Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 14

Oct, 12, 2016

Slide credit: some slides adapted from Stuart Russell (Berkeley)

CPSC 422, Lecture 14

422 big picture: Where are we?

StarAI (statistical relational AI)

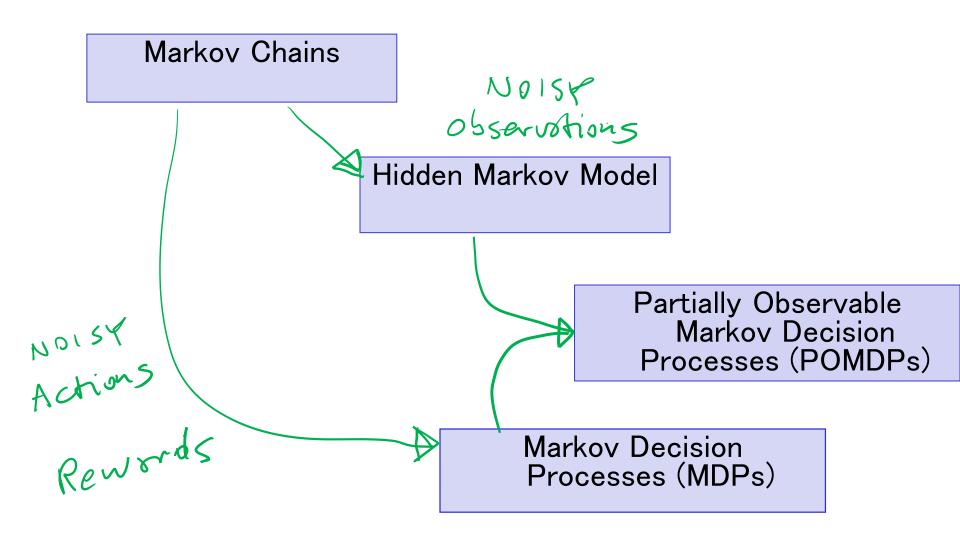
Hybrid: Det +Sto Prob CFG Prob Relational Models Markov Logics

	Deterministic	Stochastic	Markov Logics	
		Belief Nets	_	
		Approx. : Gibbs		
	First Order Logics	Markov Chains and HM	Ms	
	Ontologies	Forward, Viterbi		
Query	Temporal rep.	Approx. : Particle Filte	ring	
-	Full Resolution SAT	Undirected Graphical Mo Markov Networks Conditional Random Fi		
Plannin	g	Markov Decision Proces Partially Observable MD		
		Value Iteration		
		Approx. Inference		
[Reinforcement Learni	ng Repre	sentation
	Applications of AI			easoning chnique

Lecture Overview (Temporal Inference)

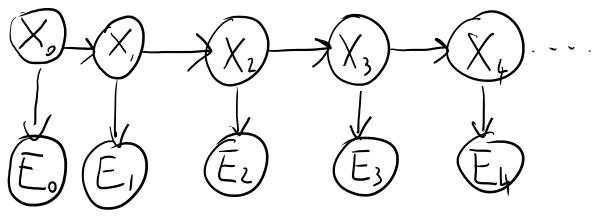
- **Filtering** (posterior distribution over the current state given evidence to date)
 - From intuitive explanation to formal derivation
 - Example
- **Prediction** (posterior distribution over a future state given evidence to date)
- (start) Smoothing (posterior distribution over a *past* state given all evidence to date)

Markov Models



Hidden Markov Model

A Hidden Markov Model (HMM) starts with a Markov chain, and adds a noisy observation/evidence about the state at each time step:



$$domain(X) = k$$

• |domain(E)| = h

• $P(X_0)$ specifies initial conditions

•

 $\mathcal{P}(X_{t+1}|X_t)$ specifies the dynamics

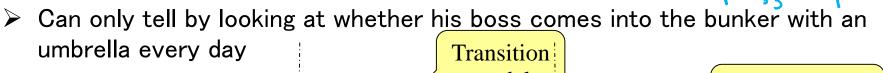
 $\mathcal{O}P(E_t | S_t)$ specifies the sensor model

