Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 17

Oct, 19, 2016

Slide Sources *D. Koller,* Stanford CS – Probabilistic Graphical Models *D. Page*, Whitehead Institute, MIT

Several Figures from "Probabilistic Graphical Models: Principles and Techniques" *D. Koller, N. Friedman* 2009

CPSC 422, Lecture 17

Lecture Overview

Finish (directed) temporal models

Probabilistic Graphical models

• Undirected models

Simple but Powerful Approach: Particle Filtering

Idea from Exact Filtering: should be able to compute $P(X_{t+1} | e_{1:t+1})$ from $P(X_t | e_{1:t})$

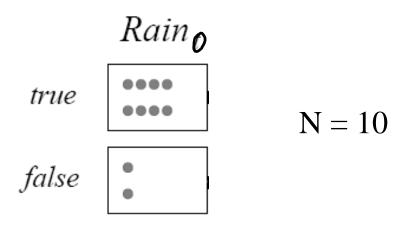
".. One slice from the previous slice..."

Idea from Likelihood Weighting

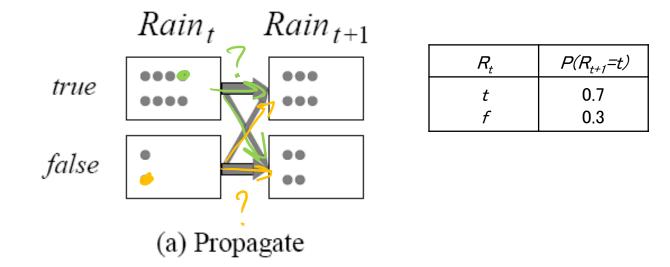
 Samples should be weighted by the probability of evidence given parents

New Idea: run multiple samples simultaneously through the network

- Run all N samples together through the network, one slice at a time
- **STEP 0**: Generate a population on N initial-state samples by sampling from initial state distribution $P(X_0)$

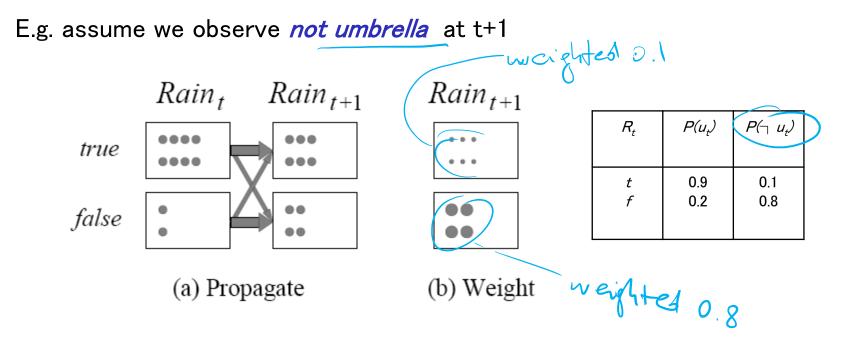


STEP 1: Propagate each sample for x_t forward by sampling the next state value x_{t+1} based on $P(X_{t+1}|X_t)$

