Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 18

Oct, 21, 2016

Slide Sources
Raymond J. Mooney University of Texas at Austin

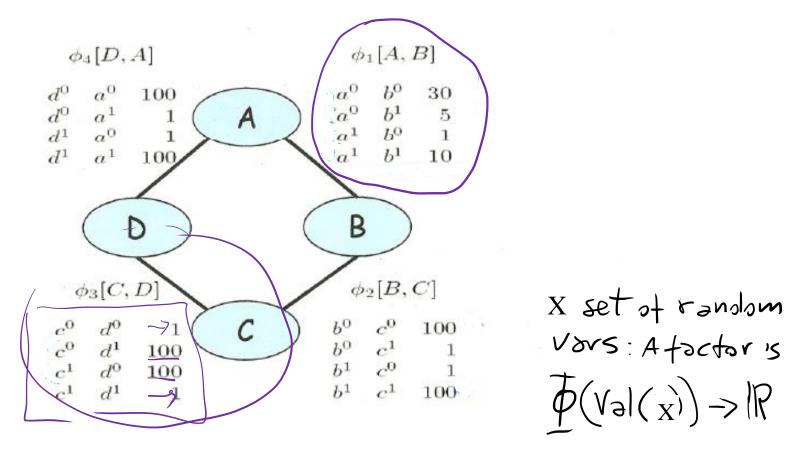
D. Koller, Stanford CS - Probabilistic Graphical Models

Lecture Overview

Probabilistic Graphical models

- Recap Markov Networks
- Recap one application
- Inference in Markov Networks (Exact and Approx.)
- Conditional Random Fields

Parameterization of Markov Networks



Factors define the local interactions (like CPTs in Bnets) What about the global model? What do you do with Bnets?

How do we combine local models?

As in BNets by multiplying them!

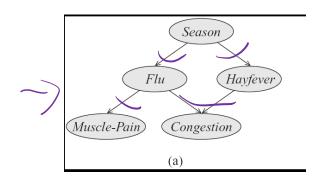
$$\tilde{P}(A, B, C, D) = \phi_1(A, B) \times \phi_2(B, C) \times \phi_3(C, D) \times \phi_4(A, D)$$

$$P(A, B, C, D) = \underbrace{\hat{1}}_{Z} \tilde{P}(A, B, C, D)$$

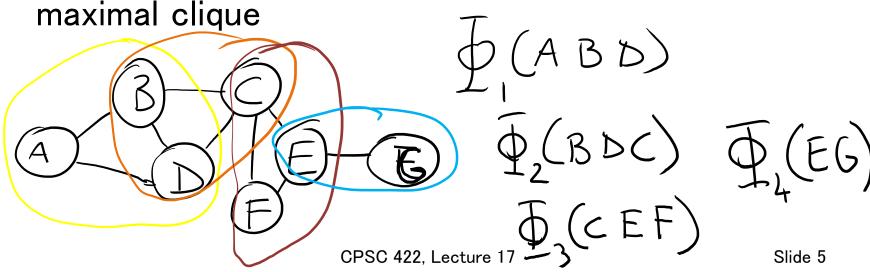
					The second second			
	A	ssig	$nm\epsilon$	nt	Unnormalized	Normalized		
	a^0	b^0	c^0	d^0	300000	.04	15.41	[[] D]
	a^0	b^0	c^0	d^1	300000	. 04	$\phi_4[D,A]$	$\phi_1[A,B]$
	a^0	b^0	c^1	d^0	300000	.04	$d^0 = a^0 = 100$	$a^0 b^0 30$
	a^0	b^0	c^1	d^1	30	4.1 x 10 -6	d^0 a^1 1 (\boldsymbol{A}	$a^0 b^1 5$
Ī	a^0	b^1	c^0	d^0	500		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{pmatrix} a^1 & b^0 & 1 \\ a^1 & b^1 & 10 \end{pmatrix}$
	a^0		c^0	d^1	500	:	a- a- 100/	\a \ \sigma \ \ 10
	a^0		c^1	d^0	5000000	. 69		
4	a^0		c^1	d^1	500	•	(D)	(B)
	a^1	b^0	c^0	d^0	100	,		
	a^1	b^0	c^0	d^1	1000000	•	$\phi_3[C,D]$	$\phi_2[B,C]$
	a^1	b^0	c^1	d^0	100	•		~
	a^1	b^0	c^1	d^1	100		$c^{0} d^{0} = 1$ (C	$b^0 e^0 100$
	a^1	b^1	c^0	d^0	10	•	c^{0} d^{1} 100 c^{1} d^{0} 100	b^0 c^1 1
	a^1	b^1	c^0	d^1	100000	,	$c^{1} d^{1} 1$	b^1 c^1 100
	a^1	b^1	c^1	d^0	100000	,		
	a^1	b^1	c^1	d^1	100000	<u> </u>		

