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Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 14

Oct, 12, 2016

Slide credit: some slides adapted from Stuart Russell (Berkeley)



422 big picture: Where are we?

Query

Planning

Deterministic Stochastic

• Value Iteration

• Approx. Inference

• Full Resolution
• SAT

Logics
Belief Nets

Markov Decision Processes  and  
Partially Observable MDP

Markov Chains and HMMsFirst Order Logics

Ontologies
Temporal rep.

Applications of AI

Approx. : Gibbs

Undirected Graphical Models
Markov Networks

Conditional Random Fields

Reinforcement Learning Representation

Reasoning
Technique

Prob CFG
Prob Relational Models
Markov Logics

StarAI (statistical relational AI)

Hybrid: Det +Sto

Forward, Viterbi….

Approx. : Particle Filtering
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Lecture Overview
(Temporal Inference)

• Filtering (posterior distribution over the current state given 

evidence to date)

• From intuitive explanation to formal derivation

• Example

• Prediction (posterior distribution over a future state given 

evidence to date)

• (start) Smoothing (posterior distribution over a past state 

given all evidence to date)
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Markov Models 

Markov Chains

Hidden Markov Model

Markov Decision 
Processes (MDPs)
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Partially Observable 
Markov Decision 

Processes (POMDPs)
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Hidden Markov Model

• P (X0) specifies initial conditions

• P (Xt+1|Xt) specifies the dynamics

• P (Et |St) specifies the sensor model

• A Hidden Markov Model (HMM) starts with a Markov chain, 
and adds a noisy observation/evidence about the state at 
each time step:

• |domain(X)| = k

• |domain(E)| = h



Simple Example 
(We’ll use this as a running example)

 Guard stuck in a high-security bunker

 Would like to know if it is raining outside

 Can only tell by looking at whether his boss comes into the bunker with an 
umbrella every day Transition 

model State

variables

Observable 

variables

Observation 

model



Useful inference in HMMs
• In general (Filtering): compute the posterior 

distribution over the current state given all evidence 
to date
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P(Xt | e0:t ) 



Intuitive Explanation for filtering recursive formula
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P(Xt | e0:t ) 



Filtering 

 Idea: recursive approach

• Compute filtering up to time t-1, and then include the evidence for time t 
(recursive estimation)

 P(Xt | e0:t) = P(Xt | e0:t-1,et )     dividing up the evidence

= α P(et | Xt, e0:t-1 ) P(Xt | e0:t-1 )  WHY?

= α P(et | Xt) P(Xt | e0:t-1 )  WHY?

One step prediction of current state 

given evidence up to t-1
Inclusion of new evidence: this is 

available from..

 So we only need to compute P(Xt | e0:t-1 )

A. Bayes Rule

B. Cond. Independence

C. Product Rule



“moving” the conditioning
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Filtering 
 Compute P(Xt | e0:t-1 )

P(Xt | e0:t-1 ) = ∑xt-1
P(Xt, xt-1 |e0:t-1 ) = ∑xt-1

P(Xt | xt-1 , e0:t-1 ) P( xt-1 | e0:t-1 ) = 

= ∑xt-1
P(Xt | xt-1 ) P( xt-1 | e0:t-1 ) because of..

 Putting it all together, we have the desired recursive formulation 

P(Xt | e0:t) = α P(et | Xt) ∑xt-1
P(Xt | xt-1 ) P( xt-1 | e0:t-1 ) 

 P( Xt-1 | e0:t-1 ) can be seen as a message f0:t-1 that is propagated forward 
along the sequence, modified by each transition and updated by each 
observation

Filtering at time t-1
Inclusion of new evidence

(sensor model)
Propagation to time t

why?

Filtering at time t-1Transition model!

Prove it?



Filtering 

P(Xt | e0:t) = α P(et | Xt) ∑xt-1
P(Xt | xt-1 ) P( xt-1 | e0:t-1 )

 Thus, the recursive definition of filtering at time t in terms of 

filtering at time t-1 can be expressed as a FORWARD procedure

• f0:t  = α FORWARD (f0:t-1, et) 

 which implements the update described in

Filtering at time t-1

Inclusion of new evidence

(sensor model)
Propagation to time t



Analysis of Filtering 

 Because of the recursive definition in terms for the forward 
message, when all variables are discrete the time for each 
update is constant (i.e. independent of t )

 The constant depends of course on the size of the state 
space



Rain Example

Rain0 Rain1

Umbrella1

Rain2

Umbrella2

 Suppose our security guard came with a prior belief of 0.5 that it rained on 

day 0, just before the observation sequence started. 

 Without loss of generality, this can be modelled with a fictitious state R0 with 

no associated observation and P(R0) = <0.5, 0.5>

 Day 1: umbrella appears (u1). Thus

P(R1 | e0:t-1 ) = P(R1) = ∑r0
P(R1 | r0 ) P(r0 ) 