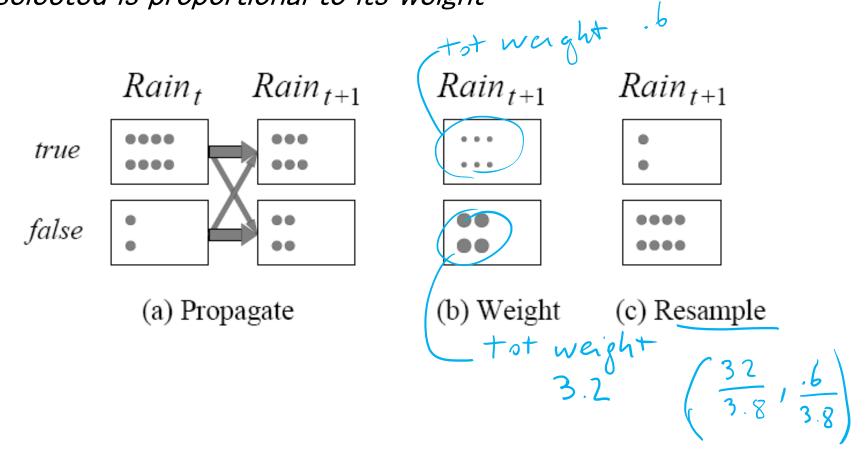


STEP 2: Weight each sample by the likelihood it assigns to the evidence

•



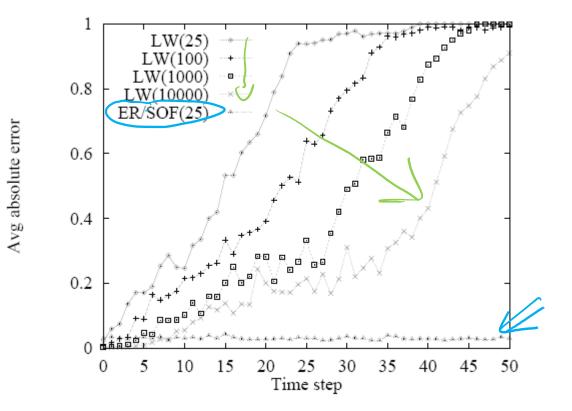
STEP 3: Create a new population from the population at $X_{t+1, i.e.}$ resample the population so that the probability that each sample is selected is proportional to its weight



Start the Particle Filtering cycle again from the new sample

Is PF Efficient?

In practice, approximation error of particle filtering remains bounded overtime



It is also possible to prove that the approximation maintains bounded error with high probability

(with specific assumption: probs in transition and sensor models >0 and <1)

422 big picture: Where are we?

StarAI (statistical relational AI)

Hybrid: Det +Sto Prob CFG Prob Relational Models Markov Logics

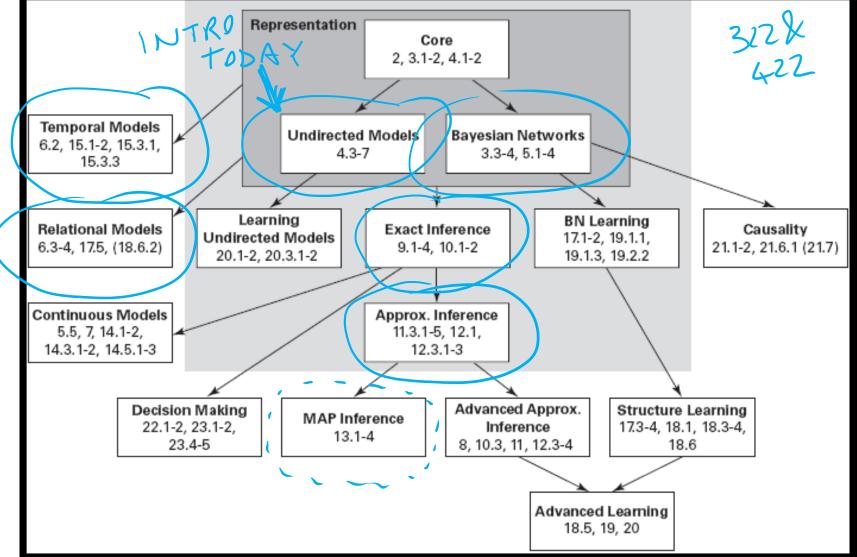
	Deterministic	Stochastic	Markov Log	gics
Query	Logics First Order Logics Ontologies Temporal rep. • Full Resolution • SAT	Belief Nets Approx. : Gibbs Markov Chains and HMMs Forward, Viterbi···. Approx. : Particle Filtering Undirected Graphical Models Markov Networks Conditional Random Fields Markov Decision Processes and Partially Observable MDP		
		Approx. Inferent <i>Reinforcement Learni</i>		Representation
	Applicatio			Reasoning Technique

Lecture Overview

Probabilistic Graphical models

- Intro
- Example
- Markov Networks Representation (vs. Belief Networks)
- Inference in Markov Networks (Exact and Approx.)
- Applications of Markov Networks