Step Back…. From structure to factors/potentials

In a Bnet the joint is factorized….



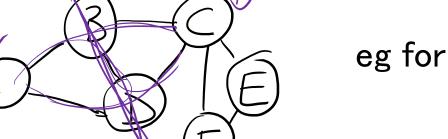
In a Markov Network you have one factor for each



General definitions

Two nodes in a Markov network are independent if and only if every path between them is cut off by

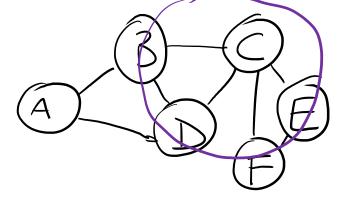
evidence



eg for A C

So the markov blanket of a node is…?

eg for C



Lecture Overview

Probabilistic Graphical models

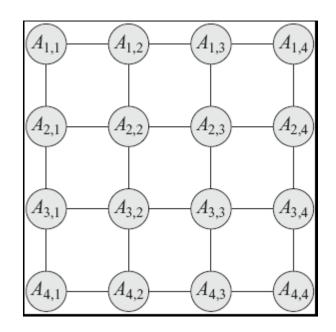
- Recap Markov Networks
- Applications of Markov Networks
- Inference in Markov Networks (Exact and Approx.)
- Conditional Random Fields

Markov Networks Applications (1): Computer Vision

Called Markov Random Fields

- Stereo Reconstruction
- Image Segmentation
- Object recognition

Typically pairwise MRF



- Each vars correspond to a pixel (or superpixel)
- Edges (factors) correspond to interactions between adjacent pixels in the image
 - E.g., in segmentation: from generically penalize discontinuities, to road under car

Image segmentation

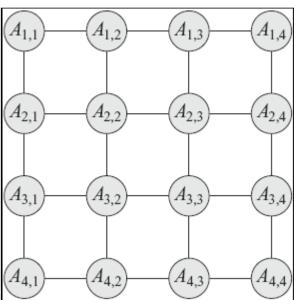
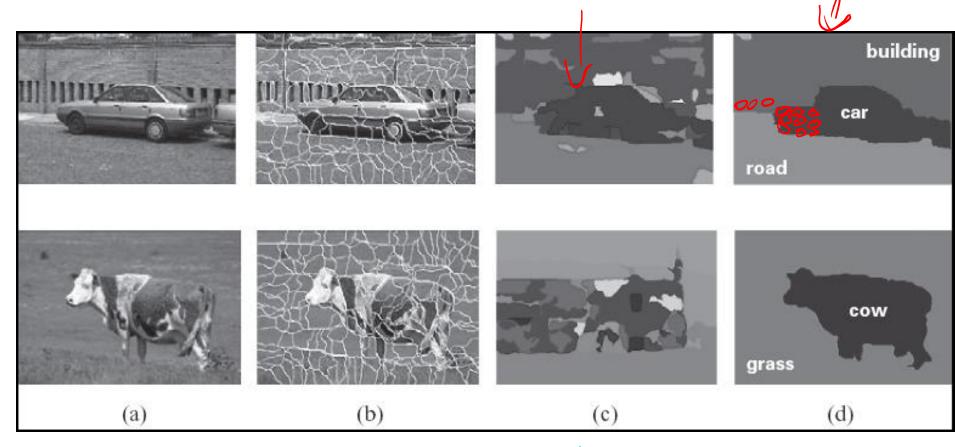


Image segmentation



clossfying each superpixel in dependently

With a Markov Random Field 1

Lecture Overview

Probabilistic Graphical models

- Recap Markov Networks
- Applications of Markov Networks
- Inference in Markov Networks (Exact and Approx.)
- Conditional Random Fields