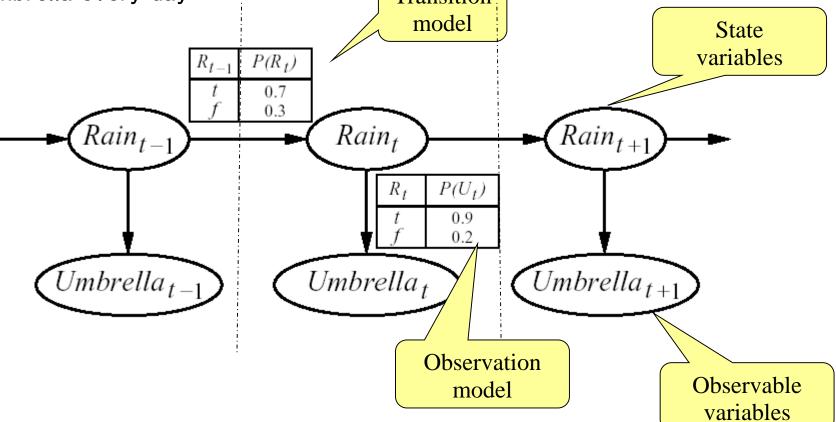
Simple Example

Rt-1

(We'll use this as a running example)

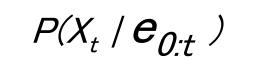
- Guard stuck in a high-security bunker
- > Would like to know if it is raining outside

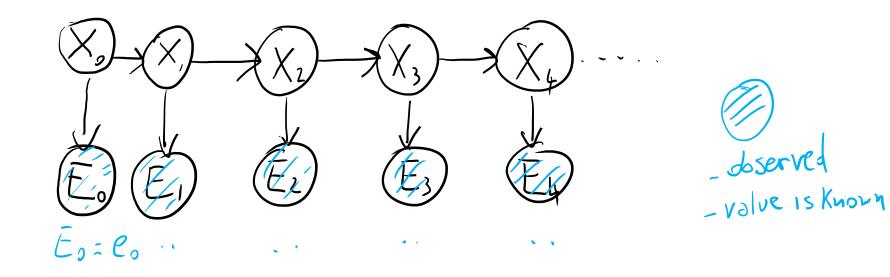




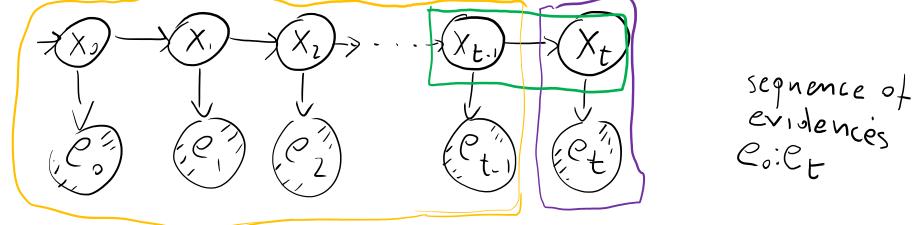
Useful inference in HMMs

 In general (Filtering): compute the posterior distribution over the current state given all evidence to date





Intuitive Explanation for filtering recursive formula



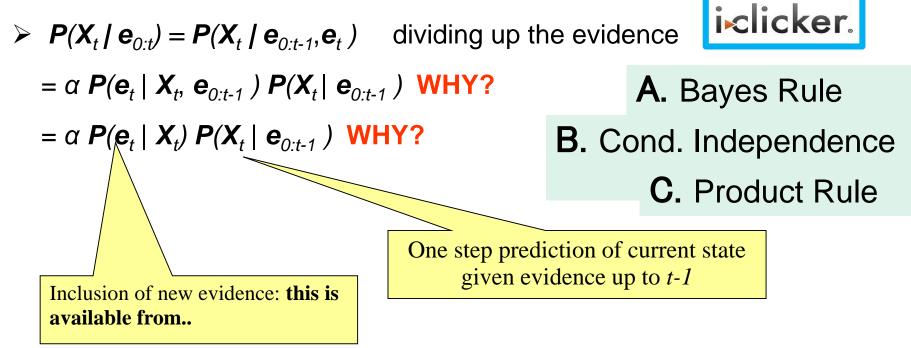
 $P(X_{t} | e_{0:t}) = \alpha P(e_{t} | X_{t}) * P(X_{t} | X_{t-1}) * P(X_{t-1} | e_{0:t})$ X_{t-1} and evidence whatever Xt-1 was, Xt generated Co: Et-1 must hare been generated Xt was reached from there evidence Ct betore getting to XE-1