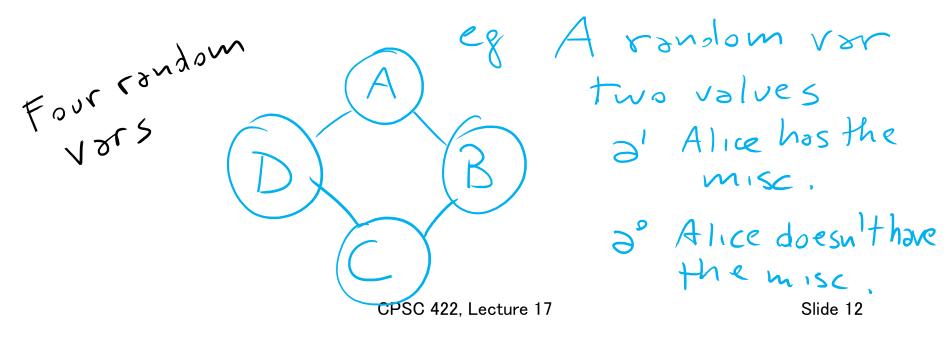
Probabilistic Graphical Models



From "Probabilistic Graphical Models: Principles and Techniques" D. Koller, N. Friedman 2009

Misconception Example

- Four students (Alice, Bill, Debbie, Charles) get together in pairs, to work on a homework
- But only in the following pairs: AB AD DC BC
- Professor misspoke and might have generated misconception
- A student might have figured it out later and told study partner

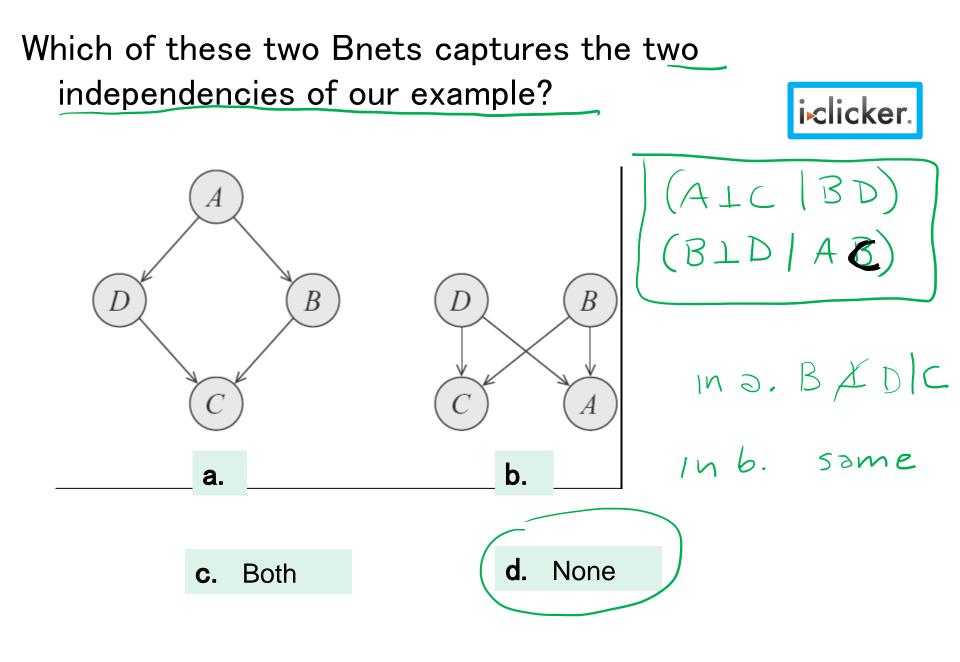


Example: In/Depencencies

Are A and C independent because they never spoke? No, because A might have figure it out and told B who then told C

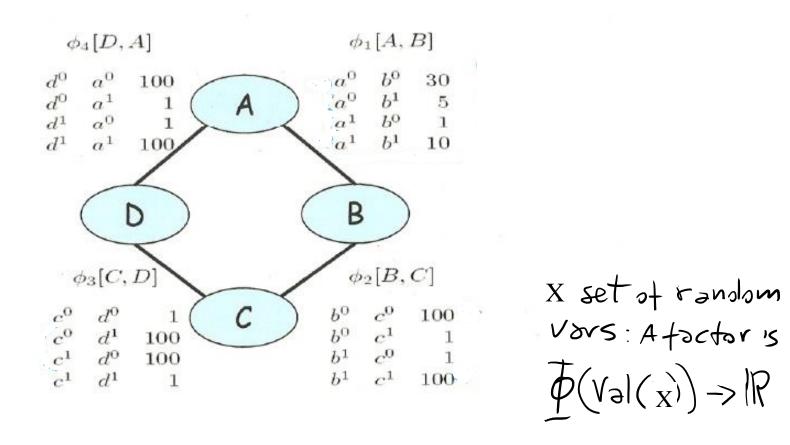
But if we know the values of B and D \cdots .

