# Intelligent Systems (AI-2)

#### Computer Science cpsc422, Lecture 19

Oct, 24, 2016

4

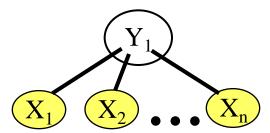
Slide Sources
Raymond J. Mooney University of Texas at Austin

D. Koller, Stanford CS - Probabilistic Graphical Models

D. Page, Whitehead Institute, MIT

Several Figures from

"Probabilistic Graphical Models: Principles and Techniques" D. Koller, N. Friedman 2009


CPSC 422. Lecture 19

#### **Lecture Overview**

- Recap: Naïve Markov Logistic regression (simple CRF)
- CRFs: high-level definition
- CRFs Applied to sequence labeling
- NLP Examples: Name Entity Recognition, joint POS tagging and NP segmentation

## Let's derive the probabilities we need

$$\begin{array}{c} \phi_i(X_i,Y_1) = \exp\{\widehat{w_i} | \{X_i = 1,Y_1 = 1\}\} \\ \text{how strongly } Y_2 = 1 \text{ given that } X_i = 1 \\ \phi_0(Y_1) = \exp\{w_0 | \{Y_1 = 1\}\} \end{array}$$



$$\overset{\approx}{P}(Y_1 \mid x_1, \dots, x_n) =$$

$$\tilde{P}(Y_1, x_1, \dots, x_n) = \overline{\mathbb{Q}}_o(Y_1) * \overline{\mathbb{Q}}_o(X_1, Y_2)$$

$$\tilde{P}(Y_1 = 0, x_1, ...., x_n) =$$

$$\tilde{P}(Y_1 = 1, x_1, ...., x_n) =$$

Continue .....

$$P(Y_{1}=1|X_{1}...X_{n}) = \frac{e^{w_{0}+2w_{1}X_{1}}}{1 + e^{w_{0}+2w_{1}X_{2}}}$$

$$= \frac{e^{z}}{1 + e^{z}} = \frac{1}{e^{-z}} = \frac{1}{e^{-z}+1}$$

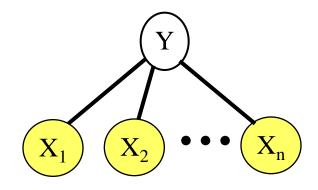
$$P(Y_{1}|X_{1}...X_{n}) = \left\{\frac{1}{e^{-z}+1} + \frac{e^{-z}+1}{e^{-z}+1}\right\}$$

Sigmoid Function used in Logistic Regression

Great practical interest

• Number of param  $w_i$  is linear instead of exponential in the number of parents

 Natural model for many real world applications


 Naturally aggregates the influence of different parents

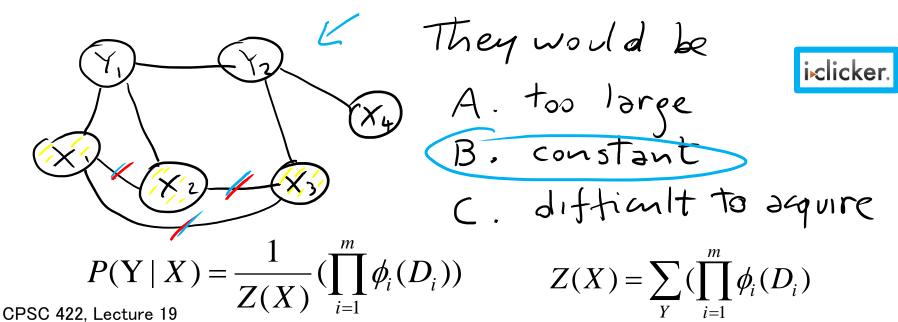


CPSC 422, Lecture

## Logistic Regression as a Markov Net (CRF)

Logistic regression is a simple Markov Net (a CRF) aka naïve markov model

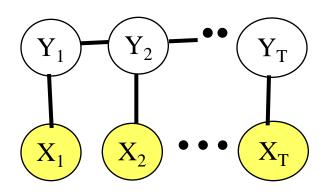



But only models the **conditional distribution**,  $P(Y \mid X)$  and not the full joint P(X,Y)

# Let's generalize ....

Assume that you always observe a set of variables  $X = \{X_1 \cdots X_n\}$  and you want to predict one or more variables  $Y = \{Y_1 \cdots Y_k\}$ 