Variable elimination algorithm for Bnets Given a network for $P(Z, Y_1, \dots, Y_i, Z_1, \dots, Z_i)$,:

To compute $P(Z|Y_1=v_1, \dots, Y_j=v_j)$:

- 1. Construct a factor for each conditional probability.
- 2. Set the observed variables to their observed values.
- 3. Given an elimination ordering, simplify/decompose sum of products
- 4. Perform products and sum out Z_i
- 5. Multiply the remaining factors Z
- 6. Normalize: divide the resulting factor f(Z) by $\sum_{Z} f(Z)$.

Variable elimination algorithm for Markov Networks...

Gibbs sampling for Markov Netwicker.

Example: P(D | C=0)

Note: never change evidence!

Resample non-evidence variables in a pre-defined order or a random order

Suppose we begin with A

What do we need to sample?

A. P(A | B=0)

B. P(A | B=0, C=0)

C. P(B=0, C=0 A)

A	В	C	D	Е	F
1	0	0	1	1	0

-6				_			
		(4			
	B					C	
	D					E	
		Y	F	<u> </u>		<i></i>	
	D	\ 			<i> </i> 	Ī	

Example: Gibbs sampling

Resample probability B=0; C=0 distribution of P(A|BC)

Α	В	C	D	Ш	F
1	0	0	1	1	0
?	0	0	1	1	0

	A=1	A=0
B=1	1	5
B=0	4.3	0.2

	A=1	A=0
C=1_	1	2
C=0	3	4

Φ2	X	Ф ₃	=
• _	•	• 3	

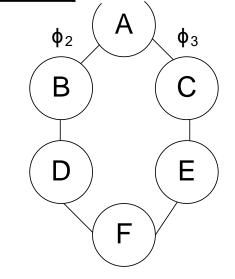
A=1	A=0
0.95	0.05

A=0

8.0

A=1

12.9



Example: Gibbs sampling

Resample probability distribution of B given A D

Α	В	С	D	Ш	F
1	0	0	1	1	0
1	0	0	1	1	0
1	?	0	1	1	0

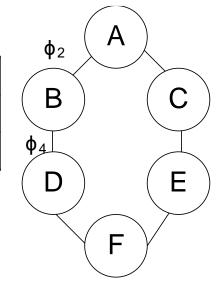
Φ2	X	Φ ₄	=
----	---	----------------	---

B=1	B=0
1	8.6

B=1	B=0
0.11	0.89

	A=1	Α	=0
B=1	1	5	
B=0	4.3	0.	2
•			

	D=1	D∍	:0
B=1	1	2	
B=0	2	1	



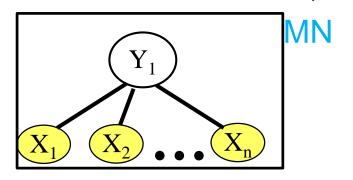
Lecture Overview

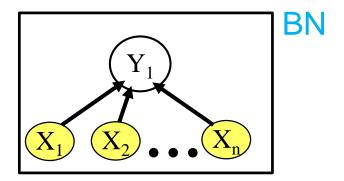
Probabilistic Graphical models

- Recap Markov Networks
- Applications of Markov Networks
- Inference in Markov Networks (Exact and Approx.)
- Conditional Random Fields

We want to model $P(Y_1 | X_1...X_n)$

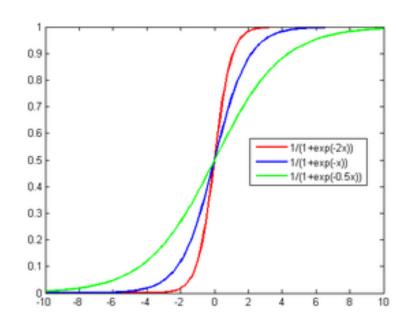
··· where all the X_i are always observed





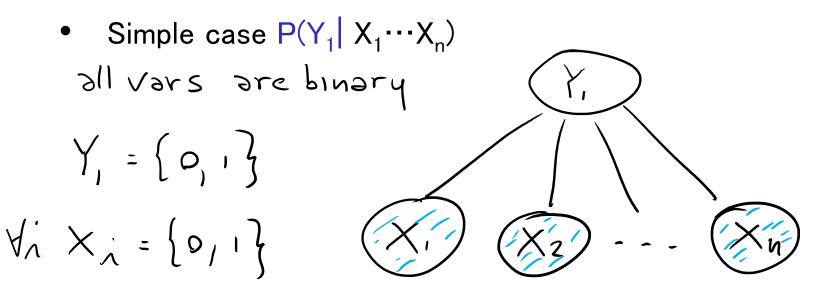
Which model is simpler, MN or BN?