CPSC422, Lecture 5

Slide 8

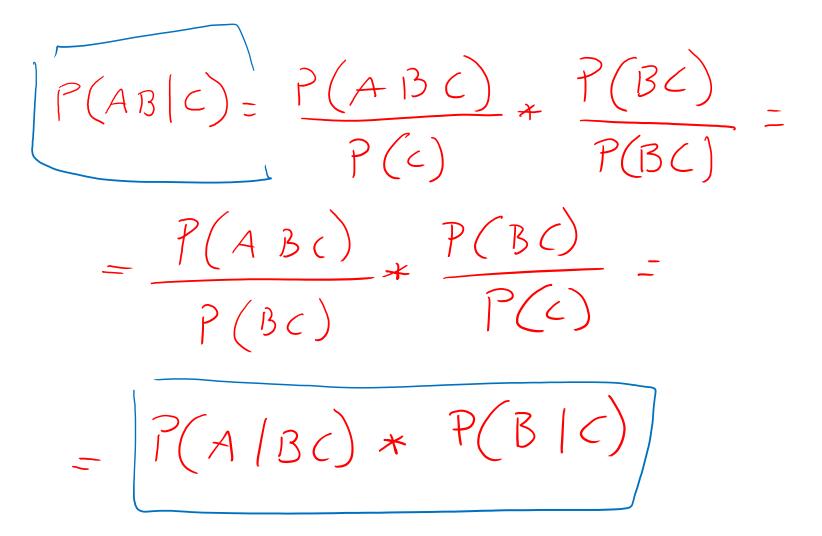
Filtering

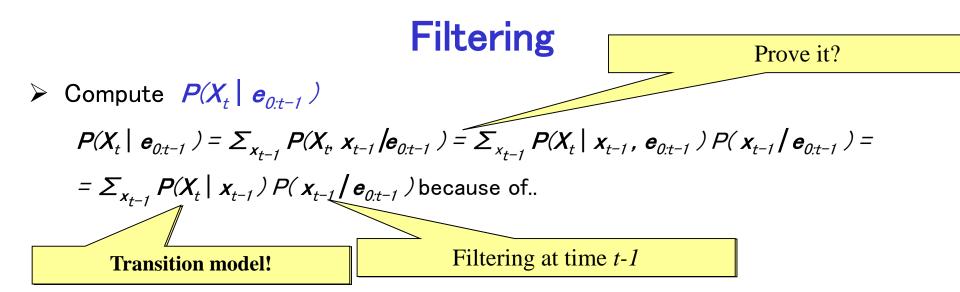
- Idea: recursive approach
 - Compute filtering up to time t-1, and then include the evidence for time t (*recursive estimation*)



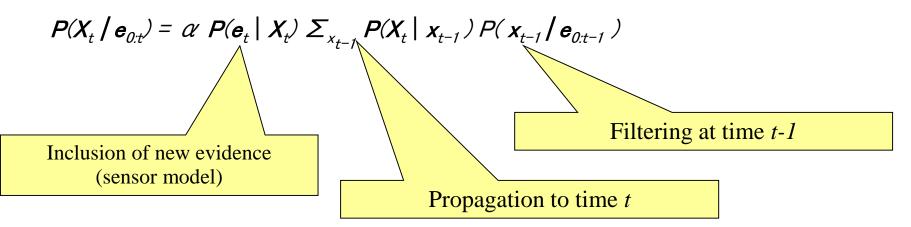
> So we only need to compute $P(X_t | e_{0:t-1})$

"moving" the conditioning





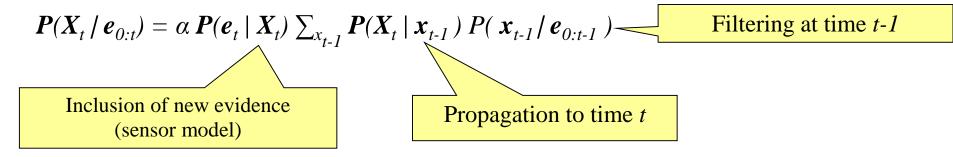
> Putting it all together, we have the desired recursive formulation



 \succ $P(X_{t-1} / e_{0:t-1})$ can be seen as a message $f_{0:t-1}$ that is propagated forward along the sequence, modified by each transition and updated by each observation

Filtering

- Thus, the recursive definition of filtering at time t in terms of filtering at time t-1 can be expressed as a FORWARD procedure
 - $f_{0:t} = \alpha FORWARD (f_{0:t-1}, e_t)$
- \succ which implements the update described in