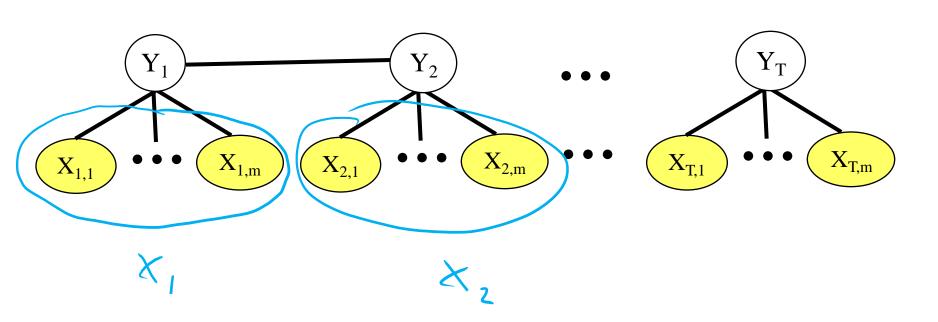
A CRF is an undirected graphical model whose nodes corresponds to  $X \cup Y$ .


 $\varphi_1(D_1)\cdots \varphi_m(D_m)$  represent the factors which annotate the network (but we disallow factors involving only vars in X – why?)



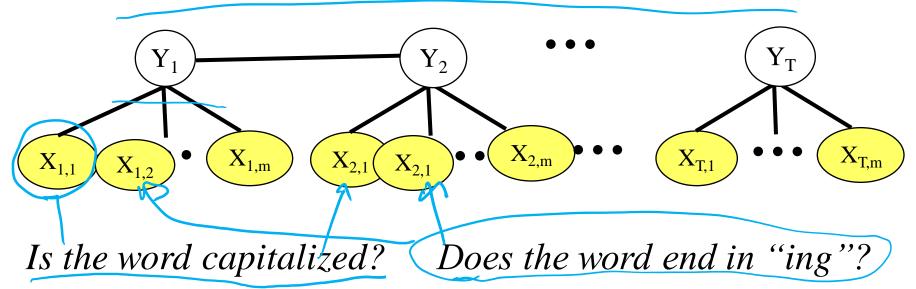
#### **Lecture Overview**

- Recap: Naïve Markov Logistic regression (simple CRF)
- CRFs: high-level definition
- CRFs Applied to sequence labeling
- NLP Examples: Name Entity Recognition, joint POS tagging and NP segmentation


#### Sequence Labeling



#### Linear-chain CRF


# Increase representational Complexity: Adding Features to a CRF

Instead of a single observed variable  $X_i$  we can model multiple features  $X_{ij}$  of that observation.



## **CRFs** in Natural Language Processing

- One target variable Y for each word X, encoding the possible labels for X
- Each target variable is connected to a set of feature variables that capture properties relevant to the target distinction

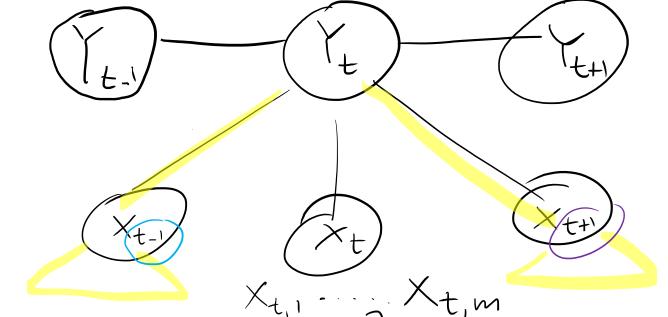


## Named Entity Recognition Task

- Entity often span multiple words "British Columbia"
- Type of an entity may not be apparent for individual words "University of British Columbia"
- Let's assume three categories: Person, Location, Organization
- BIO notation (for sequence labeling)

## Linear chain CRF parameters

With two factors "types" for each word


$$\phi_t^1(Y_t,Y_{t-1})$$
  $\phi_t^1(Y_t,Y_{t+1})$  Dependency between neighboring target vars

 $\phi_t^2(Y_t, X_1, ..., X_T)$ 

Dependency between target variable and its context in the word sequence, which can include also **features of the words** (capitalized, appear in an atlas of location names, etc.)