 Naturally aggregates the influence of different parents

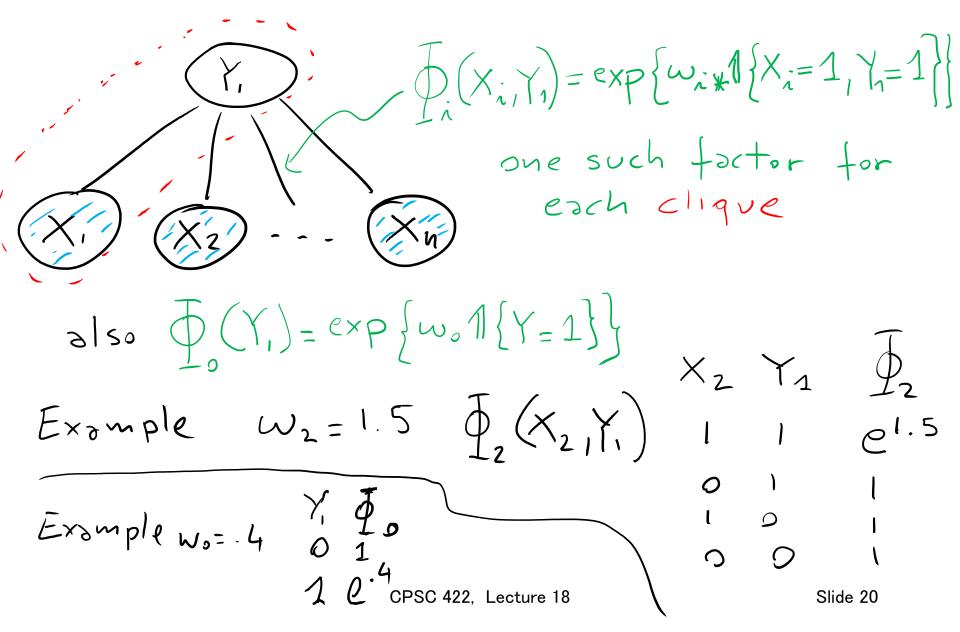


Conditional Random Fields (CRFs)

- Model P(Y₁ .. Y_k | X₁.. X_n)
- Special case of Markov Networks where all the X_i are always observed



What are the Parameters?



