People

Instructor

- Giuseppe Carenni (carenini@cs.ubc.ca; office CICSR 105)
Natural Language Processing, Summarization, Preference Elicitation, Explanation, Adaptive Visualization, Intelligent Interfaces……
Office hour: my office, ??

Teaching Assistant

Jordon Johnson jordon@cs.ubc.ca
Office hour: ICCS X237, for??

Emily Chen emily-404@hotmail.com
Office hour: ICCS X237, for??

Enamul Hoque Prince enamul.hoque.prince@gmail.co
Your UBC-AI Background

I took 322 Last Year

A. yes B. no

I took Machine Learning (340)

A. yes B. no
Course Essentials (1)

- Course web-pages:

 www.cs.ubc.ca/~carenini/TEACHING/CPSC422-16/index.html
 - This is where most information about the course will be posted, most handouts (e.g., slides) will be distributed, etc.
 - CHECK IT OFTEN! (draft already available)

- Lectures:
 - Cover basic notions and concepts known to be hard
 - I will try to post the slides in advance (by 8:30).
 - After class, I will post the same slides inked with the notes I have added in class.
 - Each lecture will end with a set of learning goals:

 Student can···.
Course Essentials(2)

Textbook: Selected Chapters from

- **Artificial Intelligence**, 2nd Edition, by Poole, Mackworth.

Reference (if you want to buy a book in AI this is the one!)

 [book webpage on course webpage]

More readings on course webpage...
Course Essentials (3)

- **Connect OR Piazza**: discussion board
 - Use the discussion board for questions about assignments, material covered in lecture, etc. That way others can learn from your questions and comments!
 - Use email for private questions (e.g., grade inquiries or health problems).

- **AI space**: online tools for learning Artificial Intelligence
 - Under development here at UBC!
 - Already used in cpsc322

http://aispace.org/
Course Elements

- Practice Exercises: 0%
- Assignments: 15%
- Research Paper Questions & Summaries 10%
- Midterm: 30%
- Final: 45%
- Clickers 3% bonus (1% participation + 2% correct answers)

If your final grade is $\geq 20\%$ higher than your midterm grade:

- Midterm: 15%
- Final: 60%
Assignments

• There will be five assignments in total
 • Counting “assignment zero”, which you’ll get today (as a Google Form)
 • They will not necessarily be weighted equally

• Group work (same as 322)
 • code questions:
 ✓ you can work with a partner
 ✓ always hand in your own piece of code (stating who your partner was)
 • written questions:
 ✓ you may discuss questions with other students
 ✓ you may not look at or copy each other’s written work
 ✓ You may be asked to sign an honour code saying you’ve followed these rules
Assignments: Late Days (same as 322)

- Hand in by 9AM on due day (in class or on Connect)
- You get four late days 😊
 - to allow you the flexibility to manage unexpected issues
 - additional late days will not be granted except under truly exceptional circumstances
- A day is defined as: all or part of a 24-hour block of time beginning at 9 AM on the day an assignment is due
- Applicable to assignments 1–4 not applicable to assignment 0, midterm, final!
- if you’ve used up all your late days, you lose 20% per day
Missing Assignments / Midterm / Final

Hopefully late days will cover almost all the reasons you’ll be late in submitting assignments.

- However, something more serious like an extended illness may occur 😞

- For all such cases: you’ll need to provide a note from your doctor, psychiatrist, academic advisor, etc.

- If you miss:
 - an assignment, your score will be reweighted to exclude that assignment
 - the midterm, those grades will be shifted to the final.
 - the final, you’ll have to write a make-up final as soon as possible.
How to Get Help?

• Use the course **discussion board** for questions on course material (so keep reading from it!)
• If you answer a challenging question you’ll get **bonus points**! 😊

• Go to **office hours** (newsgroup is NOT a good substitute for this) – times will be finalized next week **DOODLE on Connect**
 • Giuseppe: ??? (CICSR #105)
 • Jordon: ??? (X237)
 • Emily: ??? (X237)

Can schedule by appointment if you can document a conflict with the official office hours
Getting Help from Other Students? From the Web? (Plagiarism)

- It is **OK** to talk with your classmates about assignments; learning from each other is good

- **But you must:**
 - **Not copy** from others (with or without the consent of the authors)
 - Write/present your work **completely on your own** (code questions exception)

- If you use external source (e.g., Web) in the assignments. Report this.
 e.g., “bla bla bla⋅⋅⋅⋅⋅⋅” [wikipedia]
Getting Help from Other Sources? (Plagiarism)

When you are in doubt whether the line is crossed:

- Talk to me or the TA’s
- See UBC official regulations on what constitutes plagiarism (pointer in course Web-page)
- Ignorance of the rules will not be a sufficient excuse for breaking them

Any unjustified cases will be severely dealt with by the Dean’s Office (that’s the official procedure)

- My advice: better to skip an assignment than to have “academic misconduct” recorded on your transcript and additional penalties as serious as expulsion from the university!
Clickers – Cheating

• Use of another person’s clicker
• Having someone use your clicker

is considered **cheating** with the same policies applying as would be the case for turning in illicit written work.
To Summarize

- All the course logistics are described in the course Webpage
 www.cs.ubc.ca/~carenini/TEACHING/CPSC422-16/index.html

Or WebSearch: Giuseppe Carennini

(And summarized in these slides)

- Make sure you carefully read and understand them!
Agents acting in an environment

- Prior knowledge
- Past experiences
- Goals/values
- Observations

Agent

Representation & Reasoning

Actions

Environment

Solutions

Answers

Machine Learning 340
Cpsc 322 Big Picture

Environment

- **Deterministic**
 - Arc Consistency
 - Search
 - Vars + Constraints
 - SLS

- **Stochastic**
 - Belief Nets
 - Var. Elimination
 - Decision Nets
 - Var. Elimination

Problem

- **Static**
 - Constraint Satisfaction
 - Query

- **Sequential**
 - Planning

Representation

- Reasoning
- Technique

CPSC 322, Lecture 2
422 big picture

Deterministic

Logics
First Order Logics

Ontologies

• Full Resolution
• SAT

Stochastic

Belief Nets
Approx. : Gibbs

Markov Chains and HMMs
Forward, Viterbi….
Approx. : Particle Filtering

Undirected Graphical Models
Markov Networks
Conditional Random Fields

Markov Decision Processes and
Partially Observable MDP

• Value Iteration
• Approx. Inference

Reinforcement Learning

Applications of AI

StarAI (statistical relational AI)

Hybrid: Det + Sto

Prob CFG
Prob Relational Models
Markov Logics

CPSC 422, Lecture 35
Slide 20
Datalog vs PDCL (better with colors)

First Order Logic

\[\forall X \exists Y p(X, Y) \Leftrightarrow \neg q(Y) \]

\[-q(a_3) \]

Propositional Logic

\[\neg (p \lor q) \Rightarrow \neg (r \land s \land f) \]

Datalog

\[p(X) \leftarrow q(x) \land r(X, Y) \]

\[r(x, y) \leftarrow s(y) \]

\[s(a_1), q(a_2) \]

PDCL

\[p \leftarrow s n f \]

\[r \leftarrow s n q n p \]

\[p, r \]
Logics in AI: Similar slide to the one for planning

Propositional Definite Clause Logics

Propositional Logics

First-Order Logics

Semantics and Proof Theory

Satisfiability Testing (SAT)

Description Logics

Ontologies

Production Systems

Cognitive Architectures

Hardware Verification

Product Configuration

Semantic Web

Video Games

Summarization

Tutoring Systems

Information Extraction

CPSC 322, Lecture 8
Answering Query under Uncertainty

- Probability Theory
- Static Belief Network & Variable Elimination
- Dynamic Bayesian Network
- Hidden Markov Models
- Monitoring (e.g., credit cards)
- BioInformatics
- Natural Language Processing
- Email spam filters
- Student Tracing in tutoring Systems

- Diagnostic Systems (e.g., medicine)
- you will know you will know a little
- Some Applications
Markov Decision Processes (MDPs)

Big Picture: Planning under Uncertainty

- Probability Theory
- Decision Theory
- One-Off Decisions/Sequential Decisions
- Fully Observable MDPs
- Partially Observable MDPs (POMDPs)
- Decision Support Systems (medicine, business, …)
- Economics
- Control Systems
- Robotics

Some Applications

you know you know a little
No 😞, but you (will) know the key ideas 😊!