Factors are similar to the ones for the Naïve Markov (logistic regression)

$$\phi_t(Y_t,X_{tk}) = \exp\{w_{tk} \times 1 \{Y_t = \text{I-LOC}, X_{tk} = 1 \}\}$$
 opposition names



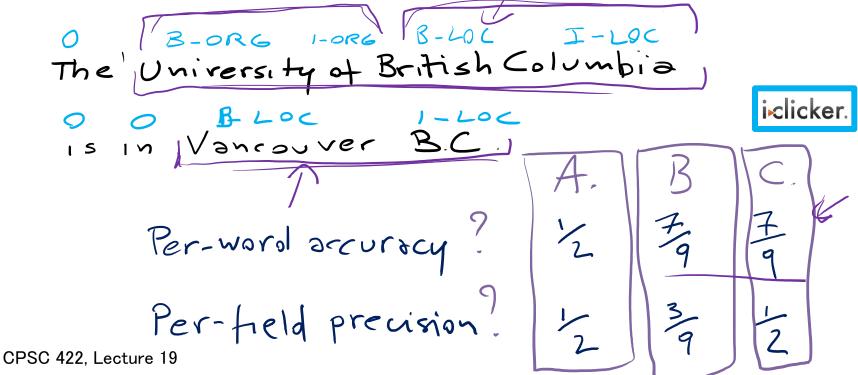
$$1 \left\{ Y_{t} = 1 - 0R6, X_{t,\kappa} = \text{Times} \right\}$$

#### Features can also be

- The word
- Following word
- Previous word

#### More on features

Including features that are conjunctions of simple features increases accuracy

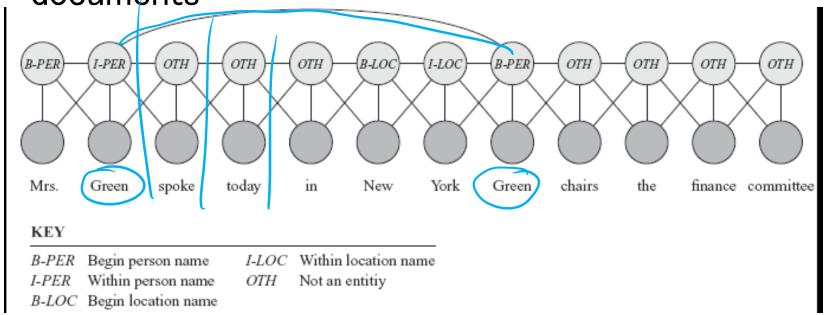

Total number of features can be  $10^5-10^6$ 

However features are sparse i.e. most features are 0 for most words

#### Linear-Chain Performance

Per-token/word accuracy in the high 90% range for many natural datasets

Per-field precision and recall are more often around 80-95%, depending on the dataset. Entire Named Entity Phrase must be correct



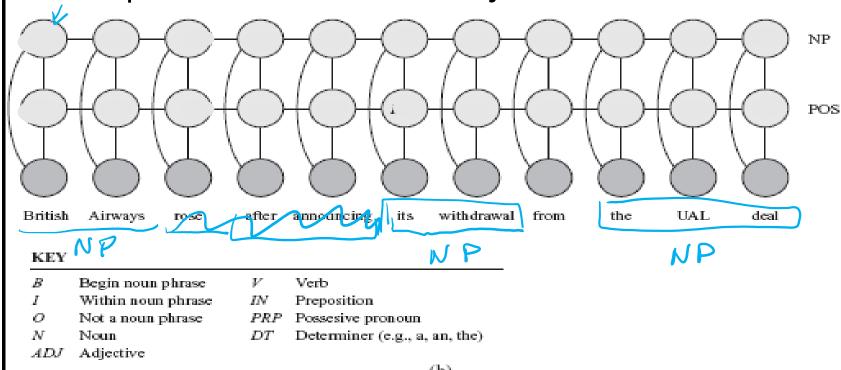

Slide 16

#### Skip-Chain CRFs

Include additional factors that connect non-adjacent target variables

E.g., When a word occur multiple times in the same documents

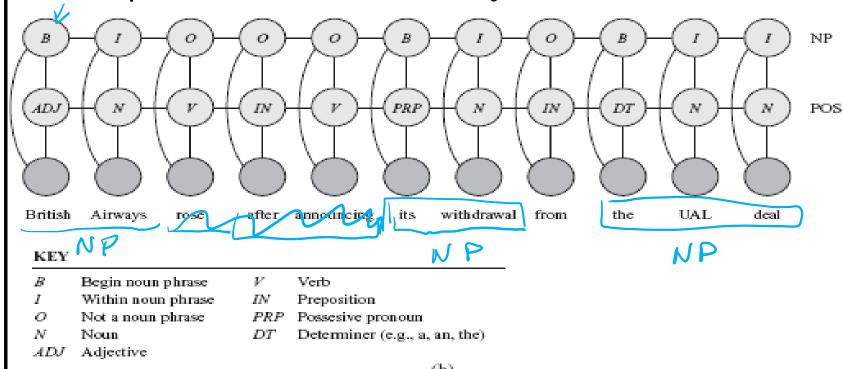



Graphical structure over Y can depend on the values of the Xs!