$$\phi_{i}(X_{i},Y_{1}) = \exp\{w_{i}*|\{X_{i}=1,Y_{1}=1\}\}\}$$

$$\phi_{0}(Y_{1}) = \exp\{w_{0}*|\{Y_{1}=1\}\}\}$$

$$Y_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$Y_{1}$$

$$X_{5}$$

$$X_{7}$$

$$X_{1}$$

$$X_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{6}$$

$$X_{1}$$

$$X_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{6}$$

$$X_{7}$$

$$X_{1}$$

$$X_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{6}$$

$$X_{7}$$

$$X_{1}$$

$$X_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{6}$$

$$X_{7}$$

$$X_{1}$$

$$X_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{6}$$

$$X_{7}$$

$$X_{1}$$

$$X_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{6}$$

$$X_{7}$$

$$X_{8}$$

$$X_{1}$$

$$X_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{6}$$

$$X_{7}$$

$$X_{8}$$

$$X_{1}$$

$$X_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{6}$$

$$X_{7}$$

$$X_{8}$$

$$X_{1}$$

$$X_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{6}$$

$$X_{7}$$

$$X_{8}$$

$$X_{1}$$

$$X_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{6}$$

$$X_{7}$$

$$X_{8}$$

$$X_{1}$$

$$X_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{6}$$

$$X_{7}$$

$$X_{8}$$

$$X_{1}$$

$$X_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{6}$$

$$X_{7}$$

$$X_{8}$$

$$X_{1}$$

$$X_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{7}$$

$$X_{8}$$

$$X_{1}$$

$$X_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{6}$$

$$X_{7}$$

$$X_{8}$$

$$X_{1}$$

$$X_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{7}$$

$$X_{8}$$

$$X_{1}$$

$$X_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{7}$$

$$X_{8}$$

$$X_{1}$$

$$X_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{7}$$

$$X_{8}$$

$$X_{1}$$

$$X_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{7}$$

$$X_{8}$$

$$X_{8}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{7}$$

$$X_{8}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{7}$$

$$X_{8}$$

$$X_{8}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{7}$$

$$X_{8}$$

$$X_{8}$$

$$X_{8}$$

$$X_{9}$$

$$X_{1}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{7}$$

$$X_{8}$$

$$X_{8}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{7}$$

$$X_{8}$$

$$X_{8}$$

$$X_{8}$$

$$X_{8}$$

$$X_{8}$$

$$X_{8}$$

$$X_{8}$$

$$X_{8}$$

$$X_{9}$$

$$X_{1}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{7}$$

$$X_{8}$$

$$X_{8}$$

$$X_{8}$$

$$X_{8}$$

$$X_{8}$$

$$X_{8}$$

$$X_{8}$$

$$X_{8}$$

$$X_$$

CPSC 422, Lecture 18

Slide 21

$$\phi_{i}(X_{i}, Y_{1}) = \exp\{w_{i} \mid \{X_{i} = 1, Y_{1} = 1\}\}$$

$$\phi_{0}(Y_{1}) = \exp\{w_{0} \mid \{Y_{1} = 1\}\}\}$$

$$(Y_{1} = 1, X_{1}, X_{2}, \dots, X_{n}) = (Y_{1}) \mid \{X_{1} \mid X_{2}, \dots, X_{n}\}$$

$$(Y_{1} = 1, X_{1}, X_{2}, \dots, X_{n}) = (Y_{1}) \mid \{X_{1} \mid X_{2}, \dots, X_{n}\}$$

$$(Y_{1} = 1, X_{1} = 0, X_{2} = 1, X_{3} = 1)$$

$$(Y_{1} = 1, X_{1} = 0, X_{2} = 1, X_{3} = 1)$$

$$(Y_{1} = 1, X_{1} = 0, X_{2} = 1, X_{3} = 1)$$

$$(Y_{1} = 1, X_{1} = 0, X_{2} = 1, X_{3} = 1)$$

$$(Y_{1} = 1, X_{1} = 0, X_{2} = 1, X_{3} = 1)$$

$$(Y_{1} = 1, X_{1} = 0, X_{2} = 1, X_{3} = 1)$$

$$(Y_{1} = 1, X_{1} = 0, X_{2} = 1, X_{3} = 1)$$

$$(Y_{1} = 1, X_{1} = 0, X_{2} = 1, X_{3} = 1)$$

$$(Y_{1} = 1, X_{1} = 0, X_{2} = 1, X_{3} = 1)$$

$$(Y_{2} = 1, X_{3} = 1, X_{3} = 1)$$

$$(Y_{3} = 1, X_{1} = 1, X_{2} = 1, X_{3} = 1)$$

$$(Y_{2} = 1, X_{3} = 1, X_{3} = 1, X_{3} = 1)$$

$$(Y_{3} = 1, X_{3} = 1, X_{3} = 1, X_{3} = 1)$$

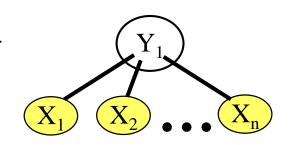
$$(Y_{3} = 1, X_{3} = 1, X_{3} = 1, X_{3} = 1)$$

$$(Y_{3} = 1, X_{3} = 1, X_{3} = 1, X_{3} = 1, X_{3} = 1)$$

$$(Y_{3} = 1, X_{3} = 1$$

$$\phi_i(X_i, Y_1) = \exp\{w_i \mid \{X_i = 1, Y_1 = 1\}\}\$$

$$\phi_0(Y_1) = \exp\{w_0 \mid \{Y_1 = 1\}\}\$$



$$\tilde{P}(Y_1 = 0, X_1, X_2, \dots, X_N) = \frac{1}{2} (Y_1) * \prod_{i=1}^{N} \frac{1}{2} (X_i, Y_i)$$