And if we know the values of A and C



CPSC 422, Lecture 17

Parameterization of Markov Networks



Factors define the local interactions (like CPTs in Bnets) What about the global model? What do you do with Bnets?

How do we combine local models? As in BNets by multiplying them!

 $\tilde{P}(A, B, C, D) = \phi_1(A, B) \times \phi_2(B, C) \times \phi_3(C, D) \times \phi_4(A, D)$ $P(A, B, C, D) = \frac{1}{Z} \tilde{P}(A, B, C, D) \qquad P(A, B) ?$

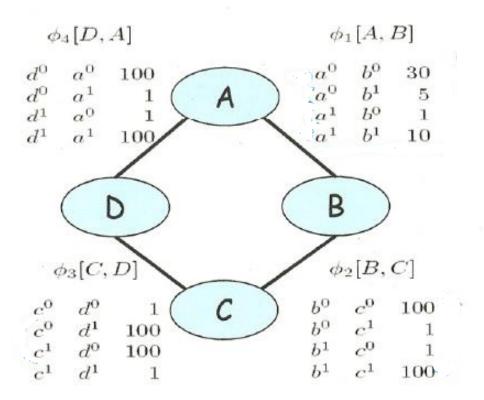
As	sig	nme	nt	Unnormalized	Normalized	
0	b^0	c^0	d^0	300000	.04	
0	b^0	c^0	d^1	300000	<i>оц</i> $\phi_4[D,A]$	$\phi_1[A,$
	b ⁰	c^1	d^0	300000	$.04$ ($d^0 a^0 100$	$a^0 - b^0$
	b^0	c^1	d^1	30	$4 x 0^{-6}$ $d^{0} a^{1} (A)$	$\begin{array}{ccc} a^0 & b^0 \\ a^0 & b^1 \end{array}$
	b^1	c^0	d^0	500	$d^1 a^0 1$	$\begin{array}{ccc} a^1 & b^0 \\ a^1 & b^1 \end{array}$
_	b^1	c^0	d^1	500	$d^1 a^1 100$	a- 0-
	b^1	c^1	d^0	5000000	. 69	>
	b^1	c^1	d^1	500	(D) (B
	b^0	c^0	d^0	100		Y
	b^0	c^0	d^1	1000000	$\phi_3[C,D]$	$\phi_2[B,$
ι	b^0	c^1	d^0	100		
	b^0	c^1	d^1	100	$c_0^0 d_1^0 1 (C)$	$b^0 c^0$
	b^1	c^0	d^0	10	$c^{0} d^{1} 100$ $c^{1} d^{0} 100$	$\begin{array}{ccc} b^0 & c^1 \\ b^1 & c^0 \end{array}$
1	b^1	c^0	d^1	100000	c^{1} d^{1} d^{1} 1	$b^1 c^1$
	b^1	c^1	d^0	100000		a_ n_
	b^1	c^1	d^1	100000		

CPSC 422, Lecture 17

Multiplying Factors (same seen in 322 for VarElim)

								a^1	b^1	c^1	$0.5 \cdot 0.5 = 0.25$
								a^1	b^1	c^2	$0.5 \cdot 0.7 = 0.35$
								a^1	b^2	c^1	$0.8 \cdot 0.1 = 0.08$
a^1	b^1	0.5	<u> </u>					a^1	b^2	c^2	$0.8 \cdot 0.2 = 0.16$
a^1	b^2	0.8	$\langle \rangle$	b^1	c^1	0.5		a^2	b^1	c^1	$0.1 \cdot 0.5 = 0.05$
a ²	b^1	0.1	$\overset{\sim}{\longrightarrow}$	b^1	c^2	0.7		a^2	b^1	c^2	$0.1 \cdot 0.7 = 0.07$
a^2	b^2	0	\checkmark	b^2	c^1	0.1	_ /	a^2	b^2	c^1	$0 \cdot 0.1 = 0$
<i>a</i> ³	b^1	0.3		b^2	c^2	0.2		a^2	b^2	c^2	0.0.2 = 0
<i>a</i> ³	b^2	0.9						<i>a</i> ³	b^1	c^1	$0.3 \cdot 0.5 = 0.15$
			-					a^3	b^1	c^2	$0.3 \cdot 0.7 = 0.21$
								<i>a</i> ³	b^2	c^1	$0.9 \cdot 0.1 = 0.09$
								a^3	b^2	c^2	$0.9 \cdot 0.2 = 0.18$

Factors do not represent marginal probs. !