CPSC 422, Lecture 19

Slide 17

#### Coupled linear-chain CRFs


Linear-chain CRFs can be combined to perform multiple tasks simultaneously



Performs part-of-speech labeling and noun-phrase segmentation

#### Coupled linear-chain CRFs

Linear-chain CRFs can be combined to perform multiple tasks simultaneously

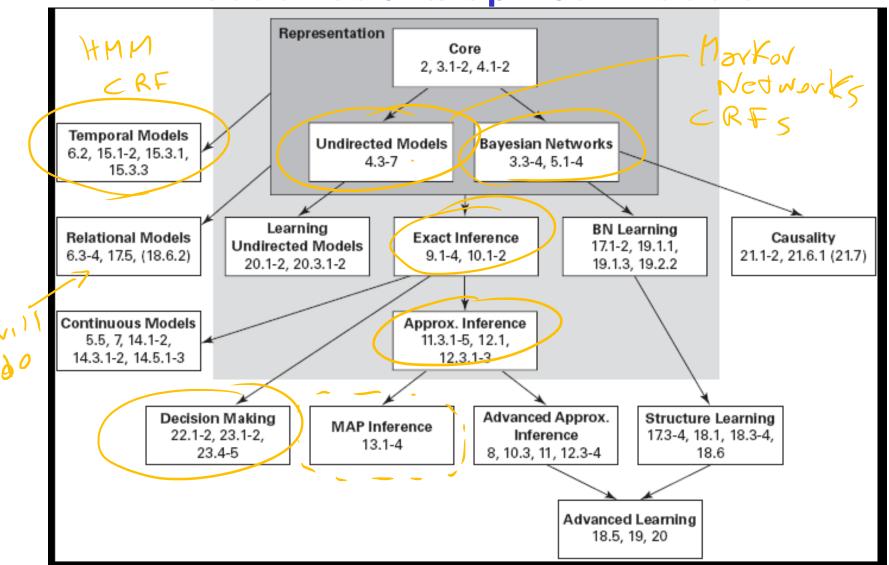


Performs part-of-speech labeling and noun-phrase segmentation

#### Inference in CRFs (just intuition)

An HMM can be viewed as a factor graph 
$$p(\mathbf{y}, \mathbf{x}) = \prod_{t} \Psi_t(y_t, y_{t-1}, x_t)$$
 where  $Z = 1$ , and the factors are defined as:  $\Psi_t(j, i, x) \stackrel{\text{def}}{=} p(y_t = j | y_{t-1} = i) p(x_t = x | y_t = j)$ . (4.1)

Forward / Backward / Smoothing and Viterbi can be rewritten (not trivial!) using these factors


Then you plug in the factors of the CRFs and all the algorithms work fine with CRFs! ©

#### **CRFs Summary**

- Ability to relax strong independence assumptions
- Ability to incorporate arbitrary overlapping local and global features
- Graphical structure over Y can depend on the values of the Xs
- Can perform multiple tasks simultaneously
- Standard Inference algorithm for HMM can be applied
- Practical Learning algorithms exist
- State-of-the-art on many labeling tasks (deep learning recently shown to be often better ··· current research on ensembling them?)

See MALLET package

## Probabilistic Graphical Models



From "Probabilistic Graphical Models: Principles and Techniques" D. Koller, N. Friedman 2009

#### 422 big picture: Where are we?

Hybrid: Det +Sto

Prob CFG
Prob Relational Models
Markov Logics

**Deterministic** 

**Stochastic** 

Logics

First Order Logics

Ontologies Temporal rep.

- Full Resolution
- SAT

**Belief Nets** 

Approx.: Gibbs

Markov Chains and HMMs

Forward, Viterbi....

Approx.: Particle Filtering

Undirected Graphical Models
Markov Networks

Conditional Random Fields

Markov Decision Processes and Partially Observable MDP

- Value Iteration
- Approx. Inference

Reinforcement Learning

Applications of AI

Representation

Reasoning Technique

Query

**Planning** 

## Learning Goals for today's class

#### You can:

- Provide general definition for CRF
- Apply CRFs to sequence labeling
- Describe and justify features for CRFs applied to Natural Language processing tasks
- Explain benefits of CRFs

# Midterm, Wed, Oct 26, we will start at 9am sharp

#### How to prepare…

- Go to Office Hours
- Learning Goals (look at the end of the slides for each lecture
   complete list ahs been posted)
- Revise all the clicker questions and practice exercises
- More practice material has been posted
- Check questions and answers on Piazza

#### Next class Fri

- Start Logics
- Revise Logics from 322!