$$P(Y_1 = 1, x_1, ..., x_n) = \exp(w_0 + \sum_{i=1}^n w_i x_i)$$

$$P(Y_1 = 0, x_1, ..., x_n) = 1$$

$$P(Y_1 = 1 | x_1, ..., x_n) = \frac{P(Y_1 | X_1, ..., X_n)}{P(X_1, ..., X_n)}$$

$$= \frac{e \times P(w_0 + \sum_{i=1}^n w_i x_i)}{1 + e \times P(w_0 + \sum_{i=1}^n w_i x_i)}$$

$$= \frac{e \times P(w_0 + \sum_{i=1}^n w_i x_i)}{1 + e \times P(w_0 + \sum_{i=1}^n w_i x_i)}$$

CPSC 422, Lecture 18

Slide 24

$$\tilde{P}(Y_1 = 1, x_1, ..., x_n) = \exp(w_0 + \sum_{i=1}^n w_i x_i)$$

$$\tilde{P}(Y_1 = 0, x_1, ..., x_n) = 1$$

$$\tilde{X}_1 \times X_2 \cdot \cdot \cdot X_n$$

$$P(Y_1 = 1 \mid x_1,, x_n) =$$

$$= \frac{e^{z}}{1 + e^{z}}$$

$$\widehat{\widehat{P}}(Y_{\overline{1}}), \times \dots, \times n$$

$$P(x_1,\ldots,x_n)$$

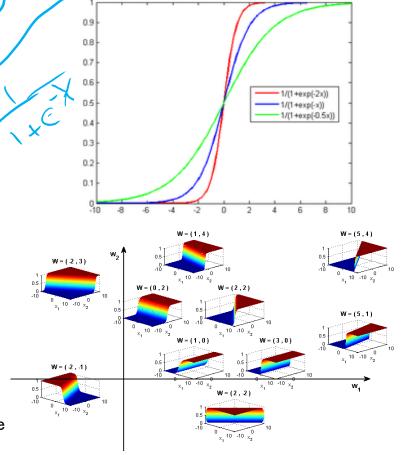
Sigmoid Function used in Logistic Regression

Great practical interest

• Number of param w_i is linear instead of exponential in the number of parents

 Natural model for many real world applications

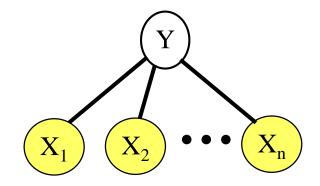
 Naturally aggregates the influence of different parents



CPSC 422, Lecture

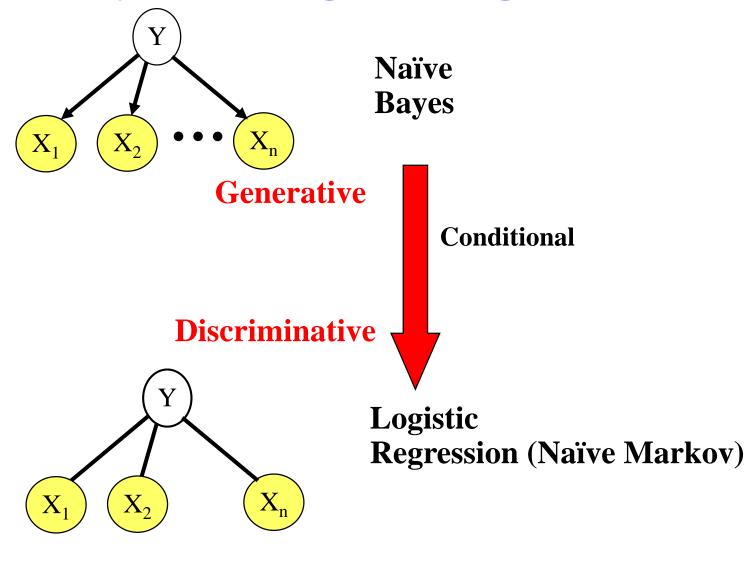
Logistic Regression as a Markov Net (CRF)