= <0.7, 0.3> * 0.5 + <0.3,0.7> * 0.5 = <0.5,0.5>

TRUE     0.5

FALSE   0.5

0.5

0.5

Rt-1 P(Rt)

t
f

0.7
0.3

Rt P(Ut)

t
f

0.9
0.2



Rain Example

Rain0 Rain1

Umbrella1

Rain2

Umbrella2

 Updating this with evidence from for t =1 (umbrella appeared) gives

P(R1| u1) = α P(u1 | R1) P(R1) = 

α<0.9, 0.2><0.5,0.5> = α<0.45, 0.1> ~ <0.818, 0.182> 

 Day 2: umbella appears (u2). Thus

P(R2 | e0:t-1 ) = P(R2 | u1 ) = ∑r1
P(R2 | r1 ) P(r1 | u1) =

= <0.7, 0.3> * 0.818 + <0.3,0.7> * 0.182 ~ <0.627,0.373>

TRUE     0.5

FALSE   0.5

0.5

0.5

0.818

0.182

0.627

0.373

Rt-1 P(Rt)

t
f

0.7
0.3

Rt P(Ut)

t
f

0.9
0.2



Rain Example

Rain0 Rain1

Umbrella1

Rain2

Umbrella2

 Updating this with evidence from for t =2 (umbrella appeared) gives

P(R2| u1 , u2) = α P(u2 | R2) P(R2| u1) = 

α<0.9, 0.2><0.627,0.373> = α<0.565, 0.075> ~ <0.883, 0.117> 

 Intuitively, the probability of rain increases, because the umbrella appears twice 

in a row

TRUE     0.5

FALSE   0.5

0.5

0.5

0.818

0.182

0.627

0.373

0.883

0.117



Practice exercise (home)

Compute filtering at t3 if the 3rd observation/evidence is no 
umbrella (will put solution on inked slides)
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Lecture Overview

• Filtering (posterior distribution over the current state given 

evidence to date)

• From intuitive explanation to formal derivation

• Example

• Prediction (posterior distribution over a future state given 

evidence to date)

• (start) Smoothing (posterior distribution over a past state 

given all evidence to date)



Prediction P(Xt+k+1 | e0:t )

 Can be seen as filtering without addition of new evidence

 In fact, filtering already contains a one-step prediction

P(Xt | e0:t) = α P(et | Xt) ∑xt-1
P(Xt | xt-1 ) P( xt-1 | e0:t-1 ) 

Filtering at time t-1
Inclusion of new evidence

(sensor model)
Propagation to time t

 We need to show how to recursively predict the state at time t+k +1 from a 
prediction for state t + k

P(Xt+k+1 | e0:t ) = ∑xt+k
P(Xt+k+1, xt+k |e0:t ) = ∑xt+k

P(Xt+k+1 | xt+k , e0:t ) P( xt+k | e0:t ) = 

= ∑xt+k
P(Xt+k+1 | xt+k ) P( xt+k | e0:t )

 Let‘s continue with the rain example and compute the probability of Rain on day 
four after having seen the umbrella in day one and two: P(R4| u1 , u2) 

Prediction for state t+ k

Transition model



Rain Example

Rain0 Rain1

Umbrella1

Rain2

Umbrella2

 Prediction from day 2 to day 3

P(X3 | e1:2 ) = ∑x2
P(X3 | x2 ) P( x2 | e1:2 ) = ∑r2

P(R3 | r2 ) P( r2 | u1 u2 ) = 

= <0.7,0.3>*0.883 + <0.3,0.7>*0.117 = <0.618,0.265> + <0.035, 0.082> 

= <0.653, 0.347>

0.5

0.5

0.5

0.5

0.818

0.182

0.627

0.373

0.883

0.117

Rain3

Umbrella3

0.653

0.347

 Prediction from day 3 to day 4

P(X4 | e1:2 ) = ∑x3
P(X4 | x3 ) P( x3 | e1:2 ) = ∑r3

P(R4 | r3 ) P( r3 | u1 u2 ) = 

= <0.7,0.3>*0.653 + <0.3,0.7>*0.347= <0.457,0.196> + <0.104, 0.243> 

= <0.561, 0.439>

Rain4

Umbrella4

0.561

0.439

Rt-1 P(Rt)

t
f

0.7
0.3

Rt P(Ut)

t
f

0.9
0.2
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Lecture Overview

• Filtering (posterior distribution over the current state given 

evidence to date)

• From intuitive explanation to formal derivation

• Example

• Prediction (posterior distribution over a future state given 

evidence to date)

• (start) Smoothing (posterior distribution over a past state 

given all evidence to date)



Smoothing 

Smoothing: Compute the posterior distribution over a 

past state given all evidence to date

• P(Xk | e0:t ) for 1 ≤ k < t

E0



Smoothing 

 P(Xk | e0:t) = P(Xk | e0:k,ek+1:t )     dividing up the evidence

= α P(Xk | e0:k ) P(ek+1:t | Xk, e0:k ) using… 

= α P(Xk | e0:k ) P(ek+1:t | Xk)  using…

backward message, 

b k+1:t

computed by a 

recursive process 

that runs 

backwards from t

forward message from 

filtering up to state k, 

f 0:k



Smoothing 

 P(Xk | e0:t) = P(Xk | e0:k,ek+1:t )     dividing up the evidence

= α P(Xk | e0:k ) P(ek+1:t | Xk, e0:k ) using Bayes Rule

= α P(Xk | e0:k ) P(ek+1:t | Xk) By Markov assumption on evidence

backward message, 

b k+1:t

computed by a recursive process 

that runs backwards from t

forward message from 

filtering up to state k, 

f 0:k
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Learning Goals for today’s class

You can:

• Describe Filtering and derive it by manipulating 

probabilities

• Describe Prediction and derive it by manipulating 

probabilities

• Describe Smoothing and derive it by manipulating 

probabilities
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TODO for Fri

• Keep working on Assignment-2 

• due Oct 21 (it may take longer than first one)

• Reading Textbook Chp. 6.5


