The non-volitional causer of the event</td>
</tr>
<tr>
<td>THEME</td>
<td>The participant most directly affected by an event</td>
</tr>
<tr>
<td>RESULT</td>
<td>The end product of an event</td>
</tr>
<tr>
<td>CONTENT</td>
<td>The proposition or content of a propositional event</td>
</tr>
<tr>
<td>INSTRUMENT</td>
<td>An instrument used in an event</td>
</tr>
<tr>
<td>BENEFICIARY</td>
<td>The beneficiary of an event</td>
</tr>
<tr>
<td>SOURCE</td>
<td>The origin of the object of a transfer event</td>
</tr>
<tr>
<td>GOAL</td>
<td>The destination of an object of a transfer event</td>
</tr>
</tbody>
</table>

- Not definitive, not from a single theory!
Problem with Thematic Roles

• NO agreement of what should be the standard set
• NO agreement on formal definition
• Fragmentation problem: when you try to formally define a role you end up creating more specific sub-roles

Two solutions

• Generalized semantic roles
• Define verb (or class of verbs) specific semantic roles
Generalized Semantic Roles

• Very abstract roles are defined heuristically as a set of conditions

• The more conditions are satisfied the more likely an argument fulfills that role

• **Proto-Agent**
 - Volitional involvement in event or state
 - Sentience (and/or perception)
 - Causing an event or change of state in another participant
 - Movement (relative to position of another participant)
 - (exists independently of event named)

• **Proto-Patient**
 - Undergoes change of state
 - Incremental theme
 - Causally affected by another participant
 - Stationary relative to movement of another participant
 - (does not exist independently of the event, or at all)
Semantic Roles: Resources

- Databases containing for each verb its syntactic and thematic argument structures

- **PropBank**: sentences in the Penn Treebank annotated with semantic roles

- Roles are verb-sense specific

- Arg0 (PROTO-AGENT), Arg1(PROTO-PATIENT), Arg2,

- (see also VerbNet)
PropBank Example

- Increase “go up incrementally”
 - Arg0: causer of increase
 - Arg1: thing increasing
 - Arg2: amount increase by
 - Arg3: start point
 - Arg4: end point

- PropBank semantic role labeling would identify common aspects among these three examples
 - "Y performance increased by 3%"
 - "Y performance was increased by the new X technique"
 - "The new X technique increased performance of Y"

Glosses for human reader. Not formally defined.