Logistic regression is a simple Markov Net (a CRF) aka naïve markov model



But only models the conditional distribution, P(Y|X) and not the full joint P(X,Y)

Naïve Bayes vs. Logistic Regression



Learning Goals for today's class

>You can:

- Perform Exact and Approx. Inference in Markov Networks
- Describe a few applications of Markov Networks
- Describe a natural parameterization for a Naïve Markov model (which is a simple CRF)
- Derive how P(Y|X) can be computed for a Naïve Markov model
- Explain the discriminative vs. generative distinction and its implications

Next class Mon Linear-chain CRFs

To Do Revise generative temporal models (HMM)

Midterm, Wed, Oct 26, we will start at 9am sharp

How to prepare....

- Go to Office Hours
- Learning Goals (look at the end of the slides for each lecture
 complete list ahs been posted)
- · Revise all the clicker questions and practice exercises
- More practice material has been posted
- Check questions and answers on Piazza

Generative vs. Discriminative Models

Generative models (like Naïve Bayes): not directly designed to maximize performance on classification. They model the joint distribution P(X, Y).

Classification is then done using Bayesian inference

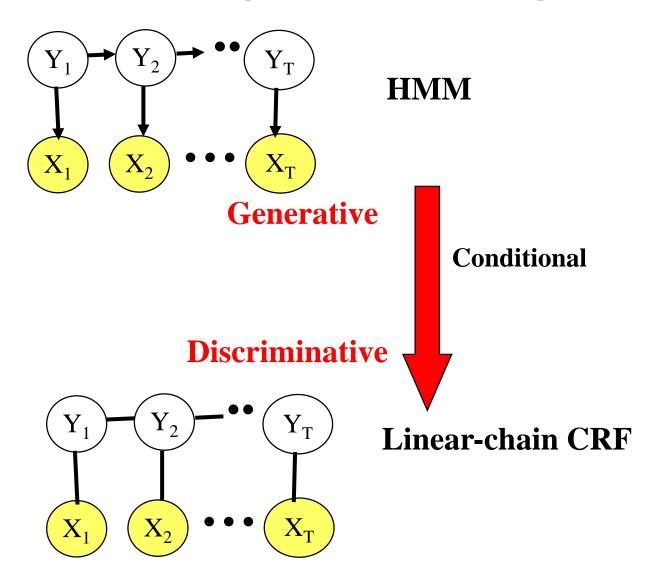
But a generative model can also be used to perform any other inference task, e.g. $P(X_1 \mid X_2, \dots X_n)$

"Jack of all trades, master of none."

Discriminative models (like CRFs): specifically designed and trained to maximize performance of classification. They only model the *conditional distribution* P(Y | X).

By focusing on modeling the conditional distribution, they generally perform better on classification than generative models when given a reasonable amount of training data.

On Fri: Sequence Labeling



Lecture Overview

- Indicator function
- P(X,Y) vs. P(X|Y) and Naïve Bayes
- Model P(Y|X) explicitly with Markov Networks
 - Parameterization
 - Inference
- Generative vs. Discriminative models

P(X,Y) vs. P(Y|X)

Assume that you always observe a set of variables $X = \{X_1 \cdots X_n\}$ and you want to predict one or more variables $Y = \{Y_1 \cdots Y_m\}$

You can model P(X,Y) and then infer P(Y|X)

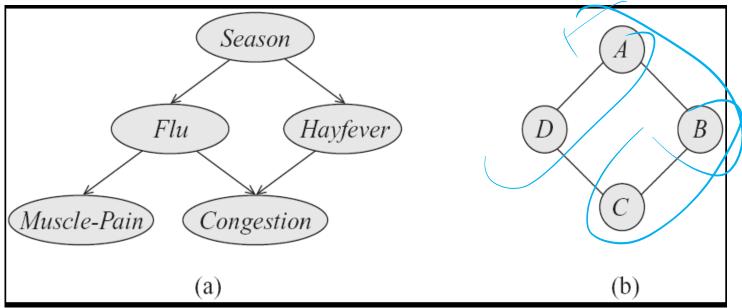
P(X,Y) vs. P(Y|X)

With a **Bnet** we can represent a joint as the product of Conditional Probabilities

With a **Markov Network** we can represent a joint a the product of **Factors**

We will see that **Markov Network** are also suitable for representing the conditional prob. P(Y|X) directly