- Ghallab, Nau, and Traverso
 Automated Planning: Theory and Practice
 Morgan Kaufmann, May 2004
 New edition 2016 (Check!)
- Web site:
 ✓ http://www.laas.fr/planning

book chapters

you know a little

Applications

Slide 25
422 big picture

Deterministic

Logics

First Order Logics

Ontologies

• Full Resolution
• SAT

Stochastic

Belief Nets

Approx. : Gibbs

Markov Chains and HMMs

Forward, Viterbi...
Approx. : Particle Filtering

Undirected Graphical Models

Markov Networks
Conditional Random Fields

Markov Decision Processes and Partially Observable MDP

• Value Iteration
• Approx. Inference

Reinforcement Learning

Hybrid: Det + Sto

Prob CFG
Prob Relational Models
Markov Logics

Representation

Reasoning Technique

Applications of AI

StarAI (statistical relational AI)
STAR AI (Statistical Relational AI)

Hybrid: Det + Sto

Prob CFG
Prob Relational Models
Markov Logics

Markov Chains and HMMs
Forward, Viterbi….
Approx. : Particle Filtering

Undirected Graphical Models
Conditional Random Fields

Markov Decision Processes and
Partially Observable MDP

Value Iteration
Approx. Inference

Reinforcement Learning

Applications of AI

Deterministic

Logics
First Order Logics

Ontologies
Temporal rep.

Query

Planning

Stochastic

MAP
Max
WalkSAT

Approx. : Gibbs

Approx. : Particle Filtering

CPSC 422, Lecture 34

Slide 27
Combining Symbolic and Probabilistic R&R systems

- (a) Probabilistic Relational models
 - Probs specified on relations

- (b) Markov Logics

\[P(\text{world}) \propto \exp\left(\sum \text{weights of formulas it satisfies}\right) \]

- (c) Probabilistic Context-Free Grammars
 - NLP parsing
 - Hierarchical Planning
A customer C will / will not recommend a book B depending on the book quality, and the customer honesty and kindness.
In general, they represent feature templates for Markov Networks.

Two constants: **Anna** (A) and **Bob** (B)

Markov Logics

Weights

- 1.5: $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- 1.1: $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

FOL formulas

Undirected Graphical Model
Sample PCFG

<table>
<thead>
<tr>
<th>Production</th>
<th>Probability</th>
<th>Production</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \rightarrow NP\ VP$</td>
<td>.80</td>
<td>$Det \rightarrow that\ [.05]$</td>
<td>.05</td>
</tr>
<tr>
<td>$S \rightarrow Aux\ NP\ VP$</td>
<td>.15</td>
<td>$the\ [.80]$</td>
<td>.50</td>
</tr>
<tr>
<td>$S \rightarrow VP$</td>
<td>.05</td>
<td>$a\ [.15]$</td>
<td>.30</td>
</tr>
<tr>
<td>$NP \rightarrow Det\ Nom$</td>
<td>.20</td>
<td>$Noun \rightarrow book$</td>
<td>.40</td>
</tr>
<tr>
<td>$NP \rightarrow Proper-Noun$</td>
<td>.35</td>
<td>$Noun \rightarrow flights$</td>
<td>.30</td>
</tr>
<tr>
<td>$NP \rightarrow Nom$</td>
<td>.05</td>
<td>$Noun \rightarrow meal$</td>
<td>.30</td>
</tr>
<tr>
<td>$NP \rightarrow Pronoun$</td>
<td>.40</td>
<td>$Verb \rightarrow book$</td>
<td>.30</td>
</tr>
<tr>
<td>$Nom \rightarrow Noun$</td>
<td>.75</td>
<td>$Verb \rightarrow include$</td>
<td>.30</td>
</tr>
<tr>
<td>$Nom \rightarrow Noun\ Nom$</td>
<td>.20</td>
<td>$Verb \rightarrow want$</td>
<td>.40</td>
</tr>
<tr>
<td>$Nom \rightarrow Proper-Noun\ Nom$</td>
<td>.05</td>
<td>$Aux \rightarrow can$</td>
<td>.40</td>
</tr>
<tr>
<td>$VP \rightarrow Verb$</td>
<td>.55</td>
<td>$Aux \rightarrow does$</td>
<td>.30</td>
</tr>
<tr>
<td>$VP \rightarrow Verb\ NP$</td>
<td>.40</td>
<td>$Aux \rightarrow do$</td>
<td>.30</td>
</tr>
<tr>
<td>$VP \rightarrow Verb\ NP\ NP$</td>
<td>.05</td>
<td>$Proper-Noun \rightarrow TWA$</td>
<td>.40</td>
</tr>
<tr>
<td>$Proper-Noun \rightarrow Denver$</td>
<td>.40</td>
<td>$Pronoun \rightarrow you\ [.40]$</td>
<td>.40</td>
</tr>
<tr>
<td>$Pronoun \rightarrow I\ [.60]$</td>
<td>.60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For Fri: TODO for this week

- Doodle on Connect: your availability for office hours
- Read textbook 9.4
- Read textbook 9.5
 - 9.5.1 Value of a Policy

For Mon:

- assignment0 – Google Form On Connect
- Read textbook
 - 9.5.2 Value of an Optimal Policy
 - 9.5.3 Value Iteration