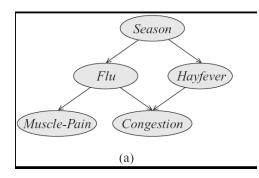


a ⁰ b ⁰	0.13
a ⁰ b ¹	0.69
a ¹ b ⁰	0.14
a ¹ b ¹	0.04

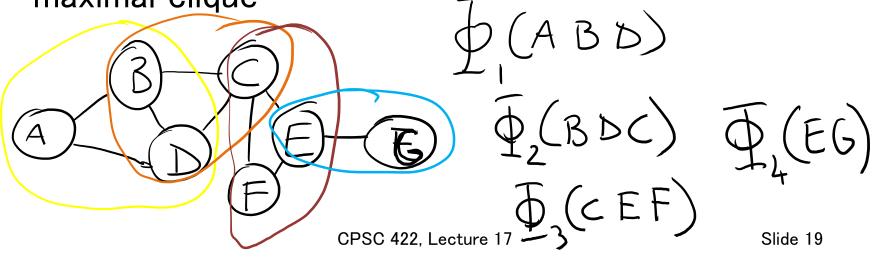
Marginal P(A,B) Computed from the joint

Step Back.... From structure to factors/potentials

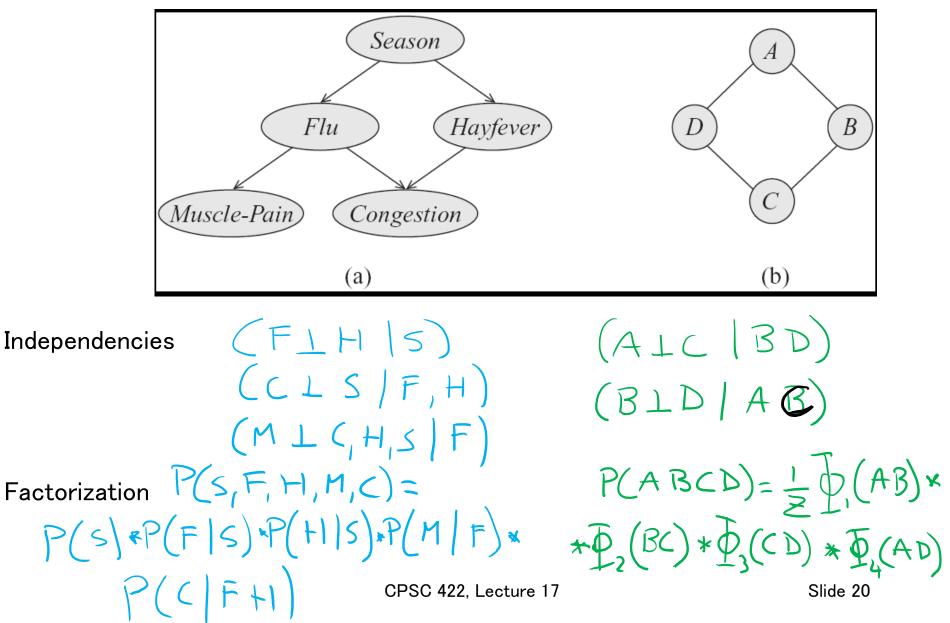
In a Bnet the joint is factorized....



In a Markov Network you have one factor for each maximal clique au



Directed vs. Undirected



General definitions

Two nodes in a Markov network are **independent** if and only if every path between them is cut off by evidence

eg for A C

So the markov blanket of a node is ···?