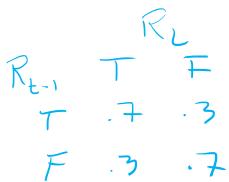
Analysis of Filtering

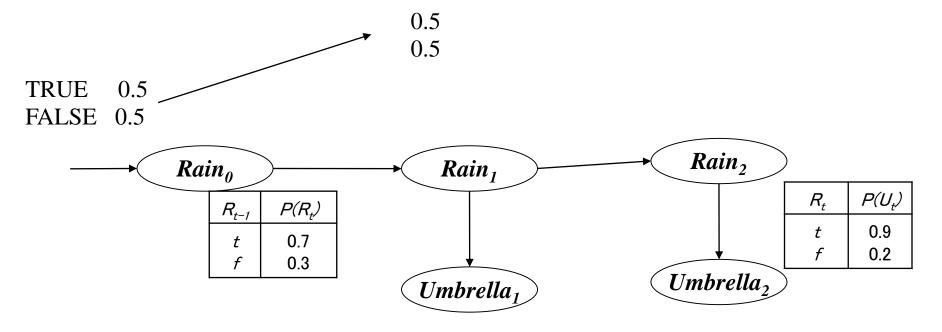
Because of the recursive definition in terms for the forward message, when all variables are discrete the time for each update is constant (i.e. independent of t)

The constant depends of course on the size of the state space

- Suppose our security guard came with a prior belief of 0.5 that it rained on day 0, just before the observation sequence started.
- Without loss of generality, this can be modelled with a fictitious state R_0 with no associated observation and $P(R_0) = \langle 0.5, 0.5 \rangle$
- > **Day 1**: umbrella appears (u_1) . Thus

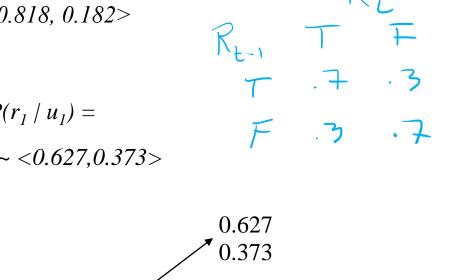
$$P(R_1 | e_{0:t-1}) = P(R_1) = \sum_{r_0} P(R_1 | r_0) P(r_0)$$

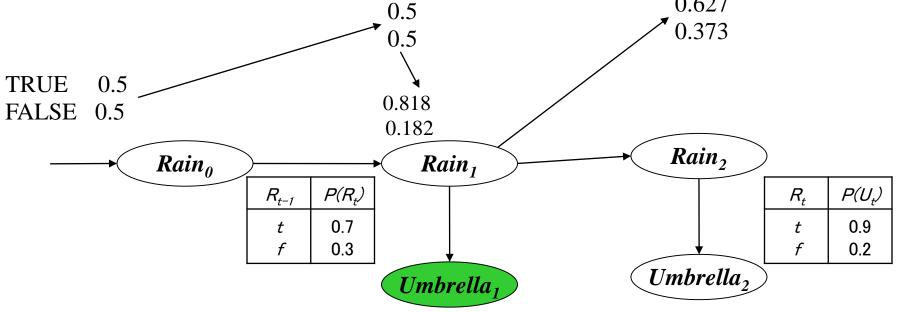




➢ Updating this with evidence from for t =1 (umbrella appeared) gives
 P(R₁ | u₁) = α P(u₁ | R₁) P(R₁) =
 α<0.9, 0.2><0.5, 0.5> = α<0.45, 0.1> ~ <0.818, 0.182>
 ➢ Day 2: umbella appears (u₂). Thus

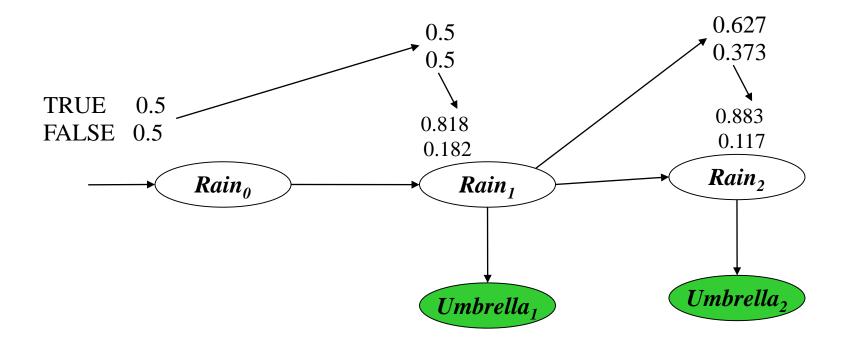
 $P(R_2 | e_{0:t-1}) = P(R_2 | u_1) = \sum_{r_1} P(R_2 | r_1) P(r_1 | u_1) =$ = <0.7, 0.3> * 0.818 + <0.3, 0.7> * 0.182 ~ <0.627, 0.373>