#### **Announcements**

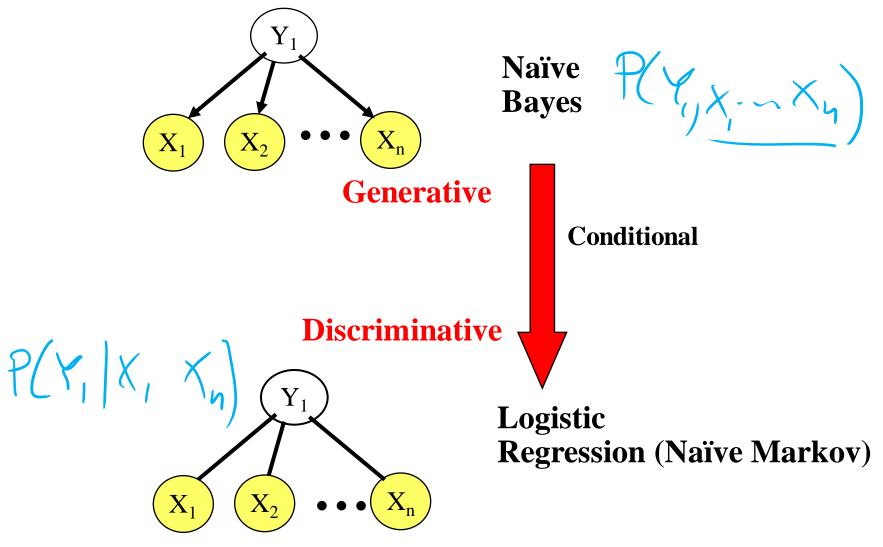
#### **Midterm**

- Avg 73.5 Max 105 Min 30
- If score below 70 need to very seriously revise all the material covered so far
- You can pick up a printout of the solutions along with your midterm.

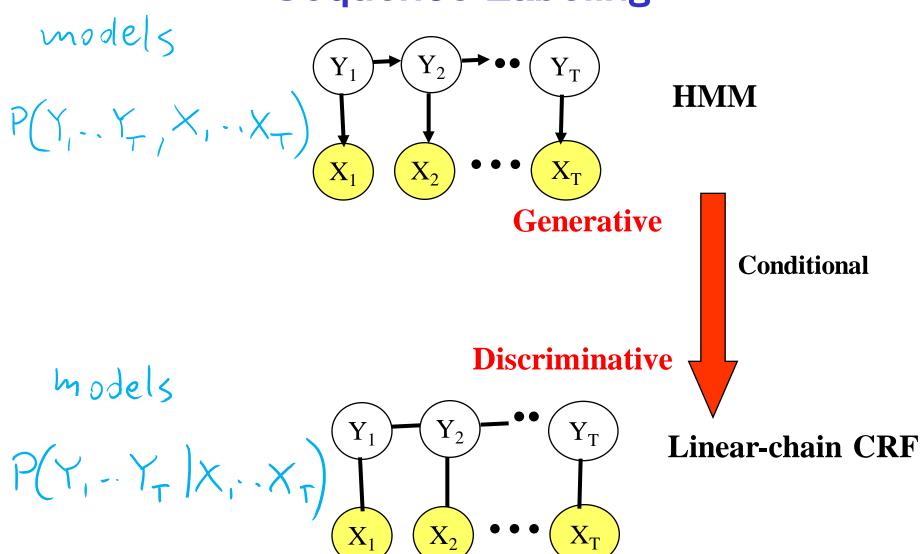
#### Generative vs. Discriminative Models

Generative models (like Naïve Bayes): not directly designed to maximize performance on classification. They model the joint distribution P(X,Y).

Classification is then done using Bayesian inference


But a generative model can also be used to perform any other inference task, e.g.  $P(X_1 \mid X_2, \dots X_n)$ 

"Jack of all trades, master of none."


Discriminative models (like CRFs): specifically designed and trained to maximize performance of classification. They only model the *conditional distribution* P(Y | X).

By focusing on modeling the conditional distribution, they generally perform better on classification than generative models when given a reasonable amount of training data.

## Naïve Bayes vs. Logistic Regression



## Sequence Labeling