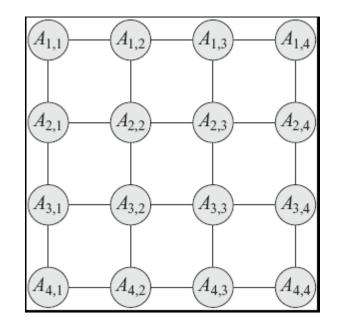
eg for C

Markov Networks Applications (1): Computer Vision

Called Markov Random Fields

- Stereo Reconstruction
- Image Segmentation
- Object recognition

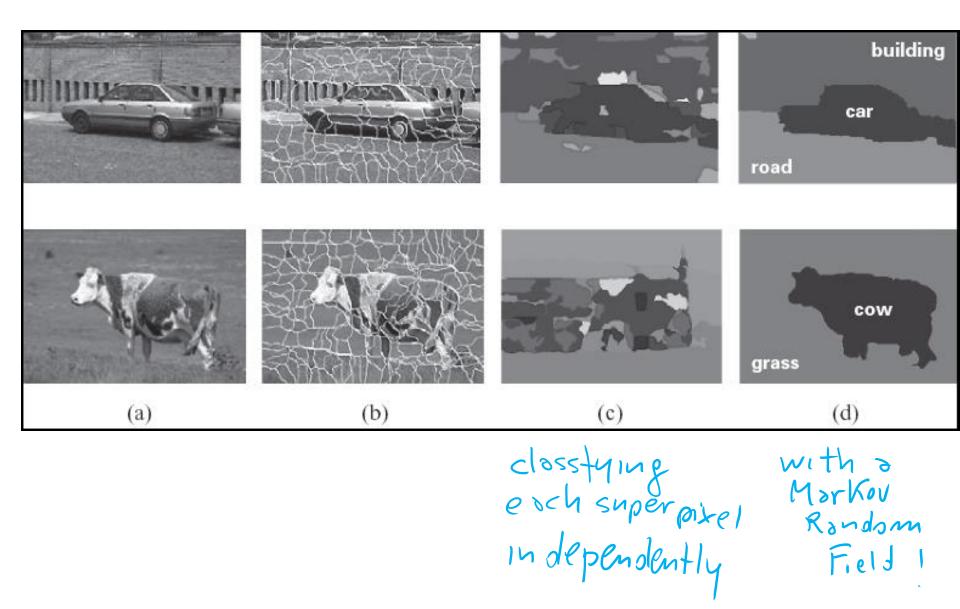
Typically **pairwise MRF**



- Each vars correspond to a pixel (or superpixel)
- Edges (factors) correspond to interactions between adjacent pixels in the image
 - E.g., in segmentation: from generically penalize discontinuities, to road under car

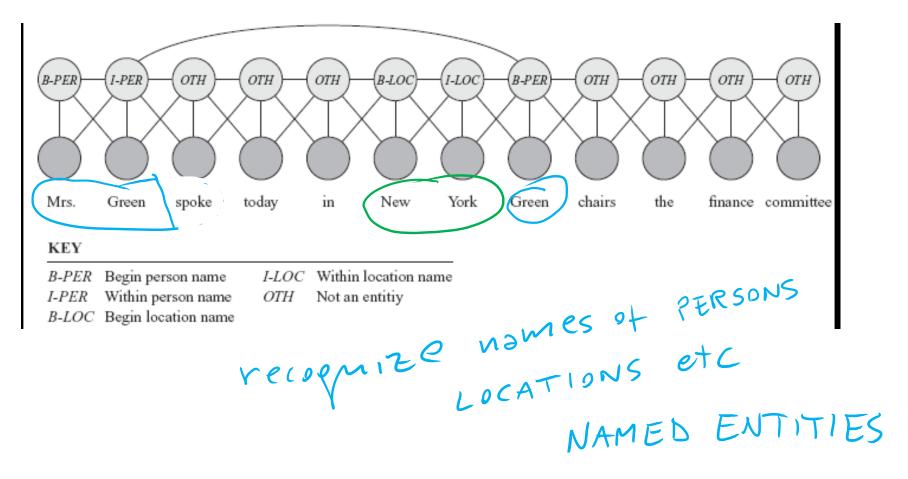
CPSC 422, Lecture 17

Image segmentation



Markov Networks Applications (2): Sequence Labeling in NLP and BioInformatics

Conditional random fields (next class Fri)



CPSC 422, Lecture 17

Learning Goals for today's class

≻You can:

- Justify the need for undirected graphical model (Markov Networks)
- Interpret local models (factors/potentials) and combine them to express the joint
- Define independencies and Markov blanket for Markov Networks
- Perform Exact and Approx. Inference in Markov Networks
- Describe a few applications of Markov Networks

One week to Midterm, Wed, Oct 26, we will start at 9am sharp

How to prepare....

- Keep Working on **assignment-2** !
- Go to **Office Hours**
- Learning Goals (look at the end of the slides for each lecture – complete list ahs been posted)
- Revise all the clicker questions and practice exercises
- More practice material has been posted
- Check questions and answers on Piazza

How to acquire factors?