✓ Updating this with evidence from for *t* =2 (umbrella appeared) gives $P(R_2 | u_1, u_2) = \alpha P(u_2 | R_2) P(R_2 | u_1) =
 \alpha < 0.9, 0.2 > < 0.627, 0.373 > = \alpha < 0.565, 0.075 > \sim < 0.883, 0.117 >$

Intuitively, the probability of rain increases, because the umbrella appears twice in a row



Practice exercise (home)

Compute filtering at t_3 if the 3rd observation/evidence is <u>no</u> <u>umbrella</u> (will put solution on inked slides)

(0.7, 9.3) * 0.883 + (0.3, 0.7) * 0.117 (0.618, 0.264) + (0.035, 0.081) = (0.653, 0.345)(0.653, 0.345) * (0.1, 0.8)

120.065, 0.2767 normalize (divide by the sum.

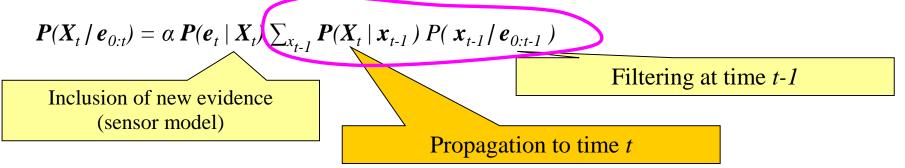
0.19 0.81

Lecture Overview

- **Filtering** (posterior distribution over the current state given evidence to date)
 - From intuitive explanation to formal derivation
 - Example
- **Prediction** (posterior distribution over a future state given evidence to date)
- (start) Smoothing (posterior distribution over a *past* state given all evidence to date)

Prediction $P(X_{t+k+1} | e_{0:t})$

- > Can be seen as filtering without addition of new evidence
- > In fact, filtering already contains a one-step prediction



We need to show how to recursively predict the state at time t+k +1 from a prediction for state t + k

$$P(X_{t+k+1} | e_{0:t}) = \sum_{x_{t+k}} P(X_{t+k+1}, x_{t+k} | e_{0:t}) = \sum_{x_{t+k}} P(X_{t+k+1} | x_{t+k}, e_{0:t}) P(x_{t+k} | e_{0:t}) = \sum_{x_{t+k}} P(X_{t+k+1} | x_{t+k}) P(x_{t+k} | e_{0:t})$$
Prediction for state $t+k$
Transition model

Let 's continue with the rain example and compute the probability of *Rain* on day four after having seen the umbrella in day one and two: $P(R_4 \mid u_1, u_2)$

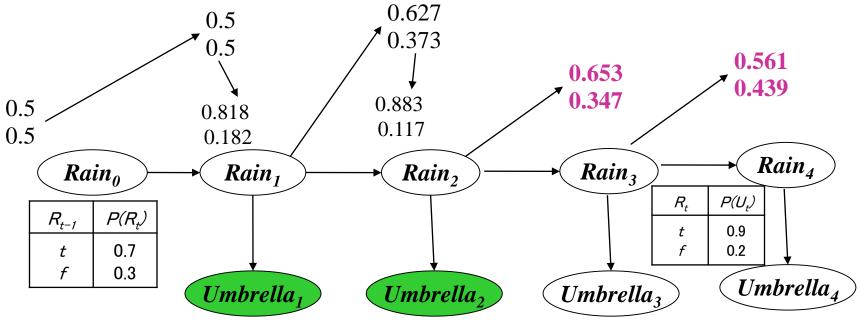
Prediction from day 2 to day 3

 $P(X_3 | e_{1:2}) = \sum_{x_2} P(X_3 | x_2) P(x_2 | e_{1:2}) = \sum_{r_2} P(R_3 | r_2) P(r_2 | u_1 u_2) =$ = <0.7,0.3>*0.883 + <0.3,0.7>*0.117 = <0.618,0.265> + <0.035, 0.082> = <0.653, 0.347>