Directed vs. Undirected



$$P(ABCD) = \frac{1}{2} \overline{p}_{1}(AB) \times \overline{p}_{2}(BC) * \overline{p}_{3}(CD) * \overline{p}_{4}(AD)$$

Factorization

Naïve Bayesian Classifier P(Y,X)

A very simple and successful Bnets that allow to classify entities in a set of classes Y_1 , given a set of features $(X_1 \cdots X_n)$

Example:

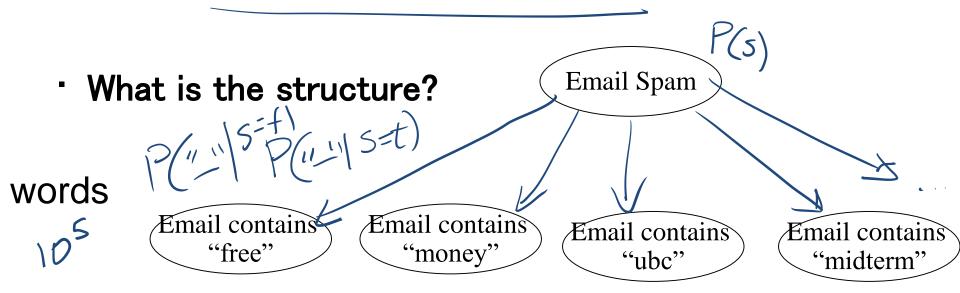
- Determine whether an email is spam (only two classes spam=T and spam=F)
- Useful attributes of an email?

Assumptions

- The value of each attribute depends on the classification
- (Naïve) The attributes are independent of each other given the classification

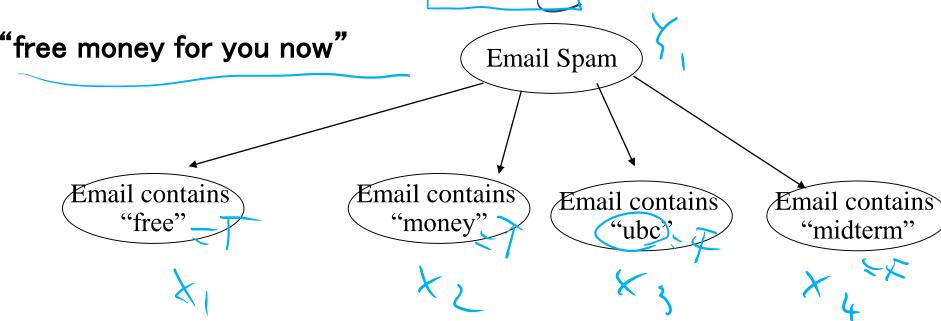
Naïve Bayesian Classifier for Email Spam

The corresponding Bnet represent : P(Y1, X1···Xn)



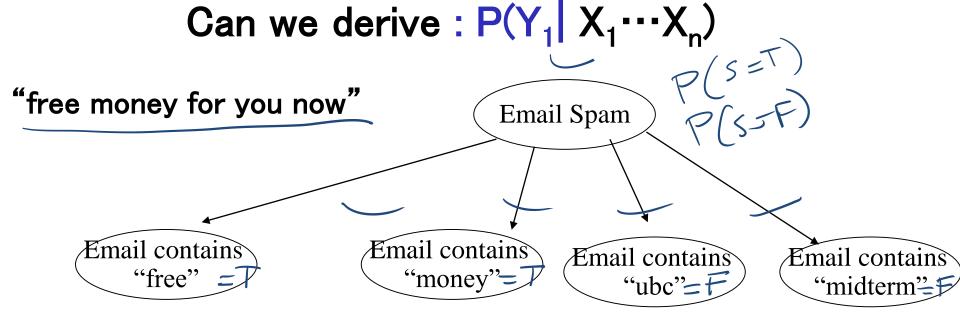
NB Classifier for Email Spam: Usage

Can we derive : $P(Y_1 | X_1 \cdots X_n)$ for any $x_1 \cdots x_n$



But you can also perform any other inference e.g., $P(X_1|X_3)$

NB Classifier for Email Spam: Usage



But you can perform also any other inference e.g., $P(X_1|X_3)$