Prediction from day 3 to day 4

 $P(X_4 | e_{1:2}) = \sum_{x_3} P(X_4 | x_3) P(x_3 | e_{1:2}) = \sum_{r_3} P(R_4 | r_3) P(r_3 | u_1 u_2) =$ = <0.7,0.3>*0.653 + <0.3,0.7>*0.347 = <0.457,0.196> + <0.104, 0.243>

= <**0.561**, **0.439**>



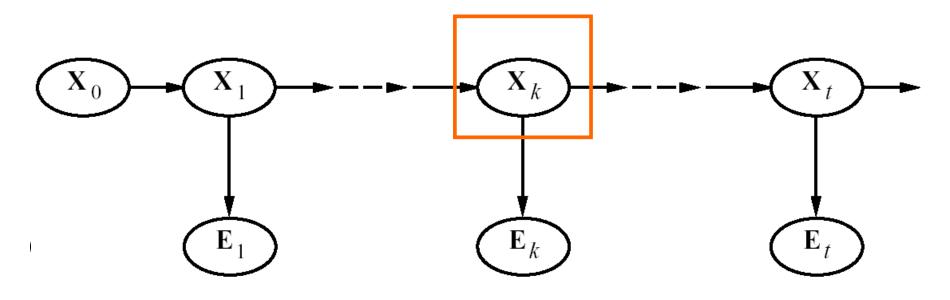
Lecture Overview

- **Filtering** (posterior distribution over the current state given evidence to date)
 - From intuitive explanation to formal derivation
 - Example
- **Prediction** (posterior distribution over a future state given evidence to date)
- (start) Smoothing (posterior distribution over a *past* state given all evidence to date)

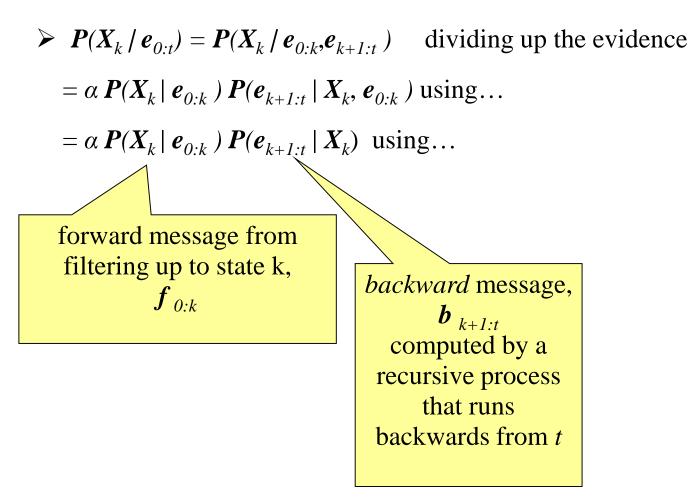
Smoothing

Smoothing: Compute the posterior distribution over a past state given all evidence to date

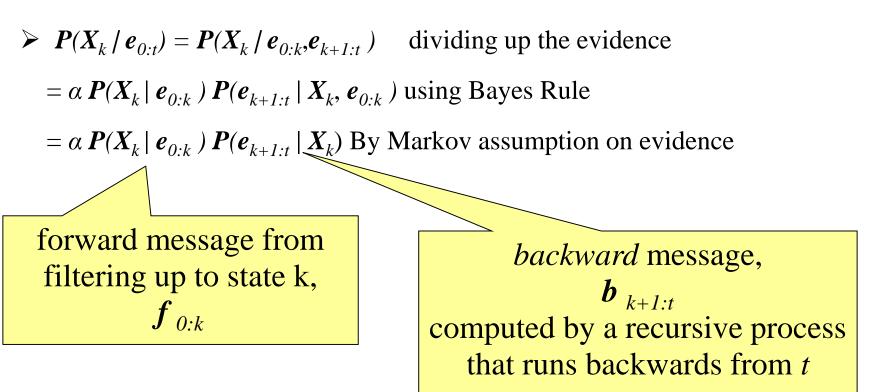
• $P(X_k / e_{0:t})$ for $1 \le k \le t$



Smoothing



Smoothing



Learning Goals for today's class

≻You can:

- Describe Filtering and derive it by manipulating probabilities
- Describe Prediction and derive it by manipulating probabilities
- Describe Smoothing and derive it by manipulating probabilities

TODO for Fri

- Keep working on Assignment-2
 - due Oct 21 (it may take longer than first one)
- Reading Textbook Chp. 6